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Mesh Optimization for Maxwell’s Equations with Respect to
Anisotropic Materials Using Geometric Algebra

Mariusz Klimek1, *, Sebastian Schöps1, 2, and Thomas Weiland2

Abstract—Clifford’s Geometric Algebra provides an elegant formulation of Maxwell’s equations in
the space-time setting. Its clear geometric interpretation is used to derive a goal function, whose
minimization results in Hodge-optimized material matrices being diagonal or diagonal-dominant.
Effectively it is an optimization of the primal/dual mesh pair of a finite difference based discretization
scheme taking into account the material properties. As a research example, a standing wave in 2D
cavity filled with an anisotropic material is investigated. Convergence of the scheme for various choices
of mesh pairs is discussed. The limitations of the method in the 3D case are presented.

1. INTRODUCTION

Clifford’s Geometric Algebra (GA) in the context of discretization of Maxwell’s equations is closely
related to the Cell Method [3], Discrete Exterior Calculus [10] and to the Finite Integration Technique
(FIT) [4]. All schemes are based on finite differences. For example, FIT allocates the electromagnetic
quantities on points, edges, facets and three dimensional volumes of a primary and a dual grid such that
they are natural discretization in terms of exterior algebra and differential forms. The time domain is
typically treated afterward by the leap-frog scheme. On the other hand, the GA-based approach differs
from that as it naturally performs discretization in space-time, i.e., taking immediately into account all
four dimensions. Compared to the exterior algebra of differential forms GA gives more algebraic tools
at the cost of explicit introduction of the metric. However, all approaches lead to practically equivalent
schemes. This has been shown for the Cartesian grid case in [2].

The material relations link the quantities located at both, the primal and dual grid. In this
paper we aim for grid conditions that allow to represent the relations as one-to-one connection of those
quantities, i.e., one primal degree of freedom is linked to exactly a one dual. This is equivalent to
diagonalizing the discrete Hodge star operator and yields eventually diagonal material matrices. The
importance of this property comes from its impact on efficiency of the scheme: many matrix-vector
multiplications and inversions of material matrices are carried out in the leap-frog time-integration of
FIT-like schemes. This is obviously computationally more efficient and requires less data-storage if
the matrices are diagonal. Attempts to achieve one-to-one properties via optimization of primal/dual
mesh pairs in different context have been proposed, for example in [7]. However, in our case the Hodge
star depends on material distributions which may be inhomogeneous, making it a function of space.
Several formalisms have been proposed in related settings, for example anisotropic materials have been
theoretically studied in [8] using classical tensor calculus, while differential forms have been used to recast
Maxwell’s equations in [9]. However, here GA was chosen due to its clearer geometric interpretation
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compared to other formalisms. Nonetheless a translation of the results in terms of differential forms is
straight forward.

The paper is structured as follows. In Section 2, GA is briefly outlined. The focus is on space-
time algebra. For illustration, we present how complex numbers can be derived as a subalgebra in
the 2D plane showing that GA may be perceived as a generalization of complex numbers to higher
dimensional spaces. Section 3 is devoted to recasting Maxwell’s equations in space time using space-
time algebra. The integral form is preferred as it simplifies the derivation of the discretization. In
Section 4, we discretize Maxwell’s equations with special attention on material relations. The main
result is a sufficient condition that guarantees diagonal material matrices. Section 5 is an application
of the theory to the simple 2D problem. Comparison with existing approaches is performed. Section 6
shows the limitations of the method in 3D. In Section 7 the conclusions are drawn.

2. GEOMETRIC ALGEBRA OF MINKOWSKI SPACE-TIME

In GA, the fundamental operation is the geometric product of vectors, which is [1]

ab �= ba, (noncommutative)
(ab)c = a(bc), (associative)

a(b + c) = ab + ac, (left-distributive)
(a + b)c = ac + bc, (right-distributive)

a−1 =
a

a2
, (invertible)

where a, b and c are vectors. A norm is defined through |a|2 := a2 ∈ R. The geometric product of two
vectors can be split into its symmetric (scalar) and antisymmetric (bivector) part

ab =
1
2

(ab + ba) +
1
2

(ab − ba) := a · b + a ∧ b, (1)

where · and ∧ denote the scalar and exterior product. 4D Euclidean basis vectors are denoted by
γi, i ∈ {x, y, z, t}, where x, y, z are space coordinates, and t is time. The convention is γ2

t = +1 and
γ2

x = γ2
y = γ2

z = −1. Note that a vector is usually interpreted as an oriented 1D object. The pseudoscalar
I := γtγxγyγz gives a unique representation of any oriented 4D object (“space-time volume”) A4 through
A4 = |A4|I. Its square is I2 = −1. Relative 3D vectors σk := γkγt, k = x, y, z, square to +1 and
are mutually orthogonal. Therefore, they are basis vectors of 3D space, but still (implicitly) contain
temporal information. Additionally, I = σxσyσz holds. We denote relative 3D vectors by, e.g.,

�E ≡ Exσx + Eyσy + Ezσz. (2)

The geometric derivative can be expressed as

∇ = γα∂α = γt∂t + γx∂x + γy∂y + γz∂z = γt∂t − γx∂x − γy∂y − γz∂z, (3)

where γα are reciprocal basis vectors, i.e., γα ·γβ = δα
β where δα

β denotes the Kronecker delta. Therefore,
∇ is a vector from the algebraic perspective and an operator acting on the object on its right from
operational point of view. The relative 3D geometric derivative takes a similar form

�∇ = σi∂i = σx∂x + σy∂y + σz∂z. (4)

For the comprehensive introduction of geometric calculus the reader is referred to [5].

2.1. Complex Numbers

For motivation, we show that complex numbers are a subalgebra of 2D GA. Suppose we are given a
vector r in the 2D plane. We define the real axis as x-coordinate line. The induced unit basis vectors
are ex and ey. Please note that we can define the real axis as any line in the plane, i.e., we can choose
arbitrary unit vector instead of ex. Then we identify the complex number z associated with r with

z = exr = ex(xex + yey) = x + yexey = x + Iy. (5)
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First, we note that the 2D pseudoscalar I := exey commutes with every complex number. Therefore,
the algebra of complex numbers is commutative. Secondly, we see that its square is

I2 = II = exeyexey = −exexeyey = −1. (6)

Therefore, it is natural to identify I with the imaginary unit. The complex conjugate of z is z† = rex.
Suppose we are given a complex function f = u(x, y)+Iv(x, y). Then we can state the Cauchy-Riemann
equations as ∇f = 0. We show it by expanding

∇f = (ex∂x + ey∂y) (u + Iv) = ex (∂xu − ∂yv) + ey (∂yu + ∂xv) = 0 (7)

and noting that the equations in brackets are exactly the Cauchy-Riemann equations. Therefore, ∇f = 0
holds for all analytic functions f . The result is less surprising if we multiply this condition by ex from
the left and note that

ex∇ = ex (ex∂x + ey∂y) = ∂x + I∂y =
∂

∂x
− 1

I

∂

∂y
=

∂

∂(x − Iy)
=

∂

∂z†
(8)

Therefore, Eq. (7) is equivalent to more familiar property of analytic functions ∂f
∂z† = 0, where in f we

changed the coordinates from (x, y) to z = x + Iy and z† = x − Iy. Operations on complex numbers
have a clear geometric interpretation in the 2D plane and this remains a characteristic feature of GA
in arbitrary dimensions.

3. MAXWELL’S EQUATIONS

The traditional form of Maxwell’s equations separating space and time reads{
�∇× �E = −∂t

�B
�∇· �B = 0

{
�∇× �H = ∂t

�D + �J
�∇· �D = ρ,

(9)

where ρ, �J , �E, �H, �D and �B are the electric charge density, electric current density, electric and magnetic
field strengths, electric and magnetic field fluxes, respectively. Since Maxwell’s equations are Lorentz
invariant, we express them explicitly in space-time [1]

∇∧ F = 0 ∇ · G = J, (10)

where F := �E + I �B, G := �D + I �H and J := (ρ + �J)γ0. γ0 is the four-velocity of the medium. If
the medium is at rest, then γ0 = γt. To derive the space-time form of Maxwell’s integral equations we
follow Hestenes [6]. We integrate (10) over an arbitrary bounded 3D star domain Ω ⊂ Ξ, Ξ being 4D
space-time, and apply the fundamental theorem of geometric calculus [5, 6]. The obtained equations
are coordinate-free, do not involve any differentiation and are ready to be applied to an arbitrary 3D
space-time element: ∮

∂Ω

(
d2x
) · F = 0 and

∮
∂Ω

(
d2x
) ∧ G =

∫
Ω

(d3x) ∧ J. (11)

Both Equations (11) are linked by material equations given by

�D = D
(

�E, �B
)

and �H = H
(

�E, �B
)

. (12)

Ohm’s law is disregarded in this article. The material mapping ξ is implicitly defined by

G = D
(

�E, �B
)

+ IH
(

�E, �B
)

= ξ(F ), (13)

where �E = 1
2 (F − γ0Fγ0) and �B = 1

2I (F + γ0Fγ0). We want to stress that the introduction of ξ is
not a complication of the material equations but a translation to the space-time algebra in a consistent
manner.

For example, if the medium is isotropic, i.e., permittivity ε and reluctance ν are scalars in

D
(

�E, �B
)

= ε �E and H
(

�E, �B
)

= ν �B (14)
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we can directly calculate G in terms of F in the coordinate frame of the medium

G = �D + I �H = ε �E + νI �B = ε
1
2

(F − γ0Fγ0) + ν
1
2

(F + γ0Fγ0) =
1
2

[(ε + ν)F − (ε − ν)γ0Fγ0] , (15)

therefore we obtain a simple coordinate-free form of ξ for isotropic media

ξ(X) =
1
2

[(ε + ν)X − (ε − ν)γ0Xγ0] . (16)

However, in this paper we are interested in more complex case of symmetric anisotropic media, i.e.,

D
(

�E, �B
)

= (σx, σy, σz)

(
εxx εxy εxz

εxy εyy εyz

εxz εyz εzz

)(
Ex

Ey

Ez

)
(17)

and

H
(

�E, �B
)

= (σx, σy, σz)

(
νxx νxy νxz

νxy νyy νyz

νxz νyz νzz

)(
Bx

By

Bz

)
. (18)

In this case using the explicit definition of ξ obtained by inserting (17) and (18) into (13) one can verify
that

ξ(B1) · B2 = B1 · ξ(B2) (19)

holds for all bivectors B1 and B2. Therefore, the material mapping is self-conjugate. Instead of
presenting a general expression for ξ we rather present a few important special cases. Since ξ is linear,
to evaluate for arbitrary F

ξ(F ) = ξ(�E) + ξ(I �B) = Eiξ(σi) + Biξ(Iσi) (20)

it is sufficient to know
ξ(σi) = εijσj and ξ(Iσi) = νijIσj. (21)

For the inverse ξ−1 the interesting equations are

ξ−1(σi) =
[
ε−1
]
ij

σj and ξ−1(Iσi) = μijIσj , (22)

where permeability μ = ν−1.

4. DISCRETE SETTING

We discretize the 4D spacetime domain Ξ into a set of primal cells Ξi. The boundary of each primal
cell consists of 3D volumes Ωk and the boundary of each Ωk consists of 2D facets Δj. We define edges
and points in a similar manner. The structure above is referred as the primal mesh. A second, dual
mesh is introduced in a similar fashion. Dual cells, dual volumes and dual facets are denoted by Ξ̃i, Ω̃k

and Δ̃j, respectively. The meshes are constructed in such a way that each Ξi contains exactly one dual
node, each Ωk intersects one dual edge, each Δj intersects one Δ̃j , etc.

A discrete version of Maxwell’s equations “Maxwell’s 4D grid equations” is obtained by applying
the left equation of Eq. (11) to each primal volume, and the right one on Eq. (11) to each dual volume:∮

∂Ωk

(
d2x
) · F = 0 and

∮
∂Ω̃k

(
d2x
) ∧ G =

∫
Ω̃k

(
d3x
) ∧ J. (23)

These integrals are sums of integrals of the type

fj :=
∫
Δj

(
d2x
) · F and gj := I−1

∫
Δ̃j

(
d2x
) ∧ G, (24)
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which we define as scalar degrees of freedom (DoF) on the primal and dual mesh respectively. The
approximate fields F ∗

j described by degrees of freedom follows from

fj =
∫
Δj

(
d2x
) · F ≈

⎡⎢⎣∫
Δj

(
d2x
)⎤⎥⎦ · Fj = Wj · Fj = WjF

∗
j , (25)

where Fj is the field F (xj) at some point xj ∈ Δj (typically the center), Wj is the bivector representing
the magnitude and the mean orientation of the facet Δj

Wj :=
∫
Δj

(
d2x
)

(26)

and F ∗
j is defined such that the last equality in Eq. (25) holds

F ∗
j := W−1

j (Wj · Fj), (27)

i.e., it is the projection of Fj onto the primal facet. The approximate field Fj is thus decomposed into
the part F ∗

j stored in the degree of freedom fj and the part F 0
j not stored at Δj

Fj = F ∗
j + F 0

j . (28)

Performing similar manipulations on the dual mesh we are lead to

Igj ≈ W̃jG
∗
j (29)

and the analogous decomposition into stored and not-stored fields

Gj = G∗
j + G0

j , (30)

where
W̃j :=

∫
Δ̃j

(
d2x
)
, G∗

j := W̃−1
j

(
W̃j ∧ Gj

)
and Gj := G(xj), xj ∈ Δ̃j . (31)

To illustrate the steps made above, we consider a special case when Δj is a rectangle in (t, z) plane:
Δj = [t1, t2] × [z1, z2]. We note that the DoF

fj =
∫
Δj

(
d2x
) · F =

t2∫
t1

dt

z2∫
z1

dzγzγt · F =

t2∫
t1

dt

z2∫
z1

dzEz (32)

is related only to the z component of the electric field Ez . The bivector representing the rectangle is
simply calculated

Wj =
∫
Δj

(
d2x
)

=

t2∫
t1

dt

z2∫
z1

γzγt = ΔzΔtγzγt = ΔzΔtσz. (33)

The approximate field Fj = �E(xj)+ I �B(xj), where xj ∈ Δj . The stored component of the approximate
field is

F ∗
j = W−1

j (Wj · Fj) =
σz

ΔzΔt
(ΔzΔtσz · Fj) = Ez(xj)σz, (34)

while the non-stored component is

F 0
j = Ex(xj)σx + Ey(xj)σy + I �B(xj). (35)

From (25) we obtain F ∗
j ≈ fj/Wj , which for the rectangle considered reads

Ez(xj)σz ≈ 1
ΔzΔt

t2∫
t1

dt

z2∫
z1

dzEzσz =
fj

ΔzΔt
σz, (36)
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where the exact error depends on the location of xj ∈ Δj. We have seen that fj is the DoF related
to Ez. In classical discretization schemes, e.g., FIT [4], one would rather introduce the line-integrated
quantity

�e j(t) =

z2∫
z1

dzEz (37)

as the DoF associated with Ez , which is related to the 4D DoF

fj =

t2∫
t1

dt�e j(t). (38)

4.1. Material Mapping

In the continuous setting the material mapping ξ (13) relates the fields F and G, which we afterward
discretize on primal and dual meshes, respectively. Therefore, its discrete equivalent will link {fj} and
{gj} and can be used, e.g., to express {gj} in terms of {fj}. However, while Maxwell’s grid equations
are approximation-free, the discretization of material equations will introduce an error. The discrete
material mapping reads

Igj ≈ W̃j ∧ Gj = W̃j ∧ ξj(Fj) = W̃j ∧ ξj(F
∗
j ) + W̃j ∧ ξj(F

0
j ), (39)

where ξj is ξ averaged over Δ̃j , i.e.,

ξj(B) :=
∣∣∣W̃j

∣∣∣−1
∫
Δ̃j

|d2x|ξ(B), ∀B = const. (40)

We note that if we represent ξ as a matrix with entries ξαβ = ξ(γα ∧ γβ), then ξj,αβ is an average of
ξαβ, i.e., we can average each entry independently. Since only F ∗

j is stored in fj and F 0
j not, in order

to obtain one-to-one relation between fj and gj

W̃j ∧ ξj(F
0
j ) = W̃j ∧ ξj

(
W j

) |F 0
j | = 0 (41)

must hold, and therefore
W̃j ∧ ξj

(
W j

)
= 0, (42)

since the magnitude of non-stored field |F 0
j | is in general not zero. Above, we have assumed ξ to be

linear and introduced W j , which is an arbitrary bivector satisfying W j ·Wj = 0. Moreover we note that
the following condition depends only on the materials involved and facets of the mesh pair

W̃j ∧ ξj

(
W j

)
=
(
IW̃j

)
· ξj

(
W j

)
= ξ

†
j

(
IW̃j

)
· W j = 0, (43)

where ξ
†
j is the conjugate of ξj. The conjugate is defined such that for all bivectors B1, B2 it holds

ξ
†
j(B1) · B2 = B1 · ξj(B2) (44)

and it coincides with the conjugate in the traditional linear algebra sense. Therefore, the condition for
one-to-one correspondence reads

W j · Wj = 0 ⇒ ξ
†
j

(
IW̃j

)
· W j = 0 (45)

for all W j and is implied by

Wj · W j = 0 and ξ
†
j

(
IW̃j

)
· W j = 0, (46)
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which can be further simplified (by subtracting both equations) to(
αWj − ξ

†
j

(
IW̃j

))
· W j = 0 ∀W j , (47)

where α ∈ R is some scalar. Using the orthogonality property for non-degenerate inner products, we
arrive at

αWj = ξ
†
j

(
IW̃j

)
. (48)

4.2. Cartesian Barycentric Grid

Let us consider the important special case of a Cartesian barycentric mesh, which is typically used
for FIT-like schemes. We present the 4D space-time case, however, 3D and 2D grids are constructed
analogously.

The nodes of the primal mesh are introduced as
rp
i,j,k,l := (iΔt, jΔx, kΔy, lΔz), (49)

where i, j, k, l are integers. We further introduce edges, e.g., in x-direction we obtain
lpi,j+1/2,k,l := iΔt × [jΔx, (j + 1)Δx] × kΔy × lΔz, (50)

that are oriented by the vector γx in x-direction. For simplicity we omit the respective definitions for
the other coordinate directions. Facets are given by

ap
i,j,k+1/2,l+1/2 := iΔt × jΔx × [kΔy, (k + 1)Δy] × [lΔz, (l + 1)Δz] , (51)

with orientation defined by the bivector γyγz. Volumes in 3D and space-time volumes are defined in a
similar way. The midpoint of any space-time volume, is identified with a point on the dual grid. We
then proceed as explained above to obtain edges, facets, volumes and space-time volumes on the dual
grid respectively [2].

4.3. Material Matrices

The discrete material mapping enables us to express {gj} in terms of {fj}. If we arrange {gj} and {fj}
into column vector g and f , this can be written in the case of linear materials as

g = Mf, (52)
where M is called material matrix. In general, and the matrix M is not diagonal; however, if Eq. (48)
holds, then it is diagonal with entries

[M ]jj = I−1W̃j ∧ ξj

(
W−1

j

)
. (53)

Now we will point out why the orthogonal dual mesh does not guarantee diagonal material matrices
for anisotropic material. Suppose Δ̃j is a purely spatial facet, i.e., W̃j ·γt = 0. Then the DoF associated
with Δ̃j is related to the electric flux �D only:

��
dj =

∫
Δ̃j

dS�n · �D =
∫
Δ̃j

dS�n · ε(�E) ≈ �n · ε(�p)�e j + �n · ε(�q)�e0
j , (54)

where �p is a unit vector along primal edge, �n a unit vector normal to the dual facet Δ̃j, and �q the
unit vector normal to �p, i.e., �p · �q = 0. �e0

j is the non-stored component of the field, which has to be
interpolated using the DoFs stored at neighboring edges �e0

j = θj({�ek �=j}), thus leading to non-diagonal
entries in M . We see that non-diagonal entries will vanish if �n · ε(�q) = 0. Noting that in orthogonal
grid �n = �p, we see that for �p · �q = 0

�p · ε (�q) (55)
is in general not zero, since ε will change the direction of �q. However, if �q is the main axis of the ε, then
its direction will not be changed

�p · ε (�q) = εqq�p · �q = 0, (56)
thus M is diagonal in this special case.
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5. NUMERICAL EXAMPLE IN 2D

A standing wave in a square cavity is reduced to 2D by assuming Ez = Bx = By = 0. The wavelength
is equal to the dimension of the cavity. The time interval of the simulation is T = [0, tmax], where tmax

is equal to five periods of the wave. The permittivity tensor is assumed to be diagonal ε = Diag(εx, εy).
The Cartesian barycentric grid as depicted in Fig. 1(a) is well-suited for this exemplary problem.

However, in traditional FIT the skew edges of a deformed grid, Fig. 1(b), lead to non-diagonal entries
in the material matrix as explained in Section 4.3. Disregarding these entries endangers stability and
convergence of the scheme. The red line in Fig. 1(d) shows that the numerical solution does not converge
to the exact one in the case of orthogonal dual, where non-diagonal entries in M have been neglected.
In our proposed approach, where the dual mesh is adapted to the material property, the convergence of
the scheme is conserved, while keeping material matrices diagonal, as can be seen from the green line
in Fig. 1(d). For comparison, the convergence of the traditional 2D FIT is plotted with blue line.
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Classical orthogonal
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Deformed orthogonal

mesh, not optimized
Deformed optimal

mesh (for ε  /ε  = 3)x y

Figure 1. From left to right: conversion plots for (a) classical orthogonal FIT, (b) deformed orthogonal,
(c) optimal (for εx/εy = 3) mesh pairs. Black and red lines represent primal and dual mesh, respectively.
Figure (d) shows the convergence plot for ε = Diag(100, 1) and diagonal material matrices: Cartesian
mesh (blue), deformed orthogonal (red) and deformed optimal (green). The error is defined as the
relative error with respect to the analytic reference solution.

In 2D case the condition in Eq. (48) reduces to
�pj = αεj(�nj), (57)

where �pj is a vector representing a primal edge and �nj is a vector normal (in Euclidean sense) to the dual
edge. An exemplary mesh pair satisfying this condition is found analytically as depicted in Fig. 1(c).

Let us define the simulation error as a relative error of the line integrated electric field strength in
the discrete 
2 vector norm and 
∞ in time with respect to the analytic reference solution

error := max
t∈T

|�e − �ea|2 /max
t∈T

|�ea|2 , (58)

where �e , see Eq. (38), is a vector composed of electric degrees of freedom at time t = iΔt, i.e.,

fj+ine =
∫ (i+1/2)Δt

(i−1/2)Δt

�e j(t)dt, (59)

ne is number of edges, �ea is calculated from the exact solution and | · |2 is the 
2-norm.
We have considered the example where ε = const. because in this case the exact solution is known

and traditional FIT approach works well. This made comparison of numerical solutions transparent.
However, the idea of mesh optimization is by no means restricted to homogenous materials. For example
in Fig. 2(a) we present a mesh pair obtained by numerical optimization for

ε =
(

1 εxy(x, y)
εxy(x, y) 1

)
, with εxy(x, y) =

{ (
1
2 − |y|

ly

)
sin
(

π
lx

(
x + lx

2

))
if |x| ≤ lx

2

0 if |x| > lx
2

, (60)

where lx and ly are lengths of the mesh in x and y direction, respectively. The mesh shown in Fig. 2(a)
guarantees that the material matrix constructed is diagonal.
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6. 3D CONSIDERATIONS

In 3D we first need to check when the set of conditions in Eq. (48) can be fulfilled by a mesh pair. For
simplicity we assume that the material properties are constant ξ = const. and therefore no averaging is
needed, i.e., ξ = ξ. We also assume that the material relations are given by (17) and (18) from which
follows that the material mapping ξ is self-conjugate, i.e., ξ† = ξ. A proportionality relation ∼ is defined
as

a ∼ b ⇔ a = αb, (61)

where α ∈ R is the proportionality factor. As a possible constraint we consider an exemplary primal
edge l and its dual facet p̃, see Fig. 2(b). On the one hand, the mean orientation of the dual facet
according to Eq. (48) should be proportional to

p̃ ∼ Iξ−1(l). (62)

On the other hand, it can be calculated from orientations of the dual edges l̃i

p̃ =
1
4

(
l̃1 ∧ l̃2 + l̃2 ∧ l̃3 + l̃3 ∧ l̃4 + l̃4 ∧ l̃1

)
. (63)

p1l̃ 1

p3 l̃ 3

p
2

l̃ 2

p
4

l̃ 4

l

p̃

(a) (b)The optimized mesh for continuous but not constant ε(x, y).
Blue lines represent the primal mesh and the red ones the dual one.

Primal edge l and its dual facet p. Depicted are also
neighbouring facets p  and their dual edges l  .

˜
˜

i i

Figure 2. (a) Optimization mesh and (b) image visualizing the relation of primary edges and dual
facets.

Let us suppose that the edge l is one of the x-edges of the Cartesian grid. Since ξ is constant it
follows that l1 ∼ l3 and l2 ∼ l4. It simplifies the expression for the mean orientation

p̃ ∼ l̃1 ∧ l̃2, (64)

where l̃1 and l̃2 according to (48) are proportional to

l̃1 ∼ Iξ−1(p1) = Iξ−1(Iσz) = −μzaσa (65)

l̃2 ∼ Iξ−1(p2) = Iξ−1(Iσy) = −μyaσa. (66)

From which follows that the left-hand side of Eq. (62) is

p̃ ∼ μzbμycσb ∧ σc. (67)

Expanding right-hand side of Eq. (62) gives

p̃ ∼ Iξ−1(l) = I
[
ε−1
]
xa

σa. (68)

Using the identity
σb ∧ σc = εabcIσa, (69)



162 Klimek, Schöps, and Weiland

where εabc is a permutation symbol: εabc = +1 if {a, b, c} is an even permutation of {1, 2, 3}, and
εabc = −1 if {a, b, c} is an odd permutation of {1, 2, 3}. We obtain from Eq. (62)

I
[
ε−1
]
xa

σa ∼ μzbμycεabcIσa, (70)

which simplifies to [
ε−1
]
xa

= αμzbμycεabc = −ανxa. (71)

Repeating the same reasoning for y and z edges and using the symmetry of ε and μ we arrive at the
sufficient condition

ε = αμ, (72)

which guarantees constructing the optimal primal/dual mesh pair. Please note that Eq. (72) states that
ε and μ must have not only the same main axes, but also the same eigenvalues associated with the main
axes. The condition is not necessary. For example, in the case when the Cartesian grid axes are chosen
as main axes of ε and μ, i.e., when ε and μ are diagonal, the condition from above is relaxed, i.e., both
ε and μ may have arbitrary entries (eigenvalues) on their diagonals.

The condition in Eq. (72) has been derived for the Cartesian grid and flat facets of the dual mesh.
One may wonder whether this result holds for other mesh pairs. From Eq. (48) it follows that〈

ξj

(
IW̃j

)
Wj

〉
2

= 0 and
〈
ξj

(
IW̃j

)
Wj

〉
4

= 0. (73)

Noting that 〈ξj(IW̃j)Wj〉4 is non-zero only for rather extraordinary and pathological choices of the
primal/dual mesh, we require that only Eq. (73)-left is satisfied.

We explore Eq. (73)-left on a deformed FIT mesh, i.e., we allow primal and dual nodes to move
while keeping the connectivity. In this case Eq. (73)-left is an overdetermined system of nonlinear
equations whose variables are positions of the primal/dual nodes. We form a goal function

K =
∑

j

〈
ξj

(
IW̃j

)
Wj

〉2

2
(74)

and look for its minimum. According to our investigations if Eq. (72) is satisfied the obtained minimum
is zero, i.e., all equations of the overdetermined system are simultaneously solved. Moreover, if Eq. (72)
is violated then the obtained minimum is greater than zero showing that not all of Eq. (73)-left can be
solved simultaneously. This is in agreement with our predictions derived in the case of Cartesian primal
mesh. Since we have not found any counterexample, i.e., the mesh pair for which K = 0, and Eq. (72)
is violated, we expect Eq. (72) to hold for arbitrary meshes and only relaxed if we use Cartesian grid
with axes aligned to the main axes of ε and μ.

7. CONCLUSION

The classical orthogonal FIT mesh pair is a proper choice for scalar and diagonal material tensors.
However, in the case of deformed primal grids, the orthogonal dual results in diagonal material matrices
only for scalar material coefficients. When ε is a tensor and non-diagonal entries in material matrix
are disregarded, the convergence is lost. However, adapting the dual mesh according to our criterion
fixes the problem and allows to treat arbitrary material tensor consistently. In 3D setting, we have
shown that the permittivity tensor being proportional to the permeability tensor implies existence of
the mesh pair guaranteeing diagonal material matrices. However, proportionality of material tensors is
very restrictive for physical applications.

ACKNOWLEDGMENT

The authors would like to thank Professor Stefan Kurz for fruitful discussions. The work of the first and
second authors is supported by the ‘Excellence Initiative’ of the German Federal and State Governments
and the Graduate School of CE at Technische Universitaet Darmstadt.



Progress In Electromagnetics Research M, Vol. 46, 2016 163

REFERENCES

1. Doran, C. and A. Lasenby, Geometric Algebra for Physicists, 2nd Edition, Cambridge University
Press, Cambridge, 2003.

2. Klimek, M., U. Roemer, S. Schoeps, and T. Weiland, “Space-time discretization of Maxwell’s
equations in the setting of geometric algebra,” IEEE Proceedings of 2013 URSI International
Symposium on Electromagnetic Theory (EMTS), 1101–1104, 2013.

3. Tonti, E., “Finite formulation of the electromagnetic field,” Progress In Electromagnetics Research,
Vol. 32, 1–44, 2001.

4. Weiland, T., “Time domain electromagnetic field computation with finite difference methods,”
International Journal of Numerical Modelling , Vol. 9, 295–319, 1996.

5. Sobczyk, G., “Simplicial calculus with geometric algebra,” Clifford Algebras and Their Applications
in Mathematical Physics, 279–292, Springer, 2011.

6. Hestenes, D., “Differential forms in geometric calculus,” Clifford Algebras and their Applications
in Mathematical Physics, 269–285, Springer, 1993.

7. Mullen, P., P. Memari, F. de Goes, and M. Desbrun, “HOT: Hodge-optimized triangulations,”
ACM Trans. Graph. Vol. 30, 103:1–103:12, 2011.

8. Bellver-Cebreros, C. and M. Rodriguez-Danta, “An alternative model for wave propagation in
anisotropic impedance-matched metamaterials,” Progress In Electromagnetics Research, Vol. 141,
149–160, 2013.

9. Lindell, I. V., “Electromagnetic wave equation in differential-form representation,” Progress In
Electromagnetics Research, Vol. 54, 321–333, 2005.

10. Stern, A., Y. Tong, M. Desbrun, and J. E. Marsden, “Geometric computational electrodynamics
with variational integrators and discrete differential forms,” Geometry, Mechanics, and Dynamics,
Vol. 73, 437–475, Springer, 2015.


