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Polarimetric Target Detection Using Statistic of the Degree
of Polarization

Bo Ren1, 2, *, Longfei Shi1, 2, and Guoyu Wang1, 2

Abstract—The degree of polarization (DoP) can be utilized as a detection statistic in the polarimetric
radar to achieve target detection performance improvement. In this paper, a polarimetric radar model
is established, which includes reflections from both target and clutter at first. Then, probability
density functions (PDFs) of the estimated DoP are expressed in closed form, which is derived from
joint eigenvalue distributions of complex noncentral Wishart matrices. The detector is developed and
evaluated theoretically on the basis of the statistical properties of the DoP. Finally, a comparison
between the new DoP detector and single-polarization detector is presented against real data. The
performance improvement is demonstrated by the comparison results.

1. INTRODUCTION

In recent years, most radar systems have the ability to transmit and receive electromagnetic
waves at orthogonal polarization (i.e., horizontal and vertical). The polarization information has
become an important tool for improving target detection performance from the clutter and jammer
background [1, 2].

Since the optimum polarization detector has been designed by Novak et al. in 1989 [2], many
polarimetric detection algorithms have been subsequently developed [3–5]. Most of these detectors are
based on the Kelly’s generalized likelihood ratio (GLR) test [6], which assumes that the clutter covariance
can be well estimated by the training data or can be obtained as priori knowledge. This may not be
reasonable, especially when the targets exist in nonhomogeneous clutter environment. Moreover, the full
polarization scattering matrix (PSM) has to be measured in order to carry on those detectors. However,
lots of radar systems can only operate at a dual-polarization mode, at which a single polarization is
transmitted, and two orthogonal polarizations (i.e., denoted HH and HV ) are received. To overcome
the above problems, an important variable available to characterize polarization for polarimetric radar
shall be considered as a new detection statistic in this paper, which is the degree of polarization (DoP).

In studies of partially polarized planar waves, the DoP is defined as the ratio of the power of the
waves’ fully polarized components to its total power and is obtained from Wolf’s polarization covariance
matrix (PCM) [7, 8]. It has been demonstrated that the physical meaning of the DoP can always be
preserved [9, 10]. Furthermore, as an eigenvalue-derived variable, the DoP is independent of the received
polarimetric channels chosen to sample the electromagnetic wave.

In practice, the real DoP must be estimated via finite radar received vector samples, which are
normally described as random variables because of the random nature of the partially polarized waves.
The applications of the DoP statistical properties have already been widely carried out in radar research,
geophysics, and optics [11–14]. Specifically, it is found that the mean of the estimated DoP can provide
discriminating information for various terrain types such as urban, vegetation, and ocean during the
Pol-SAR data research in [11]. Moreover, the estimated DoP can be used as test statistics to detect
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the man-made metallic objects (including high-voltage transmission towers, ships, buoys and so on) in
clutter environments or to monitor oil spills on the surface of the ocean [12]. In this paper, we mainly
focus on the performance improvement of the DoP detector with respect to the other polarimetric
detectors, which has not been evaluated yet.

The statistical properties of the DoP shall be obtained in order to assess the detection performance.
Based on bivariate complex Gaussian distributions with zero means, the PDFs of the estimated DoP are
derived from the joint distributions of the Stokes vector in [13]. They can also be derived from the joint
eigenvalue distributions of the polarization covariance matrix in [14], where the polarization covariance
matrix is a complex central Wishart matrix. However, when considering a real target embedded in
clutter, the complex Gaussian with zero means will be a rough approximation. Anon-zero-mean complex
Gaussian radar model has been established in [5]. Thus, the DoP statistic, which is used for describing
echoes including both targets and clutter, can be obtained from this model.

In the following section, a basic polarimetric radar measurement model is introduced, and the echoes
for both target and clutter are described by statistical models. With an assumption of a distribution with
non-zero means, the polarization covariance matrix of the range cell including targets follows a complex
noncentral Wishart distribution. Based on the PDF of joint eigenvalues of the PCM, the statistics
of the DoP for the range cells with or without targets are derived in Section 3. Using the DoP as a
detection statistic, a new detector is designed in Section 4. The theoretical performance of the proposed
detector is analyzed in this section. Then, in Section 5 the application of the DoP detector and some
other typical polarimetric detectors against real data are presented. The performance improvement of
the new proposed detector can be demonstrated by the comparison results. Concluding components are
provided in Section 6.

2. RADAR RETURN MODEL

We consider that a target with deterministic PSM is being illuminated by polarimetric radar, which
has the ability of dual-polarization simultaneous reception (i.e., horizontal and vertical reception). The
radar returns also include clutter signals surrounding the target echoes. Specially, the clutter in the
main beam of the radar is mainly considered in this paper. Thereupon, the radar return corresponding
to the range cell that the target exists can be established as the following model:

H1 : x = Shta + c + n (1)
where H1 denotes the target-present hypothesis,

S =
[

shh shv

svh svv

]

is the 2× 2 PSM of the target, which represents the polarization change of the transmitted signal; ht is
the 2× 1 polarization Jones vector of the transmitted electromagnetic wave; a includes the transmitted
radar waveform and information of the range and Doppler. The second term in the right side of
Equation (1) represents the clutter signals. n is the noise in each polarimetric channel. We assume that
the target exists in only one range cell. Then in other range cells, the signal model satisfies target-free
hypothesis H0, which is given by

H0 : x = c + n. (2)

In the clutter-only range cell, the radar returns consist of the reflections from large number of random
scattering points. Then, the measurement data x in H0 case follows the bivariate complex Gaussian
distribution with zero means

fH0(x) =
1

π2 |Σ| exp
(−xHΣ−1x

)
, x ∈ C

2 (3)

where H denotes the Hermitian transpose, Σ the covariance matrix, and |Σ| the determinant of Σ.
On the other hand, when both the target and clutter exist in the range cell under test, x in H1

case is a non-zero-mean complex Gaussian random vector. In this case, the PSM, the relative position
and attitude of the target can be considered as constant during pulses in the radar dwell. Then the
mean vector of x is defined as

s � E (x) = Shsa
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and covariance matrix is
Σ = E

[
(x− s) (x − s)H

]

then its PDF can be obtained from [15] as

fH1(x) =
1

π2 |Σ| exp
{−(x − s)HΣ−1(x − s)

}
, x ∈ C

2 (4)

Assuming that the radar dwell duration consists of K pulses, we can obtain K observation samples
for radar returns in each range cell. The kth observation sample for a range cell is defined as a Jones
vector xk = [xH,k xV,k]T. H and V in the subscript denote a set of horizontal and vertical reception
polarization basis. Obviously, the random vector xk follows the PDF in (4) or (3) as the target exists
or not. It is worthwhile to notice that fH1(x) → fH0(x) as s → 0, when comparing formula (4) and (3).

3. STATISTICS OF THE DOP

It is well known that the target detection problem is to make decision of choosing hypothesis between
H0 and H1. In this section, we introduce the degree of polarization as a novel detection statistic. In
order to design the target detector by using this statistic, the statistical properties of the DoP should
be analyzed in different hypothesis test situations.

As we know, the degree of polarization can be used to characterize the polarization state of
the partially polarized waves. We can obtain this parameter from the Stokes vector or polarization
covariance matrix. The latter is considered in this paper. Then, the DoP p can be defined in [8] as

p �

√
tr (Σ)2 − 4 |Σ|

tr (Σ)
=

η2 − η1

η2 + η1
. (5)

where tr(Σ) denotes the trace of Σ, η1 and η2 (η2 ≥ η1) are the eigenvalues of Σ. Since we have no prior
knowledge about the covariance matrix in real application, it should be estimated from the measurement
data. According to the definition of the PCM in [7], the estimation of the PCM Σ̂ can be generated
from a set of observation samples x1,x2, . . . ,xK as follows:

Σ̂ � 1
K

K−1∑
k=0

xkxH
k (6)

where K is the integrated number of samples. If the eigenvalues of Σ̂ are η̂1 and η̂2, then the sample
estimate of the DoP is defined as

p̂ � η̂2 − η̂1

η̂2 + η̂1
. (7)

As we discussed at the end of last section, the hypothesis H0 can be considered as a special case of

H1. Since xk follows the PDF in (4), let Ξ =
K−1∑
k=0

xkxH
k = KΣ̂, then the matrix Ξ follows the complex

noncentral Wishart distribution with K degrees of freedom, when K ≥ 2. The PDF of Ξ is given in [16]
as

fW (Ξ) = e−tr(Θ)
0F̃1(K;ΘΣ−1Ξ)fC

W (Ξ) (8)

where Θ � Σ−1ssH is the non-centrality matrix, and tr(Θ) designates the trace of Θ. 0F̃1(.; .) in Eq.
(8) is the Bessel-type hypergeometric function, a special case of the generic hypergeometric function of
matrix argument in the complex field, defined as a series of complex zonal polynomials in [16]. fC

W (Ξ)
is the complex central Wishart distribution, whose PDF takes the form

fC
W (Ξ) =

|Ξ|K−2

πΓ(K)Γ(K − 1) |Σ|K e[−tr(Σ−1Ξ)] (9)

where Γ(·) is the standard Gamma function.
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3.1. Joint Eigenvalue Distributions of Polarization Covariance Matrices

Suppose that Λ = diag(λ1, λ2) and M = diag(μ1, μ2) are the eigenvalue matrices of Σ−1Ξ and Θ,
respectively. The entries of the two diagonal matrices λ2 ≥ λ1 and μ2 ≥ μ1 are real, since Σ−1Ξ and Θ
are both 2× 2 Hermitians. From James’ results in [16], the joint distribution of the ordered eigenvalues
(λ1, λ2) corresponding to Σ−1Ξ can be written as

f (λ1, λ2) =
e(−trM)e(−trΛ)

Γ(K)Γ(K − 1) 0F̃1(K;M,Λ) (λ1λ2)
K−2 (λ2 − λ1)2 (10)

where 0F̃1(·; ·, ·) is the hypergeometric function of 2 matrix arguments. Utilizing the theorem 4.2 in [17],
the hyper-geometric function in Eq. (10) can be extended as

0F̃1(K;M,Λ) =
Γ(K)

∣∣(0F1(K − 1;λiμj))2
∣∣

Γ(K − 1)(μ2 − μ1)(λ2 − λ1)
(11)

where |(f(i, j))2| denotes the determinant of a 2 × 2 matrix, f(i, j) the matrix element in the ith row
and jth column, and 0F1(.; .) a special case of the generalized hypergeometric function defined as [18]

pFq(a1, a2, . . . , ap; b1, b2, . . . , bq; z) �
∞∑

τ=0

(a1)τ (a2)τ . . . (ap)τ

(b1)τ (b2)τ . . . (bq)τ

zτ

τ !
(12)

where (α)n = Γ(α+n)/Γ(α). In terms of the denominator in (11), λ1 �= λ2 and μ1 �= μ2 are required to
ensure the formula meaningfully. However, because of the presence of the term (λ2 − λ1)2 in Eq. (10),
the requirement that λ1 should be different with λ2 can be relaxed. Substituting Eq. (11) into Eq. (10),
the joint distribution of (λ1, λ2) is given by

ffr (λ1, λ2) =
e−(μ1+μ2+λ1+λ2) (λ1λ2)

K−2 (λ2 − λ1)
Γ(K − 1)2 (μ2 − μ1)

· ∣∣(0F1(K − 1;λiμj))2
∣∣ . (13)

In terms of the definition of the non-centrality matrix Θ, it is the product of the inverse of the covariance
matrix Σ and the outer product ssH of the mean vector s. Due to the rank-one term ssH, it is worthwhile
to notice that Θ has at most rank one, i.e., it has at least one zero eigenvalue. First, we consider the
case that only one eigenvalue of Θ is zero, i.e., μ2 > μ1 = 0, we can call it rank-1 case. According to
lim
z→0

0F1(a; z) = 1 and taking the limit of (13) as μ1 → 0, the joint PDF of (λ1, λ2) can be reduced to

fr1 (λ1, λ2) =
e−(λ1+λ2+μ2) (λ1λ2)

K−2 (λ2 − λ1)
Γ(K − 1)2μ2

· [0F1(K − 1;λ2μ2) − 0F1(K − 1;λ1μ2)] . (14)

Second, two eigenvalues of Θ are both zero in the so-called rank-0 case, i.e., μ2 = μ1 = 0. Applying
L’Hospital’s rule in taking the limit of the joint PDF in Eq. (14) and using

∂0F1(n; az)
∂z

=
a0F1(n + 1; az)

n
(15)

yields

fr0 (λ1, λ2) = lim
μ2→0

fr1 (λ1, λ2;μ2) =
e−(λ1+λ2) (λ1λ2)

K−2 (λ2 − λ1)
2

Γ(K)Γ(K − 1)
. (16)

The joint eigenvalue PDFs of Σ−1Ξ have been expressed in closed forms for different cases. It is
easy to found that rank-1 and rank-0 cases are just corresponding to H1 and H0 hypotheses, respectively.
PDFs of the estimated DoP in each case can be derived through variable transformation and marginal
PDF calculation next.

3.2. PDFs of the Estimated Degree of Polarization

Some important special cases will be focused in the sequel, in which the polarization components
of clutter in horizontal and vertical polarimetric basis are supposed mutual independent. Then the
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covariance matrix can be denoted as Σ = σ2I2, where I2 is the 2× 2 identity matrix and σ2 the clutter
power in each polarization basis.

In terms of the definition of Ξ and Σ, the maximum likelihood estimator of the true polarization
covariance matrix can be denoted as Σ̂ = σ2

(
Σ−1Ξ

)
/K. Then the relations between eigenvalues of Σ̂

and Σ−1Ξ can be established as η̂1 = σ2λ1/K and η̂2 = σ2λ2/K. Substituting the relations into Eq.
(7), the estimated DoP is given by

p̂ =
σ2

K λ2 − σ2

K λ1

σ2

K λ2 + σ2

K λ1

=
λ2 − λ1

λ2 + λ1
. (17)

We consider the rank-1 case at first. Given the joint PDF of (λ1, λ2) in Eq. (14), we can transform
to the new variables p̂ = (λ2 − λ1)/(λ2 + λ1) and q = λ2 − λ1 by the standard formula for the change
of variables in PDFs. For this transformation, the Jacobian can be denoted as

J

(
λ1, λ2

p̂, q

)
= q/(2p̂2). (18)

Then we can find the joint distribution of (p̂, q)

fr1(p̂, q)=
e−μ2(1 − p̂2)K−2

22K−3Γ(K−1)2μ2p̂2K−2
e−

q
p̂ q2K−2·

[
0F1

(
K−1;

(1+p̂)μ2

2p̂
q

)
− 0F1

(
K−1;

(1−p̂)μ2

2p̂
q

)]
. (19)

Integration over q from 0 to ∞ using the Equation (7.522-9) in [18] yields

fr1(p̂)=
Γ(2K−1)e−μ2(1−p̂2)K−2p̂

22K−3Γ(K − 1)2μ2
·
[

1F1

(
2K−1;K−1;

1+p̂

2
μ2

)
− 1F1

(
2K−1;K−1;

1−p̂

2
μ2

)]
(20)

where 1F1(.; .; .) is the confluent hypergeometric function, also a special case of the generalized
hypergeometric series defined inEq. (12).

We define SCR as ratio of the target echoes power to the total power of clutter. According to the
definition of Θ and μ1 = 0, we have

μ2 = tr (Θ) =
‖s‖2

σ2
= 2SCR. (21)

where ‖s‖2 is the power of the target echoes, and 2σ2 the total clutter power. From Eqs. (20) and (21),
we can easily find that the PDF of p̂ in rank-1 case has relation with not only the number of samples
but SCR as well.

In rank-0 case, similar variable transformation from (λ1, λ2) to (p̂, q) and marginal integration over
q can be done to Eq. (10). Then the PDF fr0(p̂) can be given as

fr0 (p̂) =
Γ(2K)(1 − p̂2)K−2p̂2

22K−3Γ(K)Γ(K − 1)
. (22)

The result in Eq. (22) is identical to the PDF in [10], as the real DoP P → 0. Since the eigenvalues of Θ
are both zero in rank-0 case, none of the deterministic polarization components exist in radar reception.
Consequently, the polarization covariance matrix degrades to the central Wishart distribution, and the
real DoP approximates to 0. As can be noted in Eq. (22), the PDF of p̂ in this case is merely the
function of the number of samples.

4. DETECTION TEST AND PERFORMANCE

The novel detection statistic is defined as
TDoP = p̂. (23)

An illustration of the PDFs for the DoP hypothesis test is shown in Fig. 1. Then the detector decides
H1, if TDoP > γ. Otherwise, H0 is chosen. γ is a threshold of DoP, which is plotted by the dotted
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Figure 1. PDFs for the DoP hypothesis test.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Threshold γ

Pr
ob

ab
ili

ty
 o

f 
fa

ls
e 

al
ar

m

 

 

K=8
K=32
K=64

Figure 2. Probability of false alarm of the
detector as a function of the threshold, for
different sample number K.

lines in Fig. 1. According to the results obtained in last section, the detection statistic is distributed as
follows:

TDoP ∼
{

fr0 (p̂) underH0

fr1 (p̂) underH1
. (24)

Thus, the probability of false alarm can be expressed as follows:

PFA = P (TDoP > γ|H0) =
∫ 1

γ
fr0 (p̂)dp̂ = 1 −

∫ γ

0
fr0 (p̂)dp̂ = 1 − Bγ2(K − 1, 3

2)
B(K − 1, 3

2)
(25)

where B(a, b) and Bα(a, b) are beta function and incomplete beta function, respectively. It is worthwhile
to mention that the expression for PFA has only relationship with the threshold γ and sample number
K. Consequently, the DoP detector is a CFAR test. Fig. 2 shows the probability of false alarm as a
function of the threshold γ for sample number K = 8, 32 and 64. As can be easily noted that PFA

decreases as γ increases. In addition, the PFA curve becomes steeper as the sample number K increases.
According to the required PFA, the threshold γ can be determined by Eq. (25). Then the detection

probability can be obtained by

PD =
∫ 1

γ
fr1 (p̂)dp̂ = Qfr1 (γ) (26)

where Q denotes the right-tail probability function.
To evaluate the performance improvement, the DoP detector is compared with some other

typical polarimetric detectors. The single-polarization generalized likelihood ratio (SP-GLR) detector
was derived by using only one polarimetric channel (HH for example) [6]. Polarization-space-time
generalized likelihood ratio (PST-GLR) detector was established in [3]. These two detectors both need
secondary data to estimate the clutter covariance matrix. Multi-polarization generalized likelihood ratio
(MP-GLR) detector was formulated assuming that the clutter is inhomogeneous [5]. The secondary data
are unnecessary for this detector. However, it can only detect the static or slow target.

For comparison, we set the desired PFA = 10−2, 10−3 and 10−4, respectively. For different values of
sample number K, the threshold can be easily found based on Fig. 2. Then, we obtain PD by calculating
the right-tail probability function in Eq. (26) as a function of SCR. The probabilities of detection PD of
all the detectors mentioned above as a function of SCR are plotted in Figs. 3(a), (b) and (c). Specifically,
the newly proposed DoP detector is shown as dash-dotted lines. The SP-GLR, MP-GLR and PST-GLR
detectors are plotted as solid lines, dashed lines and plus-mark lines, respectively. The three subfigures
in Fig. 3 correspond to different values of PFA. The figures show that the detection performance of the
DoP detector and MP-GLRis is significantly better than that of the other two detectors for this case.
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Figure 3. Detection probabilities of the polarimetric detectors as a function of the SCR for different
values of PFA. (a) PFA = 10−2. (b) PFA = 10−3. (c) PFA = 10−4.

Furthermore, since no reference data from different range cells are needed for the DoP and MP-GLR
detectors, they are both suitable for the nonhomogeneous clutter environment.

In terms of the DoP detector, the detection performance is independent of the secondary sample
number, which can be noticed from the three subfigures in Fig. 3. We can also compare the detection
performances of the DoP detector with that of the MP-GLR as a function of SCR. For this case,
we assume that the target is not static. Fig. 3 shows that for this moving-target case, the detection
probability of the DoP detector exhibits a significant improvement compared to that of the MP-GLR
detector, when the total SCRs in the two detectors are the same. In addition, more obvious improvement
can be observed as the SCR increases. Therefore, target detection using the DoP statistics seems more
convenient in real polarimetric data. To support this claim, we will evaluate the detection performance
by applying all the four detectors to real data.

5. APPLICATION TO REAL DATA

The data collected by the IPIX radar of McMaster University were used to assess the detector
performance in real environment [19]. IPIX radar has the ability of dual-polarized and frequency agile
operation. The data we used were recorded on November 18, 1993, at Osborne Head Gunnery Range
(OHGR). The specific data parameters are listed in Table 1. The measurement range of the data is
2649 m–2844 m, in which a target exists. Its location is about 2655 m from the radar set and azimuth
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Figure 4. Time-range images of the IPIX radar
dataset 1 in HH and HV channels.
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Figure 5. Time-range images of the IPIX radar
dataset 2 in HH and HV channels.

Table 1. Parameters of IPIX radar datasets.

Name Dataset 1 Dataset 2
Recording Date 1993.11.18 1993.11.18

Time 02 : 36 16 : 26
Target Location 2655 m, 170 deg 2655 m, 170 deg

Range Resolution 30 m 30 m
Wave Height 1.4 m 0.9 m
Wind Speed 26 km/h 17 km/h

angle 170 degrees. Figs. 4 and 5 show the magnitude of the echoes from both the target and the sea
clutter in polarimetric channels HH and V H.

Figure 4 corresponds to the dataset in the first row of Table 1. We can observe that the clutter
reflects similar energy to the target in both HH and V H polarimetric channels. The dataset in the
second row of the table is shown in Fig. 5, where the reflection of clutter is much lower than the target
because of the slower wind speed and smaller sea wave.

Although the exact ratio of the target to clutter is unknown previously, to compare the detection
performance, we ran the DoP, SP-GLR, PST-GLR and MP-GLR detectors against the former datasets.
Then we plotted the PD versus PFA curves in Fig. 6, which are also called receiver operating
characteristic (ROC). Since the target location in the datasets was a priori knowledge, we divided
the detection map into two regions: target and clutter. Then we can calculate the detection probability
of the data in the target region by counting the number of pixels in which the statistic is larger than the
given threshold as PD. The false alarm probability PFA can be computed from the data in the clutter
region by the same way. A pair (PFA, PD) corresponds to a point on the ROC curve.

Figure 6 shows the ROC curves for the four detectors: (a) for dataset 1 and (b) for dataset 2.
The different pairs of (PFA, PD) are derived by changing the threshold values. The dash-dotted lines
still represent performance of the DoP detector. The SP-GLR, MP-GLR and PST-GLR detectors are
plotted as solid lines, dashed lines and plus-mark lines, respectively. In both Figs. 6(a) and (b), we can
notice that our detector TDoP usually outperforms the other three detectors. In addition, compared
with the SP-GLR detector, the DoP detection performance improvement in Fig. 6(b) is more obvious
than that in Fig. 6(a) because of the higher SCR. This is consistent with the conclusion we drew in last
section.
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Figure 6. Detector performance for real data collected by IPIX radar on November 18, 1993. (a)
Dataset 1. (b) Dataset 2.

6. CONCLUSION

In this paper, we have designed a novel target detector by using statistics of the estimated DoP.
We generated the polarimetric radar model at first which includes both target and clutter echoes.
Based on the radar model, the PDFs of the estimated DoP for the radar reception were derived from
joint eigenvalue distributions of the complex noncentral Wishart matrix. To evaluate the detection
performance, we analyzed the probabilities of false alarm and detection. The performance of the new
detector was also compared with the SP-GLR, PST-GLR and MP-GLR detectors. At last, we applied
the detectors in real collected data. For the proposed detector, the compared results demonstrated an
obvious performance improvement with respect to the other typical polarimetric detectors.
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