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Synthesis of Generalized Chebyshev Lossy Bandstop Filters
with Non-Paraconjugate Transmission Zeros

Guohui Li*

Abstract—A systematic procedure is presented for synthesis of generalized Chebyshev lossy bandstop
filters with non-paraconjugate transmission zeros. From a lossy scattering parameters with the
prescribed reflection zeros, the transformation formulas from the scattering matrix to the admittance
matrix are obtained by reconstructing the non-paraconjugate transmission zeros as paraconjugate ones.
The canonical transversal array is modeled by partial fraction expansion of the normalized admittance
functions, resulting in an increased order of the final network provided there are nonparaconjugate
transmission zeros. The methods are simpler and more general than the ones in the literature. So
it shows great versatility, and can also accommodate lossless network or a transfer function with
symmetrical transmission zeros. To illustrate the proposed synthesis procedure, three typical examples
have been carried out to validate the synthesis method.

1. INTRODUCTION

Microwave filters are indispensable components in modern communication systems. With the continuous
development of information technology over the last years, the demand for filter with high-performance
has become more urgent. High-performance is defined as the most efficient use of the costly spectrum,
that is, it preserves a very flat passband and a steep transition into the rejection band with a small size
and mass [1]. It is usually a trade-off between in-band insertion loss variations, out of band isolation,
size and mass to design this type of filter. High quality factor (Q) plays an important role in high-
performance filters. In order to increase the Q, one often must increase the size of the resonator, or
may necessitate expensive dielectric resonators. The former approach usually results in a larger volume,
which can not be tolerated in some applications such as satellite communications. The latter approach
increases the cost greatly.

Lossy filter has been developed using low Q resonators at the cost of a significant increase in the
absolute insertion loss. In this type of filter, losses are intentionally added according to the design
specifications. In other words, it is possible to enhance the performance or at least maintain similar
performance by using low Q resonators. The prescribed insertion loss can be potentially compensated
by an amplifier.

Recently, the synthesis of lossy filters has been widely discussed in literature and it has become one
of the most important topics in microwave filter research. The commonly-used methods for the synthesis
of lossy networks are: the predistortion, the lossy coupling matrix synthesis and the even/odd mode
analysis. Predistortion can improve the insertion loss flatness by reflecting more power at the band
center of the filter function. To compensate for the return-loss performance, nonreciprocal devices such
as isolators and circulators are needed, resulting in a larger size. Comparing with predistortion, direct
synthesis method of lossy filters [2, 3] which is based on the absorption using additional resistive elements
rather than the reflection of power, leads to improved return loss. In 2008, N ×N lossy coupling matrix
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applying an iterative algorithm by Miraftab and Yu [3] was synthesized, where nonuniform dissipation
and modified topologies with extra lossy coupling elements were used to realize a low Q filter with high
flatness and good return loss. A systematic approach to the transversal N+2 coupling matrix were also
proposed [4]. From the well-established mathematical theorems for complex matrices, a direct method
to obtain the lossy coupling matrix has been developed in [5]. Oldoni et al. [6] presented a more general
even- and odd-mode decomposition to synthesize a lossy network in 2010. It is not limited to symmetric
networks.

The above mentioned coupling matrices are not realizable in their current form. Hence, further
matrix operations are required to transform the coupling matrix to the matrix in a requested topology.
For lossy case, both hyperbolic and trigonometric matrix rotation are applied to appropriately distribute
the loss among the resonators. But it is quite cumbersome, time-consuming and even impossible for
the lossy filter to find an appropriate sequence of rotations, especially for the filter with high order
and complex topology since there are simultaneous resistive and reactive coupling. This method also
lacks general rules for the rotation matrix. To overcome this limitation, optimizations are preferable
to the derivation of the required coupling matrix for lossy filter by defining one or more appropriate
cost functions [7, 8]. The aim is to minimize the difference between the synthesized filter response
and a theoretical objective function at several frequency points. The coupling coefficients are used as
the independent variables in minimizing a simple cost function. In [7], a fast synthesis technique for
generalized Chebyshev lossy bandpass filters was proposed by solving a nonlinear least squares problem
based on zeros and poles of filter’s transfer functions. However, it may miss the best solution if an
initial value is not sufficiently close to the global minimum. Evolutionary algorithms have the potential
to find the global minimum by crossover and mutation operation. Zhao and Wang [8] applied it to a
lossy coupling matrix synthesis by defining multi-objective functions.

The requirements for high-performance can be fulfilled by filters with transmission zeros. It is a
common sense that zeros of the transfer function usually are purely imaginary or appear in a conjugate
pair, in other words, they are restricted to be symmetrically distributed about the imaginary axis in the
complex frequency plane, as shown in Fig. 1(a). This phenomenon is also called to be paraconjugate.
To our konwledge, the filters in the previous literatures are all concerned about this form. But in a
more general case, the transmission zeros are non-paraconjugate or asymmetrically distributed about the
imaginary axis, as depicted in Fig. 1(b). The classical method of filter design is based on the assumption
that the transmission zeros (TZs) are all paraconjugate. The existing methods are no longer valid for
this non-paraconjugate network. Therefore, a more general theory for the synthesis of lossy filter with
non-paraconjugate TZs is desired. Inspired by [9], we propose a novel synthesis technique belonging
to this class. The synthesis starts from suitable characteristic polynomials by reconstructing the non-
paraconjugate transmission zeros as paraconjugate ones. With this technique, zeros of the new transfer
function are paraconjugate pair. It is shown that the presented approach is, however, more general than
the existing ones because it does not has any limitation for the choice of the symmetrical transmission
zeros.

This paper extends the work first presented in [9] to lossy resonator filter. Such a modification
allows filters with more TZs to be realized, and in effect, higher selectivity or equalized group delay
can be achieved. The paper is organized in the following way: Section 2 describes the details of
polynomial synthesis for lossy resonator filter with non-paraconjugate transmission zeros. Section 3
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Figure 1. Distribution of the transmission zeros, (a) paraconjugate, (b) non-paraconjugate.
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provides a method of the expressions for the complex Y parameter from the reconstructed scattering
parameters. Three different examples are considered to cover bandstop filters with paraconjugate TZs,
non-paraconjugate TZs and no reflection zero in Section 4 to validate the novel design method. Section 5
concludes this article.

2. BASIC THEORY

2.1. Characteristic Polynomials of Lossless Filter

Consider the scattering matrix of a lossless two-port bandstop filter network composed of a series of N
cross-coupled resonators as [

S′
11 S′

12

S′
21 S′

22

]
=

1
E(s)

[
P11(s)/ε F (s)/εR

F (s)/εR P22(s)/ε

]
(1)

where s = σ + jω is the complex frequency variable, S′
12 = S′

21 since the network is reciprocal; P11(s),
P22(s) and F (s) are the reflection and transfer polynomials; the common denominator E(s) is a strict
Hurwitz polynomial whose roots must all lie in the left-hand plane of the s-plane. It is assumed that
the polynomials P11(s), P22(s), F (s) and E(s) have been normalized to their respective highest degree
coefficients such that their highest degree coefficients are all unity. For bandstop filter, both F (s) and
E(s) are Nth-degree polynomials, while the degree of P11(s) corresponds to the number of finite-position
reflection zeros (RZs) that are originally prescribed. For a realizable network, the degree of P11(s) must
not exceed N , i.e., nrz ≤ N . ε and εR are normalization factors to force |S′

11| and ||S′
21| ≤ 1 at any

frequency variable s. εR = 1 for all cases except for fully canonical filtering function, where all the
prescribed RZs belong to finite frequencies, i.e., nrz = N . In this case, εR is slightly greater than 1,
which can be described as [10]

εR =
ε√

ε2 − 1
(2)

The value of ε can be found through the following equation:

ε =
εR√

10RL/10 − 1
·
∣∣∣∣ F (s)
P11(s)

∣∣∣∣
s=±j

(3)

where RL is the prescribed stopband rejection loss in decibels. It is important to mention that Eq. (3)
is slightly different that of [10]. In [10], incorrect results will appear when nrz = N because εR �= 1 for
the fully canonical case and it should not be neglected. Inserting Eq. (3) into Eq. (2) finally gives

εR =

√
1 +

(
10RL/10 − 1

) ∣∣∣∣P11(s)
F (s)

∣∣∣∣
2

s=±j

(4)

Polynomial P11(s) is determined from finite reflection zeros sr. Once N , RL and sr are given, a recursive
procedure is used to obtain the polynomials P11(s), F (s) and E(s) by Cameron in [11].

For a passive, lossless, and reciprocal system, the transfer and reflection vectors are orthogonal in
order to satisfy the unitary conditions:[

S′
11 S′

21

S′
21 S′

22

]t [
S′

11 S′
21

S′
21 S′

22

]∗
=

[
1 0
0 1

]
(5)

where superscript t indicates the transpose operation, * is the conjugation symbol. Therefore, the
following equations are obtained through multiplying row 1 by column 1 and row 1 by column 2,
respectively

S′
11S

′
11

∗ + S′
21S

′
21

∗ = 1 (6a)

S′
22S

′
21

∗ + S′
21S

′
11

∗ = 0 (6b)
From Eq. (1), Eq. (6) may be found as follows

F (s)F (s)∗

ε2
R

+
P11(s)P11(s)∗

ε2
= E(s)E(s)∗ (7a)
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F (s)P11(s)∗ + F (s)∗P22(s) = 0 (7b)
The latter equation can be rewritten as

P22(s) = − F (s)
F (s)∗

P11(s)∗ (8)

This equation is of the utmost importance, which will be discussed later. There is no obvious evidence
in support of a theory that the TZs must be upon the imaginary axis. For a synthesizable network,
however, the zeros from S11(s) and S22(s) must be located in the form of a mirror-image about the
imaginary axis. In this case, the individual zeros of S11(s) may be chosen from the left-hand or right-
hand side of each pair, and the remaining zeros from each pair to form the complementary function
S22(s). For this reason the non-paraconjugate TZs, as shown in Fig. 1(b) are desirable. Thus, regardless
of transmission zeros, the zeros of reflection function would no longer be located on the imaginary axis.
Similar to [10], it is necessary to multiply the polynomial F (s) by j whenever N −nfz is an even integer,
where nfz is the number of finite-position TZs.

2.2. Discussion of F
F∗

2.2.1. Case I: F(s) with Paraconjugate Roots

Assumed that N -pole filter contains nfz finite-position TZs (i.e., s1, s2, . . . , snfz) and nfz ≤ N . All
TZs are located symmetrically about the imaginary axis or upon the imaginary axis. This is the most
general form. In this case, polynomial F can be written in terms of complex frequency:

F (s) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

nfz

j
∏

i=1
(s − si) N − nfz is an even integer

nfz∏
i=1

(s − si) else
(9)

As mentioned above, it is necessary to multiply the polynomial F (s) by j whenever N −nfz is an even
integer to satisfy the unitary conditions for the scattering matrix. Then the factor rp = F (s)

F (s)∗ can be
formulated as

rp =
{

(−1)nfz+1 N − nfz is an even integer
(−1)nfz else

= (−1)N+1 (10)

Noted that this equation is different from [9, Eq. (14)].

2.2.2. Case II: F(s) with Non-Paraconjugate Roots

Generally, F (s) may have non-paraconjugate roots, that is, one or more TZs is/are asymmetrically
distributed about the imaginary axis. Without loss of generality, we assumed that filter have
ns symmetrical TZs (i.e., s1, s2, . . . , sns) and na asymmetrical TZs (i.e., sa1, sa2, . . . , sana), where
nfz = ns + na. Polynomial F (s) takes the form

F (s) =

⎧⎪⎪⎨
⎪⎪⎩

j
ns∏
i=1

(s − si)
na∏
i=1

(s − sai) N − nfz is even

ns∏
i=1

(s − si)
na∏
i=1

(s − sai) else
(11)

In this case, one has

rp =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(−1)ns+1

na∏
i=1

(s−sai)

na∏
i=1

(s+s∗ai)
N − nfz is even

(−1)ns

na∏
i=1

(s−sai)

na∏
i=1

(s+s∗ai)
else

(12)



Progress In Electromagnetics Research C, Vol. 58, 2015 111

3. LOSSY ADMITTANCE POLYNOMIAL SYNTHESIS

Following [3], the lossy S-parameter polynomials with different loss levels at input and output ports
scattering parameters are put in the form

S11 = KαS′
11 S22 =

K

α
S′

22 S12 = S21 = KS′
21 (13)

where K is the attenuation factor of filter. The attenuation level of the return loss can be decided by
the control parameter α (0 < K ≤ 1, K ≤ α ≤ 1/K). With the evaluated scattering polynomials,
the admittance parameters can be found. Using classic two-port S matrix to Y matrix transformation
formulas with normalized characteristic impedances, one obtains the admittance matrix (variable s is
omitted for readability)

y21n = −2K
εR

F

E
(14a)

yd = 1 +
KαP11

εE
+

KP22

αεE
+

K2P11P22

ε2E2
− K2F 2

ε2
RE2

(14b)

y11n = 1 − KαP11

εE
+

KP22

αεE
− K2P11P22

ε2E2
+

K2F 2

ε2
RE2

(14c)

y22n = 1 +
KαP11

εE
− KP22

αεE
− K2P11P22

ε2E2
+

K2F 2

ε2
RE2

(14d)

where y21n, y11n, y22n are the numerators for polynomials y21, y11, y22, and yd is the common
denominator, y21 = y21n/yd, y11 = y11n/yd, y22 = y22n/yd. Inserting Eq. (8) into Eq. (14) and applying
Eq. (7a), admittance matrix becomes in the following form after some algebraic manipulations:

y11 =
E − Kα

ε
P11 +

F

F ∗

(
K2E − K

αε
P11

)∗

E +
Kα

ε
P11 − F

F ∗

(
K2E +

K

αε
P11

)∗ (15a)

y21 =
−2K

εR
F

E +
Kα

ε
P11 − F

F ∗

(
K2E +

K

αε
P11

)∗ (15b)

y22 =
E +

Kα

ε
P11 +

F

F ∗

(
K2E +

K

αε
P11

)∗

E +
Kα

ε
P11 − F

F ∗

(
K2E +

K

αε
P11

)∗ (15c)

3.1. Particular Case: F(s) with Paraconjugate Roots

By substituting Eq. (10) into Eq. (15), the Y -parameter functions can be derived as

y11 =
E − Kα

ε
P11 − (−1)N

(
K2E − K

αε
P11

)∗

E +
Kα

ε
P11 + (−1)N

(
K2E +

K

αε
P11

)∗ (16a)

y21 =
−2K

εR
F

E +
Kα

ε
P11 + (−1)N

(
K2E +

K

αε
P11

)∗ (16b)
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y22 =
E +

Kα

ε
P11 − (−1)N

(
K2E +

K

αε
P11

)∗

E +
Kα

ε
P11 + (−1)N

(
K2E +

K

αε
P11

)∗ (16c)

3.2. Generalized Case: F(s) with Non-Paraconjugate Roots

Substituting the expressions of Eq. (12) into Eq. (15) yields the following equation for the admittance
matrix

y11 =
E′ − Kα

ε
P ′

11 ∓ (−1)ns

(
K2E′ − K

αε
P ′

11
′
)∗

E′ +
Kα

ε
P ′

11 ± (−1)ns

(
K2E′ +

K

αε
P ′

11

)∗ (17a)

y21 =
−2K

εR
F ′

E′ +
Kα

ε
P ′

11 ± (−1)ns

(
K2E′ +

K

αε
P ′

11

)∗ (17b)

y22 =
E′ +

Kα

ε
P ′

11 ∓ (−1)ns

(
K2E′ +

K

αε
P ′

11

)∗

E′ +
Kα

ε
P ′

11 ± (−1)ns

(
K2E′ +

K

αε
P ′

11

)∗ (17c)

where E′ = E
na∏
i=1

(s + s∗ai), P ′
11 = P11

na∏
i=1

(s + s∗ai), and F ′ = F
na∏
i=1

(s + s∗ai). When N − nfz is an even

integer, Eq. (17) takes the upper sign. For example, when N − nfz is an even integer, operator ‘±’ is
replaced by operator ‘+’ only, vice versa.

From the general expression of the proposed admittance function, the main properties can be
summarized as follows:
1) When there exists non-paraconjugate TZs, the order of yd is larger than that of E(s). The order

of the denominator of Eq. (15) increases by na after multiplication by
na∏
i=1

(s + s∗ai). It is found

that the corresponding admittance polynomials have an order of N+na provided that F (s) has na
asymmetrical roots and E(s) is of order N .

2) It is clear from the above formulas that E′, F ′ and P ′
11 are used as substitutions by multiplying a

common factor
na∏
i=1

(s + s∗ai), as compared with the conventional admittance matrix. The roots of

P multiplying by a common factor are paraconjugate.
3) Eq. (17) is more universal whether the TZs are symmetrical or not. So [3, Eq. (25)] can be regarded

as one of the particular case of Eq. (17).
The lossy coupling matrix can be synthesized from the transversal array circuit model. Once

the admittances have been assigned, the lossy N+2 complex coupling matrix can be synthesized by
partial fraction expansion which was presented in [3]. To further obtain a practical coupling matrix,
it is necessary to transform the transversal array into the requested topology by using hyperbolic
rotations [3, 4] or optimization [7, 8].

4. SYNTHESIS EXAMPLES

In this section, three typical examples are presented to illustrate the procedures described above and
transversal coupling matrix M is obtained that yields the correct filter response. The examples are
selected to cover the theory presented in this paper. These include: 1) fully symmetrical Tzs with the
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same return and insertion loss levels; 2) fully asymmetrical TZs; and 3) filter without reflection zero.
The first example in detail proves that this method is an extension of [3]. The second example shows
the effectiveness of the approach for filter networks with only asymmetrical TZs. It represents a case
where the synthesis method in [3] cannot be used. The third example is simplified to the case where
Chebyshev bandstop filter is presented compared to the conventional filter function. The simulations
demonstrate that the proposed synthesis method is indeed more universal whether TZs are symmetrical
or not even if there is no reflection zero.

4.1. Symmetrical TZs

The first example to synthesize is a fourth-order bandstop filter with two reflection zeros at j1.3 and
−j1.8. The lossless stopband rejection is 20 dB shifted down by 6 dB (K = 0.5, α = 1). The four
transmission zeros occur at [−j0.93, j0.9543, j0.501, −j0.359], which are upon the imaginary axis. The
coefficients of the admittance polynomials are calculated using the previous synthesis method and shown
in Table 1. The transversal coupling matrix element values can be obtained in Table 2 by applying a
partial fraction expansion of the normalized admittance functions [3]. For some variables see [3].

Table 1. Coefficients of the lossy admittance functions.

si, i yd y11n and y22n y21n

0 3.6394−j0.3911 1.184−j0.6534 −j0.1601
1 2.06922−j0.3391 3.4575−j0.4154 −0.1307
2 4.7046−j0.2822 2.3907−j0.4716 −j1.0668
3 1.5449−j0.2076 2.5814−j0.1243 −0.1664
4 1.2512 0.7488 −j1.0024

Table 2. Transversal array element values. GS = GL = 0.5985, JSL = −0.8011.

k Bk Gk JSK JLK

1 −1.5345 0.5282 0.7941+j0.2928 0.7941+j0.2928
2 1.3627 0.5732 −0.8297 + j0.2915 0.8297−j0.2915
3 1.1050 0.0892 0.3452+j0.0429 0.3452+j0.0429
4 −1.0992 0.0442 −0.2432 + j0.0225 0.2432−j0.0225

The N + 2 lossy coupling matrix is shown in Eq. (18)

M =

⎡
⎢⎢⎢⎢⎣

−j0.5985 0.7941 + j0.2928 −0.8297 + j0.2915 0.3452 + j0.0429 −0.2432 + j0.0225 −0.8011
0.7941 + j0.2928 −1.5345 − j0.5282 0 0 0 0.7941 + j0.2928
−0.8297 + j0.2915 0 1.3627 − j0.5732 0 0 0.8297 − j0.2915
0.3452 + j0.0429 0 0 1.1050 − j0.0892 0 0.3452 + j0.0429
−0.2432 + j0.0225 0 0 0 −1.0992 − j0.0442 0.2432 − j0.0225

−0.8011 0.7941 + j0.2928 0.8297 − j0.2915 0.3452 + j0.0429 0.2432 − j0.0225 −j0.5985

⎤
⎥⎥⎥⎥⎦

(18)
The synthesized filter has a response shown in Fig. 2, from which it is found that the response

obtained from the coupling matrix is indistinguishable from that of the prototype one.

4.2. Asymmetrical TZs

Consider the lossy 3-pole filter with the stopband rejection of 22 dB. The different loss levels for S11

and S22 are 3 and 9dB compared to the lossless response, respectively. The prescribed RZs are
[0.5 − j1.8, j1.5, 1.2 + j2]. Three asymmetrical transmission zeros located at [−0.0481 − j0.85458,
−0.01596 + j0.9298, −0.1441 + j0.2203] are computed from a simple recursion relation given by
Cameron [11]. The coefficients for the new polynomials after multiplying by a common factor are
summarized in Table 3. In this case, since there is three asymmetrical Tzs, i.e., ns = 3, the order of yd

increases to N+ns = 6, and their coefficients are shown in Table 4. Comparing Table 4 with Table 1, it
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Figure 2. Frequency response and group delay for symmetrical TZs.

is obviously found that y11n �= y22n due to asymmetrical transmission zeros. The transversal coupling
matrix element values with shunt conductances are: GS = 0.3159 and GL = 0.5177 are calculated in
Table 5 with only four digits. The obtained transversal coupling matrix can be further transformed to
the targeted topology through a series of complex rotations. It is not shown here and will be our future
work. For comparison purposes, Fig. 3 shows the results obtained by coupling matrix (Table 5) and
polynomials (13). As can be seen, it is almost identical to that of prototype synthesized with analytical
polynomials.

Table 3. Coefficients of E′(s), F ′
11(s) and P ′(s) polynomials.

si, i
Coefficients of polynomial

E′ (s)
Coefficients of polynomial

F ′
11 (s)

Coefficients of polynomial
P ′ (s)

0 −0.6791 − j0.1851 −j0.0439 −0.9443 + j0.9916
1 1.5714−j2.2082 0.2711 −1.1888 − j5.9126
2 1.0583−j0.8836 j0.4731i 1.3739+j3.6281
3 3.1451−j3.7321 0.8017 −3.4933 − j9.3563
4 3.4004−j1.0961 j1.4454 4.5396+j2.3022
5 1.9031−j0.9610i 0.5910 −1.9082 − j1.9955
6 1.0 j 1.0

Table 4. Coefficients of the lossy admittance functions.

si, i yd y11n y22n y21n

0 −1.3648 + j0.0412 −0.3374 − j0.7725 −0.6797 + j0.3094 j0.0378
1 0.9612−j5.9883 2.6147−j0.5818 1.3176−j2.7253 −0.2332
2 2.0736−j0.0040 0.5435−j3.0847 1.0415+j0.8736 −j0.4070
3 1.7219−j9.7737 5.8407−j1.0986 2.0294−j4.4906 −0.6897
4 6.7310−j0.4034 1.7234−j2.6273 3.3691−j0.1155 −j1.2434
5 1.0792−j2.2910 3.4220−j0.3579 1.3401−j1.0813 −0.5084
6 1.7967 0.56755 0.9301 −j0.8602

4.3. Chebyshev Lossy Bandstop Filter

In this section, a 4-pole Chebyshev lossy bandstop filter with different loss levels is considered. Loss levels
for S11 and S22 are 3 and 9 dB, respectively, and a lossless stopband rejection of 23 dB. The calculated
transmission zeros are [±j0.9239, ±j0.3827]. Y -matrix polynomial coefficients and transversal coupling
matrix element values are calculated in Table 6 and Table 7.
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Table 5. Transversal array element values GS = 0.3159, GL = 0.5177, JSL = −0.4788.

k Bk Gk JSK JLK

1 1.8296 j0.1712 −0.7272 + j0.1183 0.3452 − j0.0503
2 −1.6758 j0.4702 0.9520+j0.2489 0.6844+j0.0244
3 −1.0854 j0.0738 −0.6019 + j0.0817 0.1194−j0.0094
4 −0.9408 −j0.0140 −0.0038 + j0.0006 0.0751+j0.1291
5 0.8568 −j0.0231 −0.0002 + j0.0017 0.0055−j0.1932
6 −0.2595 −j0.0775 0.0035+j0.0056 0.0644+j0.3456

Table 6. Coefficients of the lossy admittance functions.

si, i yd y11n and y22n y21n

0 4.0810 0.7002 −j0.1253

1 2.7849 4.6532 0

2 4.9891 2.9859 −j1.0024

3 1.8304 3.0584 0

4 1.2512 0.7488 −j1.0024

Table 7. Transversal array element values GS = GL = 0.5985, JSL = −0.8011.

k Bk Gk JSK JLK

1 1.3946 0.6317 −0.7810 + j0.3231 0.9101−j0.3013

2 −1.3946 0.6317 0.7810+j0.3231 0.9101+j0.3013

3 −1.1754 0.0998 −0.5337 − j0.0771 0.2599−j0.1437

4 1.1754 0.0998 0.5337−j0.0771 0.2599+j0.1437
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Figure 3. Frequency response and group delay for asymmetrical TZs.
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Figure 4. Frequency response and group delay for Chebyshev lossy bandstop filter.
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The synthesized filter response is shown in Fig. 4, where the results from analytical polynomials
are also depicted for comparison. From Fig. 4, it can be found that the curves agree quite well.

5. CONCLUSIONS

This paper presents an analytical synthesis method for generalized Chebyshev bandstop filters whose
transmission zeros are asymmetrically distributed about the imaginary axis in the complex frequency
plane. From a rational polynomial of the lossless scattering parameters with the prescribed reflection
zeros, the new polynomials are constructed by multiplying a common factor. This transformation
forces the non-paraconjugate roots of transmission function to be paraconjugate by increasing the
orders of polynomials. Reconstructing the non-paraconjugate transmission zeros as paraconjugate ones
leads to the expressions for the complex Y parameters. The lossy transversal coupling matrix can be
synthesized by classic partial fraction expansion of the normalized admittance functions. Finally the
proposed methodology was verified through three examples. Comparing with the existing techniques
used for lossy filter synthesis, the method does not has any limitation for the choice of the symmetrical
transmission zeros. So it may be considered as a complement to previously known solutions, showing
great versatility. To make the coupling matrix realizable, further matrix operations are required to find
realizable coupling matrices. This work is left for future research.
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