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Solution for Wide Band Scattering Problems by Using the Improved
Ultra-Wide Band Characteristic Basis Function Method

Wen-Yan Nie1 and Zhong-Gen Wang2, *

Abstract—The ultra-wide band characteristic basis function method (UCBFM) is an efficient approach
for analyzing wide band scattering problems because ultra-wide characteristic basis functions (UCBFs)
can be reused for any frequency sample in the range of interest. However, the errors of the radar cross
section calculated by using the UCBFs are usually large at low frequency points. To mitigate this
problem, an improved UCBFM is presented. Improved UCBFs (IUCBFs) are derived from primary
characteristic basis functions and secondary level characteristic basis functions (SCBFs) by applying a
singular value decomposition procedure at the highest frequency point. This method fully considers the
mutual coupling effects among sub-blocks to obtain the SCBFs. Therefore, the accuracy is improved at
lower frequency points because of the higher quantity of current information contained in the IUCBFs.
Numerical results demonstrate that the proposed method is accurate and efficient.

1. INTRODUCTION

Broadband electromagnetic scattering is important in many fields, such as modern radar target
recognition, microwave imaging, and microwave remote sensing. One of the most popular methods
for calculating the broadband radar cross section (RCS) is the method of moments (MoM) [1]; however,
this method is notoriously expensive in terms of computation time and storage requirements when
electrically large problems are analyzed. Moreover, it requires the impedance matrix to be generated
for each frequency point; hence, if the response over a wide frequency band is of interest, the MoM is
computationally intensive. Recently, several techniques have been proposed to alleviate this problem.
In [2], the impedance matrix is computed at relatively large frequency intervals and then interpolated
to approximate its values. In [3], model-based parameter estimation based on rational function
approximation is used to reduce the number of frequency points in which solutions or samples are
required in broadband RCS calculation. However, these two techniques must resort to iterative methods,
which can cause convergence difficulties when dealing with an ill-conditioned matrix. In [4] and [5], the
asymptotic waveform estimation (AWE) technique is proposed to predict the RCS over a band of
frequencies. The AWE technique can hardly deal with wide band electromagnetic scattering problems
from electrically large objects or multi-objects because it requires MoM matrix inversion at a central
frequency. Hence, in [6] and [7], the AWE technique based on the characteristic basis function method
(CBFM) [8, 9] is proposed to analyze wide band electromagnetic scattering problems. Although this
method avoids solving the MoM matrix using iterative methods, it uses the mutual coupling method
to generate characteristic basis functions (CBFs), which is time consuming and memory demanding.
In [10], a simple binary search algorithm is described to apply AWE at multiple frequency points to
generate an accurate solution over a specified frequency band. The CBFs depend upon the frequency
and need to be generated repeatedly for each frequency. Hence, an algorithm called ultra-wide CBFM
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(UCBFM) [11, 12] is presented to remove the need to repeatedly generate CBFs for each frequency. The
CBFs calculated at the highest frequency after the singular value decomposition (SVD) procedure show
electromagnetic behavior at low frequency ranges; these CBFs are called ultra-wide CBFs (UCBFs).
Thus, UCBFs can also be employed at lower frequencies without going through the time-consuming step
of generating them again. However, the errors of the RCS calculated by using UCBFs are usually large
at lower frequency points, its universality is not strong. In [13], improved UCBFs (IUCBFs) are derived
from CBFs at the highest frequency point and lowest frequency point. Although accuracy is improved,
the amount of calculation increases. In this paper, an improved UCBFM (IUCBFM) is presented. This
approach fully considers the mutual effects among sub-blocks and calculates the secondary level CBFs
(SCBFs) after the primary CBFs (PCBFs) are obtained. Therefore, IUCBFs contain more current
information and have a stronger universality, it could greatly improve the calculation accuracy at lower
frequency points.

The remainder of the paper is organized as follows. Section 2 illustrates the UCBFM. Section 3
describes the IUCBFM. Section 4 presents the complexity of the two methods. Section 5 presents the
numerical results for four test targets to demonstrate that IUCBFM is accurate and efficient. Section 6
concludes.

2. ULTRA-WIDE CHARACTERISTIC BASIS FUNCTION METHOD

UCBFM [11, 12] begins by modeling the target at the highest frequency point of the desired frequency
band and generating the CBFs by using a series of illuminating waves. If we calculate the CBFs at
the highest frequency point fh, the geometry of the object is divided into M blocks. These blocks are
characterized through a set of CBFs that is constructed by exciting each block with multiple plane
waves (PWs). To calculate the CBFs on sub-block i, one must solve the following system:

Zii(fh)JCBFs
i = VPWs

i (i = 1, 2, . . . ,M), (1)

where Zii is an N be
i ×N be

i impedance matrix; VPWs
i is an N be

i ×Npws matrix containing the excitation
vector used to illuminate the sub-block i; N be

i is the number of the RWG basis functions in the extended
block i; Npws is the total number of PWs, which is equal to 2NθNφ (including θ- and φ-orthogonal
polarizations for each angle). Nθ and Nφ denote the number of different angles in the θ and φ directions,
respectively. JCBFs

i is an N be
i × Npws matrix representing the CBFs. Typically, the number of PWs

used to construct the CBFs will exceed the number of degrees of freedom associated with the block. To
eliminate the redundant information in JCBFs

i caused by overestimation, an orthogonalization procedure
based on SVD is used to reduce the final number of CBFs. Only CBFs whose relative singular values
are above a certain threshold, for example, 1.0E-3, are retained as UCBFs. For simplicity, we assume
that all blocks contain the same number of K UCBFs after SVD, where K is always smaller than Npws.
The solution to the entire problem is expressed as a linear combination of the M × K UCBFs:

J =
M∑

i=1

K∑

k=1

αk
i (fh)JCBF k

i , (2)

where JCBF k
i is the kth UCBFs of the block i and ak

i the unknown weight coefficients. The solution is
obtained at frequency fh. To obtain the KM unknown expansion coefficients, we substitute Formula (2)
into the MoM equation Z •J = V. Thereafter, [JCBF 1

i ]H , [JCBF 2
i ]H , . . ., and [JCBF K

i ]H takes the inner
product of both sides of equation Z • J = V, where H stands for conjugated transpose. A reduced
matrix can be obtained as follows:

ZR(f) • α(f) = VR(f), (3)

where ZR(f) is the reduced impedance matrix of dimension KM ×KM , each element of which can be
expressed as follows:

ZR
ij (f) = JT • Zij(f) • J i, j < M. (4)

The elements of VR(f) can be expressed as follows:

V R
i (f) = JT •Vi(f) i < M. (5)
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Finally, after solving the reduced system in Eq. (3) and substituting the solution back to Eq. (2),
one can obtain the solution of the single frequency point. Once generated, these UCBFs, also capture the
electromagnetic behavior of lower frequencies and enables one to solve the scattering for any frequency
sample in the band without going through the time-consuming process of generating CBFs anew.

3. IMPROVED ULTRA-WIDE CHARACTERISTIC BASIS FUNCTION METHOD

When using the UCBFM, the errors of the RCS calculated by using UCBFs are usually large at low
frequency points. To improve the calculation accuracy of UCBFM at lower frequency points, the
construction of UCBFs is improved by considering the mutual coupling effects among sub-blocks. A
model is established at the highest frequency point fh in the given frequency band, and the number
of PWs is reduced. For each plane wave excitation, the SCBFs are calculated after the PCBFs are
obtained. The PCBFs of block i can be solved by the following formula.

Ze
iiJ

P
i = Vi, (6)

where Vi is the incident field of each block, for i = 1, 2, . . . M . Ze
ii represents the self-impedance of

block i, with dimensionality of Ni × Ni. The PCBFs of block i can be obtained by directly solving
Eq. (6). After the PCBFs of each block are solved, according to Foldy-Lax equation theory [14–16],
the SCBFs on a block are calculated by replacing the incident field with the scattered fields due to
the PCBFs on all blocks except from itself. By solving Eq. (7), we can obtain the first-level SCBFs.
Similarly, higher-level SCBFs can be calculated. If the second-level SCBFs is calculated, these SCBFs
can be calculated as follows:

Ze
iiJ

S1
i = −

M∑

j=1(j �=i)

ZijJP
j , (7)

Ze
iiJ

S2
i = −

M∑

j=1(j �=i)

ZijJS1
j , (8)

We let Nnew
θ and Nnew

φ respectively indicate the number of PWs in the θ and φ directions in
IUCBFM. 6Nnew

θ Nnew
φ CBFs will exist for each block by considering θ- and φ-polarizations when

using IUCBFM (including 2Nnew
θ Nnew

φ JP
i , 2Nnew

θ Nnew
φ JS1

i and 2Nnew
θ Nnew

φ JS2
i ). To reduce the linear

dependency among these CBFs, we also need to use an SVD procedure. These three current terms
represent different stages in multiple scattering, such that all current solutions JP

i , JS1
i , and JS2

i are
fed to the SVD procedure separately. To consider the mutual coupling effects among sub-blocks, the
IUCBFs contain more current information and the number PWs is reduced.

4. COMPLEXITY ANALYSIS

The computational cost of applying the UCBFM (IUCBFM) involves three parts: firstly is UCBFs
construction, then constructing the reduced matrix, and lastly solving the reduced matrix. The most
computationally intensive part of the UCBFM is associated with the construction of the UCBFs and
the reduced matrix construction procedure.

a. UCBFs construction: To solve Eq. (1), the LU factorization is usually used. In UCBFM, when
solving the Eq. (1) with multiply excitations the memory and CPU time complexity are O(M(Ni)2)
and O(2MNθNφ(Ni)3), respectively. In IUCBFM, the memory requirement is the same as the
UCBFM. The construction of the IUCBFs mainly includes two parts, one is the construction of
the PCBFs and the other is the construction of the SCBFs. The complexity of PCBFs and SCBFs
are O(2MNnew

θ Nnew
φ (Ni)3) and O(4MNnew

θ Nnew
φ (Ni)3 + 4M(M − 1)Nnew

θ Nnew
φ NiNj). Ni and Nj

are the numbers of the RWG basis functions in blocks i and j, respectively. Compared with the Nθ

and Nφ, the Nnew
θ and Nnew

φ will be reduced to 40% (will be proved in next section), respectively.

So the complexity of IUCBFs construction is O(24MNθNφ

25 (Ni)3 + 16M(M−1)NθNφ

25 NiNj).
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b. Reduced matrix construction: In UCBFM, the memory requirement and CPU time are with a
complexity of O((KM)2) and O((KM)2NiNj), respectively. In IUCBFM, the memory requirement
and CPU time are with a complexity of O((KnewM)2) and O((KnewM)2NiNj), respectively. Knew

is the number of IUCBFs retained on each block after SVD, where Knew is always smaller than K.
c. Reduced matrix solution: In UCBFM, the CPU time complexity is O((KM)3). In UCBFM, the

CPU time complexity is O((KnewM)3).

Compared with the UCBFM, the computational complexity of IUCBFM is greatly decreased in
UCBFs construction, reduced matrix construction and reduced matrix solution.

5. NUMERICAL RESULTS

To validate the accuracy and efficiency of IUCBFM, three test samples are presented. All simulations
are conducted on a personal computer with an Intel(R) Core(TM) i7-3820 CPU with 3.6 GHz (only one
core is used) and 32 GB RAM. The second level of the SCBFs is calculated, and the threshold of the
SVD is set to 10−3.

First, a PEC cube with a side length of 1 m is considered. We present the result for the problem of
scattering over a frequency range from 0.3 GHz to 3 GHz. The geometry is divided into 1110 triangular
patches with an average length of λ/10 at 3 GHz, thus resulting in 2786 unknowns. The geometry is
sub-divided into 8 blocks, with each block extended by Δ = 0.15λ in all directions. On the basis of
Ref. [11], we construct the UCBFs for UCBFM by using a spectrum of PWs incident from 0◦ ≤ θ < 180◦
and 0◦ ≤ φ < 360◦ with Nθ = Nφ = 20. This approach results in 800 CBFs, and 73 UCBFs (average
value) are retained on each block after SVD. To prove the high efficiency of the IUCBFs construction,
the error convergence curve of UCBFs and IUCBFs with the number of PWs used in the computation
is shown in Fig. 1. The relative error Err is defined as (‖I − IMOM‖2/‖IMOM‖2)× 100%, where IMOM

is the current coefficient vector computed at 3 GHz by the MoM, and I is the current coefficient vector
computed at 3 GHz by the UCBFM or the IUCBFM. ‖•‖2 denotes vector-2 norm. Through a comparison
of Err versus the number of PWs given in Fig. 1, we find that the IUCBFM can yield a satisfactory
result with a small number of PWs. Compared with the Nθ and Nφ, the Nnew

θ and Nnew
φ are reduced

to 40%, respectively. In IUCBFM, we illuminate each block with a spectrum of PWs incident from
0◦ ≤ θ < 180◦ and 0◦ ≤ φ < 360◦ with Nθ = Nφ = 8. This approach results in only 384 CBFs for
each block, such that the number of CBFs is reduced remarkably. PCBFs JP and SCBFs JS1 and JS2

are then fed into the SVD procedure separately. The numbers of JP , JS1, and JS2 retained on each
block after SVD are shown in detail in Table 1. A total of 67 IUCBFs (average value) are retained on
each block. The bi-static RCSs in θθ polarization calculated by using UCBFM, IUCBFM, and MoM at
600 MHz are shown in Fig. 2. The results calculated by using IUCBFM are more accurate than those
calculated by using UCBFM. The broadband RCS (101 frequency sampling points) obtained by using
UCBFM and IUCBFM over a frequency range of 0.3 GHz to 3 GHz are shown in Fig. 3. The results
at the lower frequency points calculated by using IUCBFM are more accurate than those calculated by
using UCBFM.

Table 1. Number of CBFs retained on each block after the SVD of IUCBFM.

CBFs Block 1 Block 2 Block 3 Block 4 Block 5 Block 6 Block 7 Block 8
JP 36 36 36 36 36 36 36 36
JS1 30 30 30 30 30 30 30 30
JS2 2 1 1 1 2 1 1 1

Second, a composite PEC conductor over a frequency range of 0.1 GHz to 3 GHz is considered.
The side length of the bottom is 7.5 cm, the side length of the top is 15 cm, and the height is 25 cm.
The discretization in triangular patches is conducted at 3 GHz with a mean edge length of λ/10, thus
leading to 5084 unknowns. The structure is divided into 6 blocks; each block is extended by Δ = 0.15λ
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Figure 1. Error convergence of the current versus
the number of PWs.
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Figure 2. Bi-static RCS of the PEC cube at
600 MHz.
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Figure 3. Broadband RCS of the PEC cube.
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Figure 4. Broadband RCS of composite PEC
conductor.

in all directions and is excited by a spectrum of PWs with Nθ = Nφ = 20 for 800 CBFs. A total of
123 UCBFs are retained on each block after SVD. In IUCBFM, each block is excited by using multiple
PWs with Nθ = Nφ = 8, and 112 IUCBFs are retained on each block after SVD. The broadband RCS
(101 frequency sampling points) obtained by using UCBFM and IUCBFM are shown in Fig. 4. The
results at lower frequency points calculated by using IUCBFM are more accurate than those calculated
by using UCBFM.

Third, a 252.3744 mm PEC NASA almond with a length of 25 cm over a frequency range of 0.1 GHz
to 3 GHz is considered. The geometry is divided into 2684 triangular patches with an average length of
λ/10 at 3 GHz, and this situation leads to 4026 unknowns. The geometry is sub-divided into 4 blocks
in the axis x direction. In UCBFM, we construct the UCBFs by using a spectrum of PWs incident
from 0◦ ≤ θ < 180◦ and 0◦ ≤ φ < 360◦, with Nθ = Nφ = 20. A total of 121 UCBFs (average value) are
retained on each block after SVD. In IUCBFM, we construct the IUCBFs at the highest frequency by
using a spectrum of PWs incident from 0◦ ≤ θ < 180◦ and 0◦ ≤ φ < 360◦ with Nθ = Nφ = 8. A total of
110 IUCBFs (average value) are retained on each block after SVD. The broadband RCS (51 frequency
sampling points) calculated by using UCBFM and IUCBFM are shown in Fig. 5. The results at the
lower frequency points calculated by using IUCBFM agree more with the MoM than those calculated
by using UCBFM.

Finally, a PEC cone over a frequency range of 1 GHz to 6 GHz is considered. The radius of base
is 10 cm, and the height is 10 cm. The discretization in triangular patches is conducted at 6 GHz, thus
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leading to 15920 unknowns. The structure is divided into 10 blocks; each block is extended by Δ = 0.15λ
in all directions. In IUCBFM, each block is excited by using multiple PWs with Nθ = Nφ = 8, and 132
IUCBFs are retained on each block after SVD. The broadband RCS (101 frequency sampling points)
obtained by using the commercial FEKO and IUCBFM are shown in Fig. 6. It can be seen that the
results calculated by IUCBFM agree well with those of FEKO.

The CPU time of the above four test examples using UCBFM and ICBFM are summarized in
Table 2. Compared with the UCBFM, the total time and UCBFs construction time are both reduced
when using the IUCBFM. However, we should be noted that when the electrically large problem with
more blocks is analyzed, the CPU time will be large. The reason for this is that UCBFM (IUCBFM)
needs to reconstruct the reduced matrix at each frequency point. So, it is desirable to use sweep
frequency algorithms to further improve the efficiency of UCBFM (IUCBFM).
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Figure 5. Broadband RCS of the NASA PEC
almond.
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Figure 6. Broadband RCS of the PEC cone.

Table 2. CPU time of four problems.

Problems Method UCBFs construction(s) Total time(s)

Problem 1
UCBFM 84 7181
IUCBFM 51 6339

Problem 2
UCBFM 298 42345
IUCBFM 216 35564

Problem 3
UCBFM 226 26640
IUCBFM 178 18896

Problem 4
FEKO – –

IUCBFM 1097 401105

6. CONCLUSION

This paper has presented a method for analyzing the broadband electromagnetic scattering of PEC
objects. The IUCBFM reduces the incident PWs, and the SCBFs are obtained by fully considering the
mutual coupling effects among sub-blocks, such that construction time for UCBFs and the number of
UCBFs are significantly reduced. In addition, the IUCBFs contain more current information, have a
stronger universality, and improve the calculation accuracy at lower frequency points. Several numerical
results show that the IUCBFM is more accurate and efficient than the UCBFM.
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