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Calculation of the Image of Extended Objects Placed behind
Metamaterial Slabs

Arnold Kalvach* and Zsolt Szabo

Abstract—The image produced by metamaterial slabs is discussed in a number of papers in terms of
the electromagnetic field distribution. I this paper a procedure is proposed to efficiently calculate the
image of an extended object placed behind a metamaterial slab as it will be seen by an observer — which
can greatly differ from the image formed on the intensity map. The first step of the procedure retrieves
the dispersion relation of a periodic metamaterial slab from the S-parameters calculated with full wave
electromagnetic simulation of the unit cell. The second step of the procedure utilizes the retrieved
dispersion relation in the Transfer Matrix Method to calculate the image of a point source placed
behind the metamaterial slab as a function of the observation angle. Knowing the image distance of the
point source for all observation angles, the image of an extended object can be efficiently calculated.
The procedure is demonstrated with a Fishnet type metamaterial.

1. INTRODUCTION

Metamaterials are artificial structures with sub-wavelength feature sizes [1], which offer possibilities
to engineer materials with nearly arbitrary optical properties, such as negative [2–5], near-zero [6] or
ultrahigh [7] refractive index in various frequency regimes [8]. Although optical metamaterials are not
commercialized yet, they are intensively researched [9–11] and expected to open up new possibilities for
optical devices.

A number of novel imaging phenomena that cannot be achieved with classical optics were
already demonstrated with metamaterials, such as subwavelength imaging [2, 12–16], aberration free
focusing [17, 18] and focusing without an optical axis [13, 14, 19–23]. The last property allows the
focusing of the whole scene behind a metamaterial slab into an image space. When an object is placed
close to a properly designed metamaterial slab, it is possible to create a real image, which makes the
impression for an observer that the object hovers in front of the metamaterial. Our aim is to determine
the image position as seen by the observer, in contrast to previous works that compute only the intensity
distribution of the electromagnetic field.

Applying the laws of ray optics, the observable image position can be conveniently calculated.
However, the usual ray tracing algorithms can be applied only to configurations, where the materials
are homogeneous, isotropic, lossless and thick compared to the wavelength. Metamaterials are, however,
mostly anisotropic, lossy and thin compared to the wavelength, hence geometrical optics fails. Although
Snell’s law cannot be applied to anisotropic metamaterials, the refraction angle of light rays can still be
approximated with the normal of the isofrequency contours of the dispersion relation [19, 22–24]. This
can provide a description of the refraction phenomena in metamaterials, however, only if the losses are
negligible — or constant for all angles of incidence, which is mostly not the case.

Consequently, only full wave simulation can provide an accurate solution. Full wave simulation
needs, however, huge computational effort as the unit cell and the characteristic feature sizes of
the metamaterials are smaller than the wavelength, whereas the full size of the imaging system is
usually large compared to the wavelength. The calculation load can be significantly reduced by
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Figure 1. No unambiguous image distance can be determined from an intensity map due to aberration,
(a) which results in a blurry spot and (b) internal reflections which result in ghost images.

homogenization [25–27] of the metamaterial and the determination of the dispersion relation. If the
dispersion relation is known for all angles of incidence, the Transfer Matrix Method (TMM) can be
applied [26, 28] to calculate the image.

The image position can be defined as the maximum of the intensity function; however, this may
lead to a false description, since the metamaterial introduces aberration and ghost images. Aberration
occurs when rays with different angles of propagation do not intersect each other in one point, which
results in a blurry spot (see Fig. 1(a)). Ghost images are produced by non-negligible internal reflections
(see Fig. 1(b)). As a result, the intensity maximum of the blurry spot cannot unambiguously define
the image position: from some viewing angle the observer may observe a completely different image
position, due to angle dependent refraction. This angle dependence cannot be neglected.

In this paper, we propose a method that combines the dispersion relation obtained from full
wave simulation of a metamaterial unit cell, with the Transfer Matrix Method to provide an efficient
calculation procedure for determining the angle dependent image position of a point source situated
behind a metamaterial slab. Superposing the effects of point sources, the image of extended objects can
also be calculated.

2. RETRIEVING THE EFFECTIVE PARAMETERS OF METAMATERIALS

Due to their sub-wavelength feature sizes, metamaterials can be described macroscopically as
homogeneous materials and characterized with macroscopic material parameters such as magnetic
permeability and electric permittivity or refractive index and wave impedance. These macroscopic
parameters can be deduced from calculated or measured S-parameters of a metamaterial slab with
finite thickness [29].

Metamaterials are generally anisotropic, i.e., their macroscopic parameters strongly depend on the
angle of incidence, and hence no global material parameters can be assigned to them [25]. Nevertheless,
effective parameters can be retrieved for each angle of incidence, and metamaterials can be characterized
with angle dependent electromagnetic parameters. Metamaterials as any periodic structure can be
described with dispersion relation, which relates the wavenumber of a plane wave propagating in the
metamaterial to its frequency [26, 30]. In the following, a metamaterial slab situated parallel to the xy
plane of a Cartesian coordinate system with thickness d in the z direction is considered. The normal
wave number kz and generalized wave impedance ξ are extracted for plane waves with arbitrary angle
of incidence and frequency, in order to calculate the dispersion relation of the metamaterial. The
generalized wave impedance determines reflections on the boundaries, and it is defined as

ξ =
εr
kz

kz0 (1)

for TM mode where εr is the angle dependent effective relative permittivity and kz0 the normal wave
number in vacuum.
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Full-wave numerical electromagnetic simulation of a single metamaterial unit cell is performed
with Bloch boundary condition to calculate the S-parameters [31], i.e., the magnitude and phase of
the transmitted and reflected waves, for plane wave excitation with different incident angles. This
calculation does not require high computational effort as the computations involve only one unit cell.
From S-parameters, generalized wave impedance is retrieved for all angle of incidence as

ξ(α) = ±

√
(1 + S11(α))2 − S2

21(α)

(1− S11(α))2 − S2
21(α)

(2)

where S21(α) is the complex transmittance and S11(α) the complex reflectance for a plane wave
excitation with incident angle α. The sign of Eq. (2) is chosen to fulfill the passivity condition
Re{ξ} > 0 [27]. The normal wavenumber can be retrieved [27] for any angle of incidence as

kz(α) =
Im {ln(S21(α)/(1− S11(α)Γ))}+ 2mπ

d
− ı

Re {ln(S21(α)/(1− S11(α)Γ))}
d

, (3)

where m is the branch number, d the thickness of the slab, i =
√
−1, and Γ the reflection coefficient

Γ(α) =
ξ(α)− 1

ξ(α) + 1
. (4)

The lateral wavenumber kx is conserved at the interface of the metamaterial and its surrounding
medium, and it is determined as kx = k0(sinα), assuming that the surrounding medium is vacuum,
where k0 is the free-space wavenumber and α the angle of incidence. The relation between kz and kx
yields the dispersion relation for any fixed frequency (see Fig. 2(b)).

The procedure is applied to retrieve the dispersion relation of a fishnet type metamaterial working in
the optical regime. The fishnet structure is a metal-insulator-metal structure with periodically arranged
sub-wavelength sized rectangular holes in it, and the unit cell is shown in Fig. 3(a). The materials and
geometric parameters are chosen as in [32]. The size of the rectangular unit cell is 600 × 600 nm. The
size of the hole is 284× 500 nm. The thickness of the MgF2 insulator layer is 30 nm, and the thickness
of the metallic layers made of silver is 45 nm.

The homogenization procedure replaces the metamaterial slab with a homogeneous slab in such
a way that the transmission and reflection parameters coincide. The thickness of the homogeneous
layer is the effective thickness of the metamaterial, which is not necessarily equal to the thickness
of the metal and insulator layers [29]. The effective thickness of the metamaterial is chosen to be
460 nm = 2 × 45 nm + 30 nm + 340 nm, where 340 nm represents an additional air region, which is the
separation between the layers of the multilayer fishnet structure utilized in the next section of the paper.
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Figure 2. (a) The S-parameters of the fishnet structure for different angles of incidence. (b) The
dispersion curves of the fishnet for several frequencies, compared to the dispersion relation of vacuum
(black curve).
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Figure 3. (a) Nine unit cells of the investigated fishnet structure. (b) The full dispersion relation of
the fishnet structure for TM mode.

Figure 2(a) shows the calculated S-parameters for TM illumination obtained from full-wave
simulation performed with CST Microwave Studio. In Fig. 3(b), the TM dispersion relation of the
fishnet metamaterial is presented. Inside the a-b-c-d-e-f polygon no higher diffraction orders are excited.
Consequently, in this region the metamaterial can be homogenized.

In Fig. 2(b), the dispersion curves of the fishnet are compared to the dispersion curves of the vacuum
for several frequencies. The figure reveals a highly anisotropic nature of the fishnet metamaterial. For
small incident angles, the dispersion relation is hyperbolic, while for large incident angles, it is elliptic,
which leads to strongly angle-dependent imaging behavior in this specific frequency region.

The calculation of S-parameters is performed with the Finite Element Solver of CST Microwave
Studio, and it takes around 1 hour 10 minutes for 40 incident angles for a single frequency on Intel i5
processor.

3. THE IMAGE OF A POINT SOURCE PLACED BEHIND A METAMATERIAL
SLAB

3.1. Intensity Map

The response of a linear imaging system to point sources fully characterizes its behavior. Therefore,
in this section the electromagnetic field of a single point source placed behind a metamaterial slab is
calculated, from which the intensity map is given as the square of the absolute value of the electric field.

The EM field can be calculated with different methods, such as the FDTD (Finite Difference
Time Domain) algorithm [33]. However, the FDTD method is memory and time consuming when
subwavelength metallic structures such as metamaterials are simulated. Taking the advantage that
the effective parameters are already known, the Transfer Matrix Method [16, 34] can provide a much
more efficient simulation tool. We developed a modified formulation of the method, where the transfer
function is calculated with the dispersion relation introduced in the previous section and illustrated
for the fishnet type metamaterial in Fig. 2(b) and Fig. 3(b). The 2D calculations are performed in
a configuration similar to [16], assuming that the metamaterial slab has an infinite extent in lateral
directions. It is also assumed that TE and TM modes of the electromagnetic waves can be considered
separately, and thus the electric or the magnetic field can be handled as a scalar field.

The point source is modeled with a thin slit in the source plane, thinner than the wavelength.
Although this excitation does not yield the exact electromagnetic distribution of a point source, it
excites all propagating spatial spectral components and has the advantage of having finite spectral
components for all lateral frequencies. Spectral components that cannot propagate in vacuum can be
neglected, since they will not reach the observer.

The Transfer Matrix Method requires the decomposition of the EM field into plane waves with
different lateral wavenumbers. This can be achieved by applying Fourier transform on the EM field in
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the plane of the source. We use a one wavelength wide rectangular window function as the magnetic
field distribution in the source plane, which models the slit.

Each spectral component of the expansion corresponds to a plane wave with the lateral wave vector
kx and with complex amplitude Hsrc

y (kx). The complex amplitude of each plane wave is then calculated
in the image plane behind the metamaterial slab with the transfer function

H img
y (kx) = T0,1(kx)Tslab(kx)T0,2(kx)H

src
y (kx). (5)

where the transfer function of the surrounding medium (vacuum) is

T0,j(kx) = eıkz0ds,j , j = 1, 2, (6)

where ds,1 is the distance between the source plane and the metamaterial slab, ds,2 the distance between
the metamaterial slab and the image plane and kz0 the normal wave number that corresponds to the
lateral wave number kx in vacuum. The transfer function (or transmission coefficient) of a homogeneous
slab with finite thickness is

Tslab(kx) =
4

(ξ + 1)

(
1

ξ
+ 1

)
e−ıkzd + (ξ − 1)

(
1

ξ
− 1

)
eıkzd

(7)

where d is the thickness of the slab, ξ(kx) the generalized wave impedance and kz(kx) the normal wave
number in the medium that corresponds to kx [16, 31]. This transfer function is calculated from the
continuity conditions of the electromagnetic field components at the interfaces between different media
and provides a steady state solution. The steady state solution is the sum of a directly transmitted
wave and the waves that emerge from the medium after multiple internal reflections. To omit the effect
of internal reflections within the metamaterial slab, the transfer function of the slab can be simplified
to

Tslab(kx) = (1− Γ)eıkzd(1 + Γ), (8)

where Γ is the reflection coefficient. This transfer function considers direct, non-reflected wave only,
which enters the medium (Γ is the proportion, which is lost due to reflection), propagates in the medium
with normal wavenumber kz, and then emerges from the medium (−Γ is the proportion, which is lost
due to reflection) [26].

After the calculation of the complex amplitudes H img
y (kx) in the image plane, the contributions of

each plane wave are summed up to provide the full electromagnetic field distribution in the image plane.
Fig. 4(a) shows the electromagnetic field distribution computed with the Transfer Matrix Method using
the dispersion relation of the fishnet metamaterial.

For comparison, Fig. 4(b) shows the electromagnetic field distribution computed with 3D FDTD
simulation (CST Microwave Studio) which takes into account the fine details of the fishnet metamaterial.
The FDTD simulations are performed for a 5-layered multilayer fishnet structure with 1 unit cell in the
vertical direction parallel to the slit and 82 unit cells in the horizontal direction perpendicular to the
slit. The FDTD computational space is truncated with PEC in the horizontal direction and PMC in
the vertical direction to simulate an infinite structure, while the remaining faces, which are parallel to
the multilayer fishnet are closed with perfectly matched layer [33]. The distance specified by the 82 cells
(≈ 39λ) is large enough, that the neighboring sources introduced by the boundary conditions make small
effect on the field distribution in front of the metamaterial. In the Transfer Matrix Method, the same
simulation width is utilized, and Discreet Fourier Transform is applied, which introduces periodicity in
the horizontal direction as well, making it possible to compare the two methods. Figs. 4(c) and (d)
show the comparison of the amplitude and phase distributions along a line in front of the metamaterial
slab calculated with the FDTD and the Transfer Matrix Method. The root mean square error of the
phase along this line is 0.315 radians. The RMS error of the magnitude is 3.62e− 3 (Amax = 0.109).

The FDTD simulation for this configuration takes around 1 hour and 17 minutes compared to a few
seconds needed by the Tranfer Matrix Method. Note that the dispersion curve for a given metamaterial
can be calculated in advance, collected in a database and used for different purposes; therefore we do
not include it in this comparison.
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Figure 4. The electromagnetic field distribution of the point source placed behind the metamaterial
slab of 5 fishnet layers is calculated (a) with the Transfer Matrix Method and (b) with full 3D FDTD
simulation. (c) The magnitude and (d) phase distributions calculated with the two methods are
compared along the dashed gray lines of (a) and (b). The operating frequency is f = 0.2385PHz.
The simulation area is 82 unit cells wide, but only a 33 unit cells wide area is shown on each figure.

3.2. Observation Angle Dependent Image Distance

The electromagnetic field distribution in front of the metamaterial, as depicted in Figs. 4(a) and (b),
conveys an impression of how the metamaterial distorts the wave fronts but does not provide the
information and what an observer would see while observing the point source placed behind the
metamaterial. The calculated intensity distribution would be observed only if all plane waves leaving
the metamaterial could reach the observer. However, the observer perceives only those waves that
propagate toward him. Consequently, to calculate the image distance seen by the observer, only a
portion of the plane waves are summed, which can be simply achieved by modifying the last step of
the Transfer Matrix Method. In our calculations, 1◦ wide angle range around the observation angle is
considered.

The effect of internal reflections (i.e., ghost images) can also be simply eliminated with the Transfer
Matrix Method applying (8) instead of Eq. (7) in the calculations [26]. If this transfer function is applied,
only non-reflected waves are considered in the image plane, i.e., only the brightest image is observed.

After summing the plane waves reaching the observer, the position of the image for the given
observation angle is found at the intensity maximum as shown in Figs. 5(a)–(d). This process is
repeated for all observation angles. Fig. 5(e) shows the computed source-image distance in function of
the observation angle. Due to the homogeneity of the slab, the source-image distance is independent of
the source position, hence this parameter can fully characterize the metamaterial slab. Note that the
image position strongly depends on the observation angle. Consequently, the intensity maximum of the
field calculated with FDTD cannot be used to determine a correct image position.

Often the image produced by the metamaterial slab is behind the surface of the metamaterial. In
this case, the intensity maximum cannot be found within the computational domain, hence the virtual
image is determined by field reversal applying the inverse transfer function of vacuum

T−1
0 (kx) = exp(−ıkz0d) (9)

for the spatial spectral coefficients of the electromagnetic field in the image plane. Figs. 5(b) and 5(d)
show the backward computed electric field/intensity distributions, when the intensity maximum is found
behind the surface of the metamaterial.

For homogeneous metamaterials with identical unit cells, the intensity maximum is always found
along the line originated from the source and t normal to the surface of the metamaterial. Consequently,
it is sufficient to calculate the electromagnetic field along this line to determine the distance of the image,
which saves a lot of computational effort. Fig. 5(e) shows the calculated source-image distance for the
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Figure 5. The magnetic field distribution obtained by summing plane waves in the range of−12◦ . . . 12◦

and in the range of 40◦ . . . 70◦ are shown in (a) and (b), while the intensity distributions for the same
angle ranges are plotted in (c) and (d). These wide angle ranges are applied only for visualization
purposes. In case of (e), which shows the computed image position with respect to the angle of
observation, 1◦ wide angle ranges are considered, i.e., 0◦–1◦, 1◦–2◦, . . ., 59◦–60◦ to minimize the effect
of aberration. The working frequency is f = 0.2385PHz.
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Figure 6. (a) Flowchart of the angle dependent image distance retrieving procedure. (b) Geometrical
constraints between the image distance and the observation angle. The observation angle is determined
by the image distance.

investigated fishnet structure. The strong angle dependence of the source-image distance is well seen in
the figure. This cannot be revealed from a full intensity map.

Figure 6(a) concludes the whole process from the effective parameter retrieval to the determination
of the angle dependent image distance.

4. THE IMAGE OF EXTENDED OBJECTS PLACED BEHIND A METAMATERIAL
SLAB

Extended objects can be decomposed into elementary cells, which can be replaced by point sources.
Knowing the source-image distance of the point sources for all possible observation angles, the image
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of the extended object can be determined.
When the observer is far and the extended object seen under a small viewing angle, the image of

the object can be found at distance F from the object, where F is the calculated source-image distance
for the given observation angle.

However, when the observer is near the object, which is seen under a large viewing angle, the
problem is more challenging, because the observation angle α of the point sources is unknown, until the
image position of the point source is determined (see Fig. 6(b)). The image position, in turn, depends on
the observation angle as discussed before and as can be seen in Fig. 5(e). Therefore, the image position
can be determined by simultaneously satisfying both the geometrical constraints and the source-image
distance vs. observation angle function F (α). The geometrical constraint between the source-image
distance F and the observation angle α for one point of the object can be derived based on Fig. 6(b) as

tanα = dx/(dy − F ) (10)

where dx is the horizontal and dy the vertical distance between the observer and the point source. If
F (α) is known, then the image position can be obtained by the numerical solution of the equation

(dy − F (α)) tanα− dx = 0. (11)

Note that this nonlinear equation may have multiple solutions.
When the image distance is found, an effective refractive angle β can also be introduced as depicted

in Fig. 6(b) by satisfying the condition

z tanα+ d tanβ + (F − d− z) tanα = 0 (12)

where β is the effective refractive angle, α the angle of incidence, z the distance between the point
source and the surface of the metamaterial, d the thickness of the metamaterial and F the source-image
distance. The effective refractive angle can be expressed as

tanβ =
d− F

d
tanα. (13)

In the following, two examples demonstrate the applicability of the presented method. In the first
one, the image of a rod placed behind a glass slab with constant refractive index is calculated. For this
case, the source-image distance F (α) is calculated with Snell’s law as

F (α) = d− d tan(arcsin(1/n sin(α)))

tan(α)
; (14)

where n = 1.5 is the refractive index of the glass. Fig. 7(a) shows the calculated image of the rod
placed behind the glass slab. From the figure it can be seen that the rod is virtually bent, similar to
the bottom of a swimming pool when observed from the edge of the pool.

In the second example, the rod is placed behind the metamaterial slab with the dispersion relation
presented in Fig. 2(b). The image of the rod is distorted as shown in Fig. 7(b). There is an angle
range where the image floats in front the metamaterial slab, due to its partially hyperbolic dispersion

(a) (b)
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object

image metamaterial

n =1.5

α
α

F F F

α

Figure 7. (a) The image of a rod placed behind a glass slab as seen by the observer. (b) The image of
a rod placed behind a metamaterial slab as seen by the observer.
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relation, while for other angle ranges, the image is found behind the slab. Note that this image is
observed only for the monochromatic illumination (f = 0.2385PHz). For other colors, the calculations
can be repeated taking into account the corresponding dispersion relation to determine the image.
Although not depicted here, the intensity of the image also varies with the observation angle. This
intensity function can be obtained along with the source-image distance function from the modified
transfer function method.

5. CONCLUSION

We propose a method to describe the imaging properties of metamaterials. Instead of applying full-wave
simulation for the whole structure, first we determine the dispersion relation with the simulation of one
unit cell, then we apply the Transfer Matrix Method to calculate the image of a point source. The
procedure can be utilized even for frequency ranges where the metamaterial cannot be homogenized
and removes the burden of effective metamaterial parameter retrieval. Beside its effectiveness, the
method has the ability to cancel the effect of internal reflections, to avoid ghost images and to deal
with aberration, which is introduced by the greatly angle dependent properties of metamaterials. With
this method, the image distance can be obtained as a function of the observation angle. Knowing the
position of the image produced by the point source for all observation angles allows us to determine the
image of extended objects as it is perceived by an observer even if it is seen under a wide viewing angle.
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