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A Modified Two Dimensional Volterra-Based Series for the Low-Pass
Equivalent Behavioral Modeling of RF Power Amplifiers

Elton J. Bonfim and Eduardo G. de Lima*

Abstract—This work proposes a modified Volterra-based series suitable for the low-pass equivalent
behavioral modeling of radio frequency power amplifiers (RFPAs) for wireless communication systems.
In a Volterra-based series, the instantaneous sample of the complex-valued output envelope is calculated
by the sum of products that depend on the instantaneous and past (up to the memory lengthM) samples
of the complex-valued input envelope. To comply with the constraints imposed by the bandpass behavior
of RFPAs, the derivation of the proposed model starts from a general Volterra-based series given by
the sum of contributions that include exactly one complex-valued information multiplied by a varying
number (ranging from zero up to one less than the polynomial order truncation P ) of real-valued
amplitude components. A first reduction in the number of parameters is then performed by retaining
only the one and two dimensional contributions. A second reduction in the number of parameters is
finally achieved by introducing a third truncation factor S. In fact, if this additional truncation factor S
is set equal to P−1, the proposed model contains all the two dimensional contributions. Moreover, when
S is set equal to 0, the proposed model reduces to the largely adopted generalized memory polynomial
(GMP) model. The proposed Volterra-based series retains the important property of being linear
in its parameters and, in comparison with previous Volterra-based approaches, can provide a better
compromise between number of parameters and modeling error. The proposed model is then compared
with the GMP model in a scenario of same number of parameters. When applied to the modeling of
input-output data obtained from a circuit-level description of a GaN HEMT Doherty PA excited by a
LTE OFDMA signal, the proposed model reduces the normalized mean square error (NMSE) by up to
3.4 dB. Additionally, when applied to the modeling of input-output data measured on a GaN HEMT
class AB PA excited by a WCDMA signal, the proposed model reduces the NMSE by up to 1.3 dB.

1. INTRODUCTION

The improvement of power efficiency in modern wireless communication systems has received a lot of
attention from the microwave community [1, 2]. Indeed, in mobile units higher efficiency is motivated
by the desire of extending the time interval between two consecutive battery recharges. Besides, in
base stations, economical indicators are the main drivers for power efficiency enhancement, once lower
efficiency significantly increases the energy consumption and also demands for costly heat dissipation
systems. Notwithstanding, the increasing number of novel wireless applications together with very fast
growing number of new users of such services drastically raises the total amount of energy dealt with in
wireless systems. As a consequence, green information technology politics further appoints toward the
necessity of a reduction in the energy demanded by such systems [3].

Achieving high efficiency is very challenging in nowadays wireless communication systems by two
reasons. First, to provide extremely high data rates with good quality of service, wireless communication
standards strongly rely on the linear processing of the information signal throughout the transmitter
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chain. In fact, due to the limited available bandwidth for wireless systems, the adopted strategy for
attaining higher data rates is to vary, according to the information signal, both the amplitude and phase
of a radio frequency (RF) carrier signal [4]. However, if an amplitude modulated RF carrier signal is
subject to the action of a nonlinear operator, the signal bandwidth is broadened, in this way causing
the interference among users allocated into adjacent channels. Second, the most power consuming
equipment in a wireless system, which is the power amplifier (PA) placed in the transmitter chain just
before the antenna, cannot deliver high efficiency when operating in linear regimes or, conversely, can
only guarantee high efficiency if driven at nonlinear regimes [5].

To exploit the PA operation at its highest power efficiency, the generated nonlinear distortions
must be somehow cancelled out. An effective way for doing that is to purposely distort the complex-
valued envelope signal before its application to the PA, by choosing a model for this so-called digital
predistorter (DPD) that behaves in an inverse manner with respect to the PA [6]. In this context, a
model for the PA based on measurements taking at its input and output, without any knowledge about
its specific circuit, is required. Indeed, the effectiveness of a DPD is mainly dictated by the selection of
an accurate and low-complexity PA behavioral model [7].

The dynamic nonlinear transfer characteristic, relating complex-valued envelope signals at the
PA input and output, can be modeled by Volterra-based series [8]. In one hand, being linear in the
parameters is the major advantage of Volterra-based series, because the model identification can be
easily performed using standard linear techniques, such as the least squares algorithm [8]. On the other
hand, the extremely high computational complexity, or equivalently the huge number of parameters,
is the main drawback of Volterra-based series, once accurate models may require larger values for
the polynomial order and memory length truncations. In literature, different strategies for reducing the
number of parameters of Volterra-based series, at the cost of a slight deterioration in modeling accuracy,
have been proposed [9–13]. Among those strategies, the generalized memory polynomial (GMP) model
of [13] is up to date one of the most common choice. The GMP model can be seen as a particular
instance of a Volterra-based series where only a subset of two dimensional contributions are retained.

The contribution of this work is to present a modified Volterra-based series that, in comparison
with the previous approaches, can show an improved trade-off between modeling fidelity and modeling
simplicity. The strategy followed here to prune a general Volterra-based series is based on the
combination of two approaches: retaining only the two dimensional contributions and introducing an
additional truncation factor S that can assume any integer value from zero up to one less than the
polynomial order truncation P . In fact, the number of parameters of the proposed model increases
with S. In particular, the maximum number of parameters is obtained when S is set equal to P − 1, in
a situation where the proposed model contains all the possible two dimensional contributions. As the
value of S is reduced, some of the two dimensional contributions are neglected by the proposed model.
Indeed, when S is set to its minimum value, e.g., equal to 0, the proposed model reduces to the GMP
model of [13].

The organization of this work is as the following. Section 2 describes the main aspects of RFPA
low-pass equivalent behavioral modeling. Section 3 contains the theoretical development of the proposed
Volterra-based series. Section 4 reports two case studies to illustrate the superior performance of the
proposed model in comparison with the GMP model of same computational complexity. Conclusions
are detailed in Section 5.

2. POWER AMPLIFIER LOW-PASS EQUIVALENT BEHAVIORAL MODELING

In wireless communication systems, the input signal applied to the PA is given by:

x(t) = � [x̃(t) exp(jωct)] = a(t) cos (ωct+ θ(t)) , (1)

where ωc is the carrier frequency and x̃ the complex-valued envelope signal whose real-valued amplitude
and angle components, in a polar representation, are designated by a and θ, respectively. The
input signal of Eq. (1) has a bandwidth much lower than its center frequency, and consequently, its
energy is concentrated exclusively near ωc. When the bandpass signal of Eq. (1) is processed through
nonlinearities found in the PA internal circuit, significant power levels are generated at frequencies
not excited by Eq. (1). Indeed, nonlinear distortions are responsible for the generation of considerable
amounts of energy at frequencies in the vicinity of ωc, as well as at harmonic frequencies of ωc. However,
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only intermodulation distortions near ωc are measurable at the PA output, because PA circuits are
equipped with frequency-selective output matching networks that ideally remove all the spectral content
located at harmonic frequencies of ωc. In this scenario, the signal measured at the PA output is given
by:

y(t) = � [ỹ(t) exp(jωct)] = b(t) cos (ωct+ ϕ(t) + θ(t)) , (2)

where ỹ is the complex-valued envelope signal whose real-valued amplitude, and angle components, in
a polar representation, are designated by b and ϕ+ θ, respectively.

Non-recursive PA behavioral models, which predict the PA output signal based solely on the input
signal and without knowledge of the PA internal circuit, are the preferable models for linearization
purposes due to their reduced computational complexity. Apart from dealing with nonlinearities,
an accurate PA behavioral model must also be able to work with dynamic effects. Indeed, while
nonlinearities are associated to gain compression and saturation mechanisms that take place at the
power transistor, dynamic effects occur due to non-ideal frequency responses of passive circuits, either
in low-frequency range (for instance, the bias circuit) or in high-frequency range (specially input and
output matching networks). Discrete-time models can represent memory effects by assuming that the
instantaneous sample of the output signal is not only affected by the applied input at that same time
instant, but also conditioned by the input values applied at past time instants. In fact, any input applied
at a particular time instance does somehow affect the output at present and all future time instants.
However, such an effect decreases as the time interval between the applied input and measured output is
increased. Because of this fading memory property of PAs, negligible degradation in modeling accuracy
is verified if the output is restricted to be a function of the present plus a finite number of previous
input samples.

In a behavioral model that relates the bandpass output signal y as a function of the bandpass
input signal x, the sampling frequency must be set equal to a few harmonics of the carrier frequency
ωc. In this case, when the time-domain data estimated by the model are converted into frequency-
domain, the base-band, fundamental and lower-order harmonic zones are clearly identified. However, a
tremendous reduction in the sampling frequency can be achieved if different frequency zones (base-band,
fundamental and harmonics) are allowed to overlap at frequencies around zero. To do that, first remove
the negative contents of the fundamental and harmonic zones and then shift in frequency the positive
spectral contents of the fundamental and harmonic zones, in a way that all zones are centered around
zero. This is equivalent to having a mathematical description for the PA behavioral model that relates
complex-valued input and output envelope signals [14]. In these low-pass equivalent models, a value
equal to some harmonics of the envelope bandwidth can be adopted for the sampling frequency. In this
way, in low-pass equivalent models, the exact frequency location of a specific contribution cannot be
judged by a simple observation of the frequency spectrum [14]. Therefore, care must be taken in order to
avoid the generation, by the low-pass equivalent model, of contributions located at harmonic frequencies
of ωc, which cannot be measured in physical PAs, and hence, such contributions will increase the number
of calculations required to provide the estimations without any improvement in the accuracies of the
estimations [14].

3. THEORETICAL DEVELOPMENT

Volterra-based series have been widely adopted for the low-pass equivalent behavioral modeling
of RFPAs [9–13]. A discrete-time Volterra-based series can model dynamic effects because the
instantaneous sample of the complex-valued output envelope ỹ(n) is dependent on the instantaneous
(n) and past (n − m) samples of the complex-valued input envelope, where m is a positive integer
number ranging from 0 up to the memory length M . A Volterra-based series can estimate nonlinear
mechanisms because the complex-valued output envelope is a polynomial function of the complex-
valued input envelope. In other words, a Volterra-based series has first-order terms in which the output
is proportional to the input, second-order terms in which the output is proportional to the product of
two inputs, third-order terms in which the output is given by the product of three inputs, and so on
until terms of infinite dimension. In practice, the polynomial order must be truncated by a polynomial
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order P . The constitutive equation of a general Volterra-based series is given by:

ỹ(n) =

P−1∑
p=0

M∑
m1=0

M∑
m2=0

M∑
m3=m2

. . .

M∑
mp+1=mp

h̃p+1,m1,m2,...,mp+1 x̃(n−m1)

p∏
j=1

|x̃(n −mj+1)| (3)

where h̃p+1,m1,m2,...,mp+1 are the Volterra-based series complex-valued coefficients. The operator module
| · | extracts the amplitude component of a complex-valued number. A Volterra-based series can be seen
as a sum of products (or, equivalently, contributions), where each product has its own and exclusive
parameter. Therefore, a Volterra-based series is linear in its parameters, and as a consequence, its
coefficients can be identified using linear techniques as the least squares algorithm [8].

In each product of Eq. (3), one and only one input envelope is kept unchanged, e.g., without the
presence of the operator module | · |. All the remaining input envelopes are changed by the presence
of the operator module. All the contributions of Eq. (3) are indeed contributions at the fundamental
zone (around 1ωc). The proof is as follows. First, observe that any complex-valued input represents an
information at the fundamental zone (around 1ωc). For example, the complex-valued envelope x̃(n−m)
is related to the real-valued signal x(n −m) by x(n −m) = |x̃(n −m)| cos[1ωc(n−m) + 1∠x̃(n−m)].
Second, observe that any amplitude component of a complex-valued envelope represents a contribution
at the DC zone (around 0ωc). For example, a(n − m) = |x̃(n − m)| = |x̃(n − m)| cos[0ωc(n −
m) + 0∠x̃(n − m)]. Third, observe that the exact frequency location of a contribution given by the
product of input information can be determined by performing the addition of the integer numbers
that multiply ωc in each individual input information. Such knowledge is applied twice: a) the product
of two or more informations located at the DC zone always provides a contribution located at the
DC zone, because the sum of several zeros is still zero — as an example, |x̃(n − m1)||x̃(n − m2)| =
|x̃(n−m1)||x̃(n−m2)| cos[0ωc(n−m1)+0ωc(n−m2)+0∠x̃(n−m1)+0∠x̃(n−m2)]; b) the product of one
information located at the DC zone by one information located at the fundamental zone always produces
a contribution located at the fundamental zone, because one plus zero is equal to one — as an example,
|x̃(n−m1)|x̃(n−m2) = |x̃(n−m1)||x̃(n−m2)| cos[0ωc(n−m1)+1ωc(n−m2)+0∠x̃(n−m1)+1∠x̃(n−m2)].
This concludes the proof that a general Volterra-based series described by Eq. (3) does comply with the
constraints imposed by the bandpass behavior of RFPAs discussed in Section 2.

The modeling accuracy of a Volterra-based series is strongly conditioned by the truncation factors
P and M . Higher accuracies are achieved for higher values of P and M . However, the number of
parameters of Eq. (3) rises very rapidly with P and M . One step of the least squares algorithm consists
of performing a matrix inverse. The order of the matrix to be inverted is equal to the number of
parameters. When the number of parameters is very large, the matrix to be inverted tends to be ill-
conditioned, e.g., almost singular, which in turn can significantly deteriorate the quality of the identified
coefficients. Moreover, the computational complexity of a Voltera-based series is directly proportional to
the number of parameters. Therefore, the huge number of parameters demanded for accurate predictions
is a major concern in Volterra-based series. In this context, the search for strategies that can reduce
the number of parameters of Volterra-based series with little effect on their modeling accuracy is highly
valuable. With the purpose of reducing the number of parameters of Eq. (3), this work exploits and
combines two distinct mechanisms detailed in the sequence.

A first and significant reduction in the number of parameters of Eq. (3) is possible if only the one-
and two-dimensional contributions are kept. Here one-dimensional terms refer here to contributions
that depend on the input applied at a single time sample, for example x̃(n − 4), |x̃(n)|x̃(n) and
|x̃(n−2)|3x̃(n−2). Here two-dimensional terms refer to contributions that depend on the input applied
at exactly two time samples, for example |x̃(n − 4)|x̃(n − 3), |x̃(n)|2x̃(n − 1) and |x̃(n)|3x̃(n − 3). In
other words, three-dimensional terms, as |x̃(n − 3)||x̃(n − 2)|x̃(n − 4), |x̃(n)|2|x̃(n − 4)|x̃(n − 1) and
|x̃(n− 2)|3|x̃(n− 4)|x̃(n), are neglected, as well as terms that depend on the input applied at more than
three time samples. In doing that, the two-dimensional Volterra-based series is described by:

ỹ(n) =
P−1∑
p1=0

P−1∑
p2=0︸ ︷︷ ︸

if (p1+p2)<P

M∑
m1=0

M∑
m2=0

h̃p1,p2,m1,m2 |x̃(n−m1)|p1 |x̃(n−m2)|p2 x̃(n −m2). (4)
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To further reduce the number of parameters, Eq. (4) is modified by the introduction of an additional
truncation factor S that can assume any integer value from zero up to P−1. In doing that, the modified
two-dimensional Volterra-based series proposed in this work is described by:

ỹ(n) =

P−1∑
p=0

S∑
s=0︸ ︷︷ ︸

if (s+p)<P

M∑
m1=0

M∑
m2=0

h̃p,s,m1,m2 |x̃(n−m1)|p |x̃(n−m2)|s x̃(n−m2). (5)

In the proposed model given by Eq. (5), the number of parameters can be changed according to
S. If S is set equal to its maximum value, namely P − 1, Eq. (5) includes all the two-dimensional
contributions, and therefore, the resulting model is equivalent to Eq. (4). If the value of S is lower than
P −1, some two-dimensional contributions are neglected by Eq. (5). Indeed, as the value of S decreases,
the number of parameters of Eq. (5) also decreases. Moreover, when S is set to its minimum value, e.g.,
equal to 0, the proposed model reduces to:

ỹ(n) =

P−1∑
p=0

M∑
m1=0

M∑
m2=0

h̃p,m1,m2 |x̃(n−m1)|p x̃(n−m2). (6)

The model described by Eq. (6) was previously reported in [13] and called generalized memory
polynomial (GMP) model. The GMP model of Eq. (6) can be seen, therefore, as a particular instance
of the modified two-dimensional Volterra-based series of Eq. (5), obtained when S is set equal to zero.
Specifically, the GMP model neglects terms that contain the product of amplitude components at
different time samples, for example |x̃(n− 4)||x̃(n− 3)|3x̃(n− 3) and |x̃(n− 2)|5|x̃(n− 1)|2x̃(n− 1). It
is worth mentioning that the authors that have presented the GMP model in [13] did not provide any
justification for not including the terms that contain the product of amplitude components at different
time samples.

4. VALIDATION

In this section, the modified two-dimensional Volterra-based series described by Eq. (5) and the GMP
model given by Eq. (6) are applied to the low-pass equivalent behavioral modeling of two different
devices under test (DUTs). Their modeling accuracies as a function of their respective computational
complexities are then investigated. The computational complexity is estimated by the number of
parameters required by the model. There are different combinations of values for P , M and S in Eq. (5),
which result in a model with the same number of parameters. Similarly, there are distinct combinations
of values for P and M in Eq. (6), which result in a model with the same number of parameters. For
any particular realization of Eq. (5) or (6), the number of operations demanded by the parameter
extraction method is dependent on the number of parameters, but not dependent on the particular
choice between Eqs. (5) and (6) and not dependent on the specific values for the truncation factors.
Hence, the models described by Eqs. (5) and (6), in the case of same number of parameters, present
the same computational complexity. By varying the three truncation factors of Eq. (5), namely M , P
and S, as well as the two truncation factors of Eq. (6), namely M and P , several particular realizations
of Eqs. (5) and (6) having different computational complexities are achieved. Here, truncation factor
M in Eqs. (5) and (6) is varied from 0 to 15, truncation factor P in Eqs. (5) and (6) varied from 0 to
45, and truncation factor S in Eq. (5) varied from 0 to P − 1. The modeling accuracy is calculated
by the metric normalized mean square error (NMSE), according to the definition reported in [15]. The
input-output data measured on the DUTs are separated into two subsets. The subset used for the
parameter identification is different from the subset employed to access the modeling accuracies. The
model extraction and validation are executed in MATLAB software using double precision floating-point
arithmetic. The parameter identification is performed using the least squares algorithm [8]. Using the
input-output data subset for extraction, for each combination of truncation factor values, least squares
algorithm is performed to identity the parameters of the modified two-dimensional Volterra-based series
described by Eq. (5) and the GMP model given by Eq. (6). Using the input-output data subset for
validation, the NMSE achieved by each particular instance is collected, together with the number of
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parameters required by its realization. The results obtained for each DUT are reported in the following
subsections.

4.1. GaN HEMT Doherty Power Amplifier

The first DUT is a circuit-level description of a Doherty power amplifier, using high electron mobility
transistor (HEMT) models and suitable for fabrication in GaN technology. To capture the input-output
data, the DUT was excited by a carrier signal of frequency 2.14GHz and modulated by a LTE OFDMA
envelope signal having about 10MHz of bandwidth. Figure 1 shows the NMSE results as a function
of the number of parameters achieved by the proposed model of Eq. (5) and the previous GMP model
of Eq. (6). Two main observations can be gathered from Figure 1. First, in a scenario of a similar
number of parameters, the proposed model always shows a lower modeling error than the GMP model.
Second, the lowest NMSE obtained by the GMP model is equal to −50.6 dB, while the lowest NMSE
obtained by the proposed model is equal to −54.0 dB. Therefore, the proposed model can reduce the
modeling error by up to 3.4 dB.

Another comparative analysis between the proposed model of Eq. (5) and the GMP model of Eq.
(6) is illustrated in Figure 2. Figure 2 shows the power spectral densities (PSDs) of two error signals. An
error signal is obtained by taking the difference between the desired output and the output estimated
by the proposed model having 405 parameters. Another error signal is given by the difference between
the desired output and the output estimated by the GMP model having 404 parameters. Observe that
in a case of similar number of parameters, the PSD of the error signal produced by the proposed model
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is significantly lower than the PSD of the error signal due to the GMP model. Moreover, the proposed
model shows a superior performance in all displayed frequencies.

So far, Figures 1 and 2 have illustrated that in this case study, the proposed model of Eq. (5)
can provide a better trade-off between modeling error and computational complexity than the previous
GMP model of Eq. (6). At this point, attention is focused on investigating how good are the estimations
provided by the proposed model. To that purpose, Figures 3 and 4 show, respectively, the measured
and estimated amplitude-modulation-to-amplitude-modulation (AM-AM) and amplitude-modulation-
to-phase-modulation (AM-PM) conversions. Observe that in Figures 3 and 4 there are no visible
differences between measured and estimated conversions, in this way illustrating the excellent quality
of the estimations provided by the proposed model.

4.2. GaN HEMT Class AB Power Amplifier

The second DUT is a class AB power amplifier employing a HEMT fabricated in GaN technology.
The DUT was excited by a carrier signal of frequency 900MHz and modulated by a 3GPP WCDMA
envelope signal having about 3.84MHz of bandwidth. The input-output data were measured with a
Rohde & Schwarz FSQ vector signal analyzer (VSA) at a sampling frequency of 61.44MHz.

Figure 5 shows the NMSE results as a function of the number of parameters achieved by the
proposed model of Eq. (5) and the previous GMP model of Eq. (6). Observe that in the case of same
number of parameters, the proposed model always shows a lower modeling error than the GMP model.
Specifically, the lowest NMSE obtained by the GMP model is equal to −44.7 dB, while the lowest NMSE
obtained by the proposed model is equal to −46.0 dB. Therefore, the proposed model can reduce the
modeling error by up to 1.3 dB. In fact, the GMP model needs 602 parameters to achieve its best
NMSE value of −44.7 dB, while the proposed model having 243 parameters can achieve a NMSE value
of −44.6 dB.

Figure 6 shows the PSDs of two error signals. An error signal is obtained by taking the difference
between the measured output and the output estimated by the proposed model having 588 parameters.
Another error signal is given by the difference between the measured output and the output estimated
by the GMP model having 602 parameters. As the case with the previous DUT, the proposed model
shows reduced modeling errors compared with the GMP model of similar computational complexity.

Figures 5 and 6 illustrate that once again, the proposed model of Eq. (5) can provide a better
trade-off between modeling error and computational complexity than the previous GMP model of Eq.
(6). The measured and estimated AM-AM and AM-PM conversions shown, respectively, in Figures 7
and 8 are included to certify the extremely high accuracy of the estimations provided by the proposed
model.
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5. CONCLUSIONS

This work has addressed the behavioral modeling of RFPAs using complexity-reduced Volterra-based
series. Two distinct strategies are exploited in order to derive a modified two dimensional Volterra-based
model. Based on input-output data obtained from two different GaN HEMT RFPAs, the proposed
model is carefully compared with the widely known generalized memory polynomial (GMP) model
having a similar number of parameters. For the two studied cases, the proposed model achieves lower
errors, quantified by NMSE improvements equal to 3.4 dB (for the Doherty PA) and 1.3 dB (for the
class AB PA).

The major application for PA behavioral models is in the PA linearization using the digital baseband
predistortion (DPD) technique. In a DPD scheme, a model with extremely high accuracy and low
computational burden is of paramount importance. In one hand, the power consumption of the DPD
circuitry must be kept as low as possible, once the inclusion of the linearizer is beneficial only when
the power saved inside the PA is superior to the power consumed by the DPD itself. Besides, the
energy dissipated by the digital hardware that implements the DPD is proportional to the number of
operations required by the behavioral model. On the other hand, to increase the efficiency, especially
in the presence of a linearizer, the PA is driven at high input power levels. Even in this scenario where
strong nonlinear behaviors associated with power gain compression and saturation are clearly noticeable,
the PA output signal must comply with very rigorous linearity metrics. For instance, the integrated
output power due to the distortions at adjacent channels must be several orders of magnitude lower
than the integrated output power at the main channel. In this context, any improvement in accuracy
of the PA behavioral model can be significantly helpful for improving the overall efficiency. In fact, the
average output power (and, more important, the efficiency) of a linearized PA can be increased until
the level where the linearization metrics reach their maximum allowable values. Because the presence
of nonlinearities at the output of a linearized PA is directly related to the accuracy of the behavioral
model, more accurate models have the potential to allow for an increase in PA average output power,
without violating any linearity requirements. Therefore, when the proposed behavioral model is applied
to the PA linearization, the improvements in NMSE results offered by it (between 1.3 dB and 3.4 dB
reported in this work) have the potential to considerably contribute for improving the PA efficiency,
even in comparison with reference NMSE results that are already very low (on the range from −44 dB
to −51 dB, achieved by the GMP model).
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