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Deriving Meaningful Equivalent Circuits for Electrically Small
Multi-Conductor Structures

Lap K. Yeung*

Abstract—A new circuit reduction algorithm for generating physically meaningful equivalent circuits
for electrically small structures is proposed in this work. It makes use of the generalized Y-to-Δ
transformation as well as features unique to partial element equivalent circuits (PEECs) to perform
the reduction process. For a given partial element equivalent circuit, insignificant nodes are removed
one by one in a prioritized order according to both user-specified cut-off frequency and threshold value.
By having the freedom of choosing these parameters, this algorithm provides users an option to make
a tradeoff between accuracy and simplicity of the final reduced circuit. Since the generalized Y-to-Δ
transformation can keep all mutual couplings intact, the order-reduced circuit should correctly capture
all physical essences of the structure being modeled. Two examples are presented in this paper to
validate the proposed algorithm. The equivalent circuits obtained can indeed reflect all essential physical
features, demonstrating that the algorithm is a useful tool for designing and analyzing electrically small
multi-conductor structures.

1. INTRODUCTION

The conventional partial element equivalent circuit (PEEC) [1] of a multi-conductor structure, even for
a relatively simple one, is mesh-dependent and usually consists of a large number of elements. Such a
circuit, unfortunately, offers no physical insights to the structure itself. Nevertheless, it can serve as a
starting point to derive for a much more concise and physically meaningful equivalent circuit model. A
variety of model-order reduction (MOR) techniques [2–5] have been proposed in the past to generate
a low-order approximation of a given circuit. Most of these techniques were targeting to reduce the
complexity of the circuit but not to provide physical insights. For examples, MOR techniques that can
handle delays or preserve passivity have been proposed [6–9]. Circuit reduction approaches based on
Gaussian elimination have also been developed [10–12].

Recently, a physics-based MOR technique called derived physically expressive circuit (DPEC) [13],
which is based on the principle of Y-to-Δ transformation, has been developed. It uses the transformation
to “absorb” all insignificant internal nodes so that the order-reduced circuit contains only the essences
of the original. A major challenge to this technique is that it requires an inversion of the inductance
matrix. This leads to the appearing of negative inductances to represent mutual couplings among
inductors, and causes the order-reduced circuit physically meaningless. This drawback indeed limits
the usefulness of the DPEC technique. Consequently, an alternative approach that does not require any
matrix inversion nor generate any negative inductance is proposed in this work. This approach uses
a more general Y-to-Δ transformation that can keep all mutual couplings intact during the reduction
process. Hence, the inductance and potential matrices are not needed to be inverted in advance. By
following a set of node removal criteria, a given partial element equivalent circuit can be reduced to one
with fewer nodes but without sacrificing too much accuracy. This new physics-based MOR approach
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works for problems that can be well modeled by a quasi-static PEEC, e.g., electrically small structures
in free-space or in a multilayer substrate. Since all mutual couplings are kept intact, the proposed
approach can provide physical insights to the structure being modeled.

2. THEORY

2.1. Conventional Formulation of PEEC

The partial element equivalent circuit technique is based on the concept of converting the mixed potential
integral equation (MPIE) to a network representation that is suitable for solving in the circuit domain.
By using a specific meshing scheme, a multi-conductor structure can be converted to a network consisting
of discrete resistances, inductances, as well as capacitances, which are called partial elements. These
partial elements compose an electromagnetically accurate equivalent circuit model in which additional
components or circuit models, e.g., transistor circuit models, can easily be added in. The partial elements
are first calculated by using either numerical integration procedures or analytical closed-form formulas.
Then, the overall equivalent circuit is solved by a conventional circuit solver for various parameters of
interest, e.g., scattering parameters.

The frequency-domain PEEC formulation starts from the MPIE of
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where GA and Gϕ are the dyadic and scalar Green’s functions for magnetic vector and electric scalar
potentials, respectively. For ease of explanation, only structures with infinitely thin conducting strips
are considered. In this case, the volume integrals in Eq. (1) should change to surface integrals, and
J and ρ become the surface current and charge densities, respectively. In addition, without loss of
generality, only the x-component in Eq. (1) is considered. By separately discretizing the current and
charge densities using rectangular pulse functions, and having r resided on the conducting strips, the
discretized form of Eq. (1) is given by
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from which a system of M equations is obtained by performing the Galerkin’s matching procedure
on Eq. (2) as
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Qn = 0, (3)

for subscript l = 1 . . . M where M is the number of inductive meshes. Notice that those pulse functions
used for discretizing the current density are chosen to be the testing functions in this matching operation.
Moreover, the integration domains and the arguments inside the Green’s functions have been dropped
for clarity. Whereas symbols wl and wm are the widths of inductive meshes l and m respectively, an is
the area of capacitive mesh n. It is worth to mention that Eq. (3) is in the form of Kirchhoff’s voltage law
(KVL). The terms on the LHS represents, respectively, the resistive, inductive, and capacitive voltage
drops across the matched inductive mesh l. In a more circuit-oriented form, Eq. (3) can be represented
as (subscript x is dropped from now on).
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)

Qn = 0, (4)

where a finite-difference approximation has been used for the derivative operation appearing at the last
term. Ll,m is the partial (self- or mutual) inductance, and pp’s (with sub-scripts) are the coefficients of
potential. For ease of analysis, conductor loss Ri is combined with the corresponding self-inductance
Ll,l (or simply Ll), and replacing charge Qn by an equivalent current, Eq. (4) can be rewritten as∑
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jωLl,mIm +
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where the substitution of Qn = In/jω has been used. Notice that Ll is now complex in value and has a
frequency-dependent imaginary part. The second term in Eq. (5) represents the total induced voltage
difference between the two ends (l+ and l−) of inductor l due to current In for all n. In fact, the voltage
induced at a particular end (or equivalently, a circuit node) of an inductor is given by

Vk =
I1

jωCk,1
+ . . . +

Ik−1

jωCk,k−1
+

Ik

jωCk
+

Ik+1

jωCk,k+1
+ . . . , (6)

where k is the node index. Eq. (6) can be interpreted as a shunted-to-ground capacitor Ck (or Ck,k)
connecting to node k. Additionally, this capacitor is mutually coupled to all other grounded capacitors
connecting at different nodes with mutual capacitances of Ck,1, Ck,2, . . . and so on. These capacitances
are all frequency independent for the quasi-static case. As an illustration, consider a simple case
of a single piece of conductor in free-space and its corresponding two-inductive-mesh partial element
equivalent circuit as shown in Fig. 1. It can be seen that the circuit consists of two mutually coupled
inductors and three mutually coupled capacitors. Notice that there are no couplings between inductors
and capacitors.

1 32

Figure 1. Partial element equivalent circuit of a short conducting strip.

In general, equivalent circuits generated by the PEEC analysis technique are described purely
by mutually coupled inductors and mutually coupled capacitors only when the magnetic vector and
electric scalar Green’s functions are well-defined. They are usually solved directly by using a circuit
solver. This, however, leads to extremely time consuming matrix inversion operations since such circuits
usually consist of a large number of elements. Therefore, it is desired to have their order reduced first.
In fact, there are two advantages by carrying out the model-order reduction. Firstly, the matrices that
require to be inverted are much smaller in size. Secondly, the simplified or reduced circuit is more
concise and may provide insights to the structures that are being modeled.

2.2. Generalized Y-to-Δ Transformation

The reduction technique [10] based on the classical Y-to-Δ transformation suffers from one major issue.
As the classical Y-to-Δ transformation cannot handle branches with couplings, the inductance matrix
has to be first inverted to convert all mutual inductances to straight inductances. This leads to the
generation of negative inductances. As an example, Fig. 2(a) depicts the conversion of a pair of coupled
inductors to a network of six inductors with two of them being negative (dotted lines). This drawback
indeed limits the usage of the technique to produce meaningful equivalent circuits. Here, an alternative
approach that does not require any matrix inversion is proposed. Before the discussion of this new
approach, it is better to clarify the terminology that will be used later in this paper. In this paper, a
mutual coupling term is said to be inductive if it takes the form of jωMij,mn where Mij,mn is called
mutual inductance when the coupling is occurring between two inductors. On the other hand, a mutual
coupling term is said to be capacitive if it takes the form of 1/jωCij,mn where Cij,mn is called mutual
capacitance when the coupling is occurring between two capacitors. It is also worth to mention that
conventional partial element equivalent circuits have only one (shunted-to-ground) capacitor at each
node when using the formulation described in the previous section (see Fig. 1), or equivalently, when
the Green’s functions in Eq. (1) are available.

Required mathematical expressions for the proposal MOR technique can be derived by considering
the five-node sub-network shown on the LHS of Fig. 2(b). In this diagram, each branch consists of
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Figure 2. (a) Conversion of mutual inductance; and (b) internal node elimination process.

either a single inductor and/or a single capacitor, which may couple to other branches (including those
“external” branches that are not shown in the figure). Specifically, for a conventional partial element
equivalent circuit, one and only one of the branches, namely branch 2k, should be a shunted-to-ground
capacitor. The key operation here is to apply the Y-to-Δ transformation to eliminate node k and convert
this sub-network to the four-node sub-network shown on the RHS of Fig. 2(b). Notice that the branches
in this new sub-network may also couple to other internal or external branches. Mathematically, branch
currents of the original five-node sub-network can be written as

Iik = yikVik −
∑
n �=ik

zik,nIn − . . . , (7)

for i = 1 . . . 4, where zik,n = zik,n/zik and “. . . ” represents mutual coupling terms from all other
(external) branches except (internal) branches 1k to 4k. Making use of the fact that I1k + I2k+
I3k + I4k = 0, Vk can be eliminated from the above system of equations and the branch currents
can then be expressed as

Iik =
∑
j �=i

yikyjk

yt
Vij + yik

∑
j

∑
n �=jk

zjk,nIn −
∑
n �=ik

zik,nIn + . . . , (8)

for i, j = 1 . . . 4, where yik = yik/yt and yt (= y1k + y2k + y3k + y4k) is the total admittance of all
branches that connect to node k. Now, consider the four-node sub-network, branch currents can be
similarly written as

Iij = yijVij − ΔzijIij −
∑
n �=ij

zij,nIn − . . . , with i �= j. (9)

Notice that there is an extra term Δzij as compared to Eq. (7). Using the condition that

Iik =
∑
j �=i

Iij , (10)

the branch currents of the original five-node sub-network can be expressed in terms of the new
impedances from the four-node sub-network as

Iik =
∑
j �=i

yijVij −
∑
j �=i

ΔzijIij −
∑
j �=i

∑
n �=ij

zij,nIn − . . . , (11)

The first two terms in Eq. (11) contain information about the branch (self-) impedances whereas
the double summation term contains information about the internal and external mutual impedances.
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Substituting Eq. (10) into Eq. (8) and then comparing with Eq. (11), the general expressions for these
impedances can be summarized, respectively, as

zij =
yt

yikyjk
− 2zik,jk (12a)

zij,im = zjk,mk − zik,jk − zik,mk

zij,mn = zik,mk + zjk,nk − zik,nk − zjk,mk
. (12b)

zij,mn = zik,mn − zjk,mn (12c)

for i �= j �= m �= n and i, j, m, n = 1 . . . 4 or m, n �= 1 . . . 4 in (12c).

2.3. Model-Order Reduction

As discussed above, branches in a conventional partial element equivalent circuit consist of only two
types, namely, a series inductor and a shunt capacitor. However, once a node is removed, a new branch
type consisting of a shunt series-LC will be introduced. Therefore, in the following analysis, a shunt
capacitor will be considered as a shunt series-LC with L = 0. According to Eq. (12a), if both branches
ik and jk consist of a single inductor (see Fig. 3(a)), the resultant new branch ij should also be an
inductor with inductance of

Lij =
LikLjk

Lt

(
1 − ω2LtCt

)− 2Mik,jk. (13)

It is assumed that the condition of |ω2LtCt| � 1 is valid at the maximum frequency of interest. On
the other hand, if one branch (ik) is an inductor and the other branch (jk) is a series-LC (node j is the
ground node) as depicted in Fig. 3(b), things become slightly more complicated. In this case, as the
cross-branch coupling impedance is purely inductive (i.e., zik,jk = jωXik,jk), the new branch impedance
should be

zij =
1

jω (Lt/Lik)Cjk
+ jω (αLik − 2Xik,jk) , (14)

where α = 1 +Ljk/Lt. It can be seen that the new branch is also a series-LC with a capacitor of value
(Lt/Lik)Cjk in series with an inductor of value αLik − 2Xik,jk. As suggested by Eq. (13), the value of
|ω2LtCt| can be used as an indicator to decide whether or not a given node should be removed. For

i = 1 

2

3

j = 4 

(a)

(b)

k

j = 2 

3

4

k

1 3 

4

2

1 3 

4

2

i = 1 

Figure 3. Generation of a new (a) inductance branch; and (b) series-LC branch.
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example, given a node that has its value of |ω2LtCt| smaller than a pre-chosen small number δ at a
specific cut-off frequency, this node can then be removed safely without introducing too much inaccuracy
to the circuit model up to that frequency. In other words, the parameter δ is used for controlling the
trade-off between accuracy and simplicity of the final order-reduced circuit. It is worth to mention that
when removing a node, the majority of its influence to the circuit is transferred to other surrounding
nodes. Finally, the case where both branches consisting of a series-LC is not considered here because
there is only one such branch per node.

The internal coupling expressions shown in Eq. (12b) should be classified into three cases: i)
inductor-branch coupling; ii) LC-branch coupling; and iii) cross-branch coupling. For the first case,
both branches ij and im (or mn) consist of a single inductor, and therefore, the new mutual coupling
is obviously inductive because all original involving branches ik, jk, and mk (or ik, jk, mk, and nk) are
inductors (see Fig. 4(a)). The corresponding mutual inductance is equal to

Mij,im = Mjk,mk − Mik,jk − Mik,mk

Mij,mn = Mik,mk + Mjk,nk − Mik,nk − Mjk,mk

. (15)

For the second case in which both branches ij and im are a series-LC as in Fig. 4(b), the new
mutual coupling calculation involves the original series-LC branch ik and inductor branches jk and mk.
According to Eq. (12b), the new mutual impedance is given by

zij,im = jωMjk,mk − jωXik,jk − jωXik,mk. (16)
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Figure 4. Generation of a new (a) internal inductor-branch coupling; (b) internal LC-branch coupling;
and (c) internal cross-branch coupling.
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Notice that the bottom expression of Eq. (12b) is not required in this case since there is always a
common node (ground node) for all series-LC branches. It is seen that the coupling is purely inductive.
Finally, for the third case where one branch (ij ) is a series-LC and the other branch (im or mn) is an
inductor (Fig. 4(c)), the mutual impedance is given by

zij,im = jωXjk,mk − jωXik,jk − jωMik,mk

zij,mn = jωMik,mk + jωXjk,nk − jωMik,nk − jωXjk,mk

, (17)

which shows that the internal cross-branch coupling is also inductive. In summary, no matter in which
case, all internal couplings are inductive.

The external coupling expression shown in Eq. (12c) should also be classified into three cases. For
the inductor-branch coupling case, the new mutual inductance is simply equal to

Mij,mn = Mik,mn − Mjk,mn, (18)

where branch mn is an external branch (see Fig. 5(a)). For the cross-branch coupling case, assuming
branch ij is a series-LC and branch mn is an inductor (see Fig. 5(b)), the mutual impedance is given
by

zij,mn = jωMik,mn − jωXjk,mn, (19)

which obviously is inductive. Finally, for the case of LC-branch coupling, things get a bit more
complicated. The calculation involves an inductive coupling term and a capacitive coupling term.
Again using Eq. (12c), the expression for this new mutual impedance is

zij,mn = jωXik,mn − jωMjk,mn − 1
jωCjk,mn

. (20)

This mutual impedance contains a capacitive component as well as an inductive component as depicted
in Fig. 5(c). Here, in addition to node j, either node m or node n is also grounded.

The newly converted four-node sub-network should be integrated back to the unmodified portion
of the partial element equivalent circuit. This leads to the need for combining two branches of the same
type in parallel. In general, the voltages across the two branches can be written as(

V a
ij

V b
ij

)
=

(
za
ij zc

zc zb
ij

)(
Ia
ij

Ib
ij

)
+

(
. . . + za
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. . . + zb
ij,nIn + . . .

)
. (21)

Using the fact that both branch voltages are the same, the combined branch impedance and mutual
impedance then become

zij =
1
yt

and zij,n =
ya

ij + yc

yt
· za

ij,n +
yb

ij + yc

yt
· zb

ij,n, (22)

where those admittance parameters y’s are obtained by inverting the 2 × 2 impedance matrix in (21)
(the first term on the RHS). Now, there are two cases need to be considered: i) the two branches are
inductors; and ii) the two branches are series-LCs. The former is relatively easy to deal with and the
resulting impedances are always inductive. On the other hand, the latter is slightly more complicated
and should be further discussed. As shown in (20), the coupling of a newly generated series-LC to an
external series-LC contains both inductive and capacitive components. In order to combine the two
branches, the condition of |ω2LC| � 1 at the maximum frequency of interest should be assumed with
L = La − Lb − 2M , C−1 = 1/Ca + 1/Cb − 2/CM , where La, Lb, M and Ca, Cb, CM are the self- and
mutual inductances as well as the self- and mutual capacitances of the two branches respectively. Under
this condition, the capacitance and inductance of the new combined branch are obtained from the first
expression of (23) as

Cij =
(

C

CaCb
− C

CMCM

)−1

, (23a)

Lij =
[

C

Cb
La +

C

Ca
Lb − 2C

CM
M

] (
1 + ω2LC

)− ω2
(
LaLb − M2

)
C
(
1 + ω2LC

)− C

Cij
L. (23b)
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Figure 5. Generation of a new (a) external inductor-branch coupling; (b) external cross-branch
coupling; and (c) external LC-branch coupling.

Notice that the condition of |ω2(LaLb−M2)C| much less than the term inside the square bracket in Eq.
(23b) is also required. The couplings of this new branch to other existing branches are given by the
second expression of Eq. (22) in which the two weightings are

ya
ij + yc

yt
=

C

Cb

· 1 − ω2LbCb

1 − ω2LC
, (24a)

yb
ij + yc

yt
=

C

Ca

· 1 − ω2LaCa

1 − ω2LC
, (24b)

where parameters La = La − M , C
−1
a = C−1

a − C−1
M , Lb = Lb − M , and C

−1
b = C−1

b − C−1
M .

While the impedances directly relating to the two combining branches are modified according to Eq.
(22), the other impedances that are not directly related to these two branches should be modified
according to the equation

zm,n = zm,n − ya
ijy

b
ij − y2

c

yt

(
za
ij,m − zb

ij,m

)(
za
ij,n − zb

ij,n

)
, (25)

for all m and n except the two ij branches. Removing the inductors in series-LC branches is the final
step of the reduction process. This can be done by using the following equations,

zij′ = zik − zik,j′k − zj′k,ik + zj′k (26a)
zij′,mj′ = zik,mk − zik,j′k − zj′k,mk + zj′k. (26b)
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zij′,n = zik,n − zj′k,n (26c)

3. RESULTS

3.1. Embedded Bandpass Filters

Two multilayer bandpass filters [14, 15] embedded in a homogeneous substrate are used as examples to
validate the proposed MOR algorithm. Both filters have a size of less than 4.32 mm×2.04 mm×0.55 mm.
The first filter as shown in Fig. 6 consists of three layers of conductors above a large ground plane and
buried inside a substrate of dielectric constant (εr) 7.8. The partial element equivalent circuit of this
filter contains a total of 69 nodes. After the reduction with the control parameter δ and cut-off frequency
set to 0.40 and 4GHz respectively, a circuit of only 11 nodes is resulted. In terms of the number of
state variables (node voltages and branch currents), it changes from 220 to 25. Fig. 6 also shows the
scattering parameters obtained from these two circuits. It is seen that they are almost exactly the
same as each other except the slight discrepancy from 3 GHz or above. Experimental measurements of
the filter are also provided in the figure for comparison. The order-reduced circuit is depicts in Fig. 7.
The node numbers in this circuit correspond to the numbered elements listed in Fig. 6. For simplicity,
the coupling values between elements are not given.As a comparison, the time required for solving the
original 69-node PEEC is ∼ 1.13 s and that for the 11-node order-reduced circuit is ∼ 0.1 s. However,
the model reduction process itself requires ∼ 1.92 s to complete. Therefore, the proposed method allows
the extraction of physical essences by trading off the computational efficiency. This is due to the fact
that all mutual coupling terms among elements are required to be retained during the reduction process.

1
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Figure 6. Embedded bandpass filter with two transmission zeros.
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Figure 7. Order-reduced circuit for the two-zero bandpass filter.
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Figure 8. Bandpass filter enclosed between two ground planes.

The second example is a bandpass filter enclosed inside two large ground planes. It consists of four
layers of conductors with buried vias connecting various different layers. The original PEEC contains 79
nodes whereas the order-reduced circuit contains only 20 nodes with the control parameter δ set to 0.15
and the cut-off frequency set to 4 GHz. The number of states variables changes from 253 to 68. Again
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Figure 9. Order-reduced circuit for the second bandpass filter.

the two circuits give almost exactly the same scattering parameters (see Fig. 8). The circuit is further
simplified to contain only 10 nodes (25 state variables) if the control parameter δ is to 0.4. The node
numbers in this circuit (see Fig. 9) correspond to the numbered elements listed in Fig. 8. Experimental
measurements are once again provided to valid the results from these two circuits. The original 79-node
PEEC requires 1.66 s to solve, whereas the 20-node order-reduced circuit requires ∼ 0.18 s but requires
extra ∼ 2.59 s for the reduction process.

From these two examples, it is seen that the proposed MOR algorithm indeed can eliminate
redundant nodes and extract the essences of a given partial element equivalent circuit. Notice that
there are some discrepancies between measurements and the simulation results. This is mainly because
a homogeneous (half-space) substrate and an infinite ground plane are assumed in the simulations, but
the prototype filters are embedded in a finite volume of substrate with a finite ground plane.

4. CONCLUSION

A new MOR algorithm which requires no matrix inversion is introduced in this work. By using the
generalized Y-to-Δ transformation and making use of the features unique to the conventional PEEC,
redundant internal nodes of a given partial element equivalent circuit can be absorbed without degrading
the overall accuracy of the circuit model. Two frequency-domain examples are presented in the paper.
Since all mutual couplings are kept intact, the final order-reduced circuit contains all essences of the
original circuit.
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APPENDIX A.

In general, the proposed MOR technique can be summarized as follows:

1. Search for the node with minimum value of LtCt and ω2LtCt < 1 at the maximum frequency of
interest.

2. Perform the generalized y-to-Δ transformation on this node, and obtain the corresponding new
branch elements using Eqs. (13) and (14).
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3. Update the internal and external mutual couplings using Eqs. (15) to (20).
4. Combine all parallel branches and update the corresponding couplings using (23).
5. Update all other couplings by Eq. (25).
6. Remove cross-branch couplings using Eq. (26).
7. Repeat from step 1 until the node with minimum value of LtCt does not satisfy the condition of

ω2LtCt < 1 at the maximum frequency of interest.
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