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Electromagnetic Field Theory for Invariant Beams
Using Scalar Potentials

Irving Rondón-Ojeda* and Francisco Soto-Eguibar

Abstract—We present a description of the electromagnetic field for propagation invariant beams using
scalar potentials. Fundamental dynamical quantities are obtained: energy density, Poynting vector and
Maxwell stress tensor. As an example, all these quantities are explicitly calculated for the Bessel beams,
which are invariant beams with circular cylindrical symmetry.

1. INTRODUCTION

Propagation invariant beams, also known as “non-diffracting beams”, propagate indefinitely without
changing their transverse intensity distribution. These optical fields are well-known plane waves, the
Bessel beams [1], Mathieu beams [2] and Weber beams [3]. These invariant beams correspond to
the solutions of the Helmholtz wave equation in Cartesian, circular cylindrical, parabolic cylindrical,
and elliptical cylindrical coordinates, respectively. These non-diffracting beams have a large quantity
of applications in fundamental and applied science in areas such as quantum mechanics [4–7], acousto-
optics [8], nonlinear optics [9], optical tweezers [10], fluid dynamics [11], and optical communications [12],
among others.

In order to obtain the maximum possible information from these fields, it is very important to
have a deeper insight of their physical properties. Although the vector approach is the most common
method used in electromagnetic theory, several interesting works have used a scalar formalism [1], such
as [13] and [14]. We use scalar approach in order to obtain the fundamental dynamic quantities of
those beams; dynamic quantities are present in several physical phenomena which occur in different
contexts and scenarios, but are nevertheless governed by the same physical laws. To the best of our
knowledge, the complete general explicit expressions have not been presented before; as a matter of
fact, the Maxwell stress tensor has been scarcely mentioned in the previously published literature.
Additionally, by considering the interference between modes, our results can give new insights.

It must be emphasized that the scalar potential approach and more general vector approach are
completely equivalent, in the understanding that the results predicted for the measured quantities are
exactly the same in both approaches; however, in several circumstances, such as the one presented
here, the scalar approach is easier. The link between these two approaches is the Hertz potential
formalism [15], but a review of this is beyond the scope of this paper.

The article is organized as follows: In Section 2, starting from the Maxwell equations, we present
the scalar potential approach. Then, an exact explicit expression, in terms of the scalar potential, is
derived for the energy density of the invariant fields in Section 3, and the same is done for the Poynting
vector in Section 4. In Section 5, the Maxwell stress tensor is calculated. In order to present concrete
examples, we have evaluated the corresponding quantities for the Bessel beams in each section. To
show the usefulnesses of the method, in Section 6, the force exerted by a zero order Bessel beam on a
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small cylinder is calculated using the Maxwell stress tensor. Finally, our conclusions are presented in
Section 7.

2. SCALAR POTENTIALS

Any given electromagnetic field answers to the Maxwell equations, which in the International System
of Units (SI) [15–17] are

∇ · �D = ρf , (1a)

∇ · �B = 0, (1b)

∇× �E = −∂
�B

∂t
, (1c)

∇× �H = �Jf +
∂ �D

∂t
, (1d)

where the microscopic electric and magnetic fields are �E and �B; the corresponding macroscopic fields
are �D and �H; ρf is the free charge density; �Jf is the free current density.

The constitutive relations between micro and macroscopic vector fields are
�D = ε0 �E + �P , (2a)
�B = μ0

(
�H + �M

)
, (2b)

where the electric polarization, �P , is the average electric dipole moment per unit volume, and the
magnetization, �M , is the average magnetic dipole moment per unit volume; the free-space electric
permittivity is ε0, and μ0 is the free space magnetic permeability.

For the sake of simplicity, we will consider an isotropic linear homogeneous medium without losses,
which means that the electric permittivity ε and magnetic susceptibility μ are both real constants;
hence, the constitutive relations reduce to �D = ε �E and �B = μ �H. As we are interested only in the
propagation of the electromagnetic fields and not in its production, we will also suppose that there is
no free charge density nor free currents. Without loss of generality, we will also suppose that all the
fields are monochromatic, of frequency ω. With all these considerations, we can rewrite the Maxwell
equations as

∇ · �E = 0, (3a)

∇ · �H = 0, (3b)

∇× �E = −iωμ �H, (3c)

∇× �H = iωε �E. (3d)
If we take the curl of Equations (3c) and (3d), and combine with the other two Maxwell equations, we
obtain the Helmholtz vector equations for the electric field and for the magnetic field,

∇2 �E + k2 �E = 0, (4a)

∇2 �H + k2 �H = 0, (4b)
where we have defined the wave-vector magnitude k2 = (ω/v)2 in terms of the speed of light in the
medium, v2 = 1

με .
Let us write the electromagnetic fields as [15]

�E = cTE
�M(�r) + cTM

�N(�r), (5a)

�H = −i
√
ε

μ

[
cTE

�N(�r) + cTM
�M(�r)

]
, (5b)

being �M(�r) and �N(�r) vector fields defined by
�M(�r) = ∇× [âψ(�r)] (6)
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Figure 1. Absolute value of the solution of the transversal Hemholtz Equation (10). In all graphics,
we have used kT = 1m−1. The scalar potential ϕ is given in volts. (a) Cylindrical coordinates: A Bessel
beam with υ = 3. (c) Parabolic cylindrical coordinates: An even Weber beam with a = 0. (e) Elliptical
cylindrical coordinates: An even Mathieu beam with q = 25, n = 3 and f = 2

√
q = 11.28.

and
�N(�r) =

1
k
∇× �M(�r), (7)

where â is an arbitrary unit vector; cTE and cTM are two arbitrary complex numbers (the TE and TM
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sub indexes will be justified below); ψ(�r) is a scalar field.
It is straightforward to verify that if the scalar field ψ(�r) satisfies the scalar Helmholtz equation,

∇2ψ + k2ψ = 0, (8)

then the fields (5a) and (5b) satisfy the vector Helmholtz equation. So, the scalar field ψ(�r) will be
named scalar potential. Note that these new vector fields, �M and �N , are orthogonal between them,
that is �M · �N = 0, and solenoidal, i.e., ∇ · �M = 0 and ∇ · �N = 0.

Though the homogeneous (source-free) Helmholtz equation can be separated in eleven coordinate
systems, we require separability into transverse and longitudinal parts and that is possible only in
Cartesian, cylindrical, parabolic cylindrical and elliptical cylindrical coordinates [18]. The spatial
evolution of the scalar potential ψ can then be described by the transverse and the longitudinal parts;
the transverse part ϕ(u1, u2) will depend only on the transverse coordinates, u1, u2, and the longitudinal
part Z(z) will depend on the longitudinal coordinate z; thus

ψ(u, v, z) = ϕ(u1, u2)Z(z). (9)

After substituting Eq. (9) in the Helmholtz equation, we easily obtain that ϕ(u1, u2) satisfy the two-
dimensional transverse Helmholtz equation

∇2
Tϕ+ k2

Tϕ = 0, (10)

where ∇2
T is the Laplacian transversal operator, which has a specific form in each coordinate system,

and the longitudinal part is Z(z) = eikzz, with the dispersion relation k2 = k2
T +k2

z . In Figure 1, we show
the transversal field distribution, given by the solution of (10), for cylindrical, parabolic cylindrical and
elliptical cylindrical coordinates. To enhance the knowledge on these fields, we refer the reader to [19–
21] for a general description, physical properties, experiments and applications, and for recent advances
to [22].

We choose the unit vector â, in Equation (6), as the unit vector that determines the direction of
propagation, i.e., the Z axis, and we note that in the four coordinate systems the scale factor h3 that
we are studying is equal to 1, to write

�M = −eikzz∇⊥
T ϕ, (11)

where
∇⊥

T = −ê1 1
h2

∂

∂u2
+ ê2

1
h1

∂

∂u1
, (12)

ê1 and ê2 are the base unit vectors corresponding to the transversal direction, and h1 and h2 are the
corresponding scale factors. It is also very easy to see that

�N =
eikzz

k

(
ikz∇T + ê3k

2
T

)
ϕ, (13)

where
∇T = ê1

1
h1

∂

∂u1
+ ê2

1
h2

∂

∂u2
. (14)

2.1. Example Bessel TE and TM Modes

Since their introduction in 1987 by Durnin [1], the Bessel beams have attracted considerable attention
due to their properties of propagation invariance and self-reconstruction, and they have found a wide
range of interesting applications; for a historical review see [23], for experimental mode realizations [24]
and for the vectorial approach [25–27]. Thus, as an example, we consider the case of the Bessel beams,
which correspond to write the scalar transversal Helmholtz equation (10) in cylindrical coordinates. In
this instance, the solution is

ϕ(r, θ) = Jν (kT r) eiνθ, (15)

where ν is a non-negative integer and Jν(ζ) a Bessel function of the first kind of order ν.
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Let us substitute (15) and set cTM = 0, cTE = 1 in Equation (5), to find

�ETE = Re
(

1
r
{iνJν(kT r)êr + [νJν(kT r) − kT rJν−1(kT r)] êθ} eiνθeikzz

)
, (16)

and

�HTE =Re
(√

ε

μ

1
2kr

{
rkTkz[Jν−1(rkT )−Jν+1 (rkT )]êr+2iνkzJν(rkT ) êθ−2irk2

TJν(rkT )êz
}
eiνθeikzz

)
,

(17)
being êr, êθ, êz the unit base vectors in cylindrical coordinates. Note that the electric field is transversal,
which means that its component in the propagation direction, Z, is zero. This justifies a posteriori the
notation, the TE as super index in the electromagnetic fields and as subindex in the constant cTE.

We substitute again (15) in Equation (5), but we make now cTE = 0, cTM = 1, to find

�ETM =Re
(

1
kr

{
ikz [rkTJν−1 (rkT ) − νJν (rkT )] êr − νkzJν (rkT ) êθ + rk2

TJν (rkT ) êz
}
eiνθeikzz

)
, (18)

and
�HTM =Re

(√
ε

μ

1
2r

{2νJν (rkT ) êr + irkT [Jν−1 (rkT ) − Jν+1 (rkT )] êθ} eiνθeikzz

)
. (19)

Note now that the magnetic field is transversal, which is the reason that we use TM as super index in
the electromagnetic field and as subindex in the constant cTM.

Thus, in general, when cTE = 1 and cTM = 0 in Equation (5), we will get a transverse electric wave,
and when cTE = 0 and cTM = 1 in Equation (5), we will get a transverse magnetic wave.

3. ELECTROMAGNETIC ENERGY DENSITY

The time averaged electromagnetic energy density 〈U〉 for an harmonic field in an isotropic, linear and
homogeneous medium is given by [15–17]

〈U〉 =
1
4
Re

(
ε �E · �E∗ + μ �H · �H∗

)
, (20)

where the upper index ∗ stands for the complex conjugate. Inserting the vector fields �M and �N in this
formula, we obtain

〈U〉 =
(
|cTE|2 + |cTM|2

) (
〈U〉tra + 〈U〉z

)
+ 〈U〉int (21)

where

〈U〉tra =
ε

4

(
1 +

k2
z

k2

)
Re (∇Tϕ · ∇Tϕ

∗) , (22)

〈U〉z =
ε

4
k4

T

k2
ϕϕ∗ (23)

and
〈U〉int = ε

kz

2k
Re

[
i (cTE c

∗
TM + c∗TE cTM)

(
∇⊥

T ϕ · ∇Tϕ
∗
)]
. (24)

The first term in (21) is the energy of the transverse and longitudinal fields, and (24) is the energy of the
“interference” between the electric transversal modes and the magnetic transversal modes. We observe
that the transversal electric and magnetic fields have the same energy, but there is an interference term,
which in general, will be different from zero, as the author of [28] noted studying the Poynting vector.
It is worth to note that the expression reported here is valid for any invariant field and that the time
averaged energy density does not depend on the longitudinal variable z, as must be.
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3.1. Energy Density for Bessel Beams

In the case of Bessel beams of order ν, the transversal energy density is

〈U〉tra =
ε

4k2r2

{
J2

ν (rkT )
[
2ν2

(
k2 + k2

z

)
+ r2k4

T

]
+ r2k2

T

(
k2 + k2

z

)
J2

ν−1 (rkT )

−2νrkT

(
k2 + k2

z

)
Jν−1 (rkT )Jν (rkT )

}
, (25)

and the interference energy density is

〈U〉int =
εkz

kr2
Re {(cTEc

∗
TM + c∗TEcTM) νJν (rkT ) [rkTJν−1 (rkT ) − νJν (rkT )]} . (26)

When ν = 0, i.e., for a Bessel beam of zero order, the total energy density is simplified to

〈U〉 =
εk2

T

4k2

(
|cTE|2 + |cTM|2

) [
k2

TJ
2
0 (kT r) +

(
k2 + k2

z

)
J2

1 (kT r)
]
, (27)

where physically the first term is related to the longitudinal component and the second one due to
the transversal fields; similar expressions were reported by [25–27]. We want to remark that choosing
appropriate cTE and cTM can lead to an linearly polarized Bessel beam with total angular momentum
equal to the order of the Bessel function as linearly polarized basis does not carry orbital angular
momentum. In the same manner, if cTE and cTM are chosen to deliver a right or left circularly polarized
basis, for a Bessel field of total orbital angular momentum ν, the Bessel functions will have an order
ν − 1 and ν + 1 as circularly polarized basis carries orbital angular momentum plus one and orbital
angular momentum minus one [13]. In this work, we decide to focus on TEM modes.

Note that in the case of a Bessel beam of zero order, the interference part is null. In Figure 2, we
show the total energy density for a Bessel beam with ν = 0. Remark also that Bessel beams have the
energy distributed between the rings, so that the more rings they have, the lower is the energy in the
central core, and this is important in many experimental applications (an interesting theoretical and
experimental study was reported in [29]).

Figure 2. The energy density, given by Equation (27), for a TE Bessel beam with ν = 0, k = 630m−1

and kT = 300m−1.

4. POYNTING VECTOR

For harmonic electromagnetic fields, the time average power flow per unit area is given by [15–17]〈
�S
〉

=
1
2
Re

(
�E × �H∗

)
. (28)

Following the same procedure that is in the energy density case in the previous section and after
performing the algebra, we obtain〈

�S
〉

= |cTE|2
〈
�STE

〉
+ |cTM|2

〈
�STM

〉
+

〈
�Sint

〉
, (29)
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where 〈
�STE

〉
=

1
2k

√
ε

μ
Re

[
(∇Tϕ · ∇Tϕ

∗) kz ê3 − ik2
T ϕ

∗ ∇Tϕ
]

(30)

is the transversal electric part, and〈
�STM

〉
=

1
2k

√
ε

μ
Re

[
(∇Tϕ · ∇Tϕ

∗) kz ê3 + ik2
T ϕ

∗ ∇Tϕ
]

(31)

is the transversal magnetic part, and〈
�Sint

〉
=

1
2k2

√
ε

μ
Re

[
i
(
cTE c

∗
TMk

2 + c∗TE cTMk
2
z

) (
∇⊥

T ϕ · ∇Tϕ
∗
)
ê3 + c∗TE cTMkzk

2
T ∇⊥

T (ϕϕ∗)
]

(32)

is the interference part, which in general is not zero. Notice that this time averaged Poynting vector is
independent of the z coordinate, as expected.

In order to emphasizes the non-diffractive character of these beams, it is shown that the divergence
of the transversal part of the time averaged Poynting vector is zero. To make this fact evident, let us
write the time averaged Poynting vector as a sum of a transversal and a longitudinal part as〈

�S
〉

=
〈
�Slong

〉
+

〈
�Strans

〉
, (33)

where 〈
�Slong

〉
= ê3

1
2k2

√
ε

μ
Re

{(
|cTE|2+|cTM|2

)
kkz(∇Tϕ · ∇Tϕ

∗)

+i
(
cTEc

∗
TMk

2+c∗TEcTMk
2
z

)(∇⊥
T ϕ · ∇Tϕ

∗
)}
, (34)

and 〈
�Strans

〉
=

k2
T

2k2

√
ε

μ
Re

[
−i

(
|cTE|2 ϕ∗∇Tϕ− |cTM|2 ϕ∇Tϕ

∗
)
k + c∗TEcTMkz∇⊥

T (ϕϕ∗)
]
. (35)

As we mention above, a diffraction free beam is such that the divergence of 〈�Strans〉 is zero [30]. If we
take the divergence of expression (35), we will get the terms ∇ · (ϕ∗∇Tϕ) and ∇ · (ϕ∇Tϕ

∗) which are
equal, and as one is the complex conjugate of the other, they must be real, so Re[−i(|cTE|2ϕ∗∇Tϕ −
|cTM|2ϕ∇Tϕ

∗)] = 0. Also ∇ · ∇⊥
T (ϕϕ∗) is shown to be equal to zero, as ∇ and ∇⊥

T are orthogonal. In
summary, ∇· 〈�Strans〉 = 0, so, following [30], these beams are diffraction free; physically this means that
the time averaged energy flux in the transverse direction is null. Of course, it is possible to calculate
explicitly the transversal part of the Poynting vector in each of the four coordinate systems where we
have separability into transversal and longitudinal parts (Cartesian, cylindrical, parabolic cylindrical
and elliptic cylindrical) and take the divergence; that work had been done explicitly in the four cases,
and zero has been obtained.

4.1. Poynting Vector for Bessel Beams

We illustrate the previous results calculating the Poynting vector for Bessel beams of order ν, and we
get〈

�Sr

〉
=

√
ε

μ

k2
T

2kr
Re

{
i
(
|cTE|2 − |cTM|2

)
Jν (rkT ) [νJν (rkT ) − rkTJν−1 (rkT )]

}
= 0, (36a)

〈
�Sθ

〉
=

√
ε

μ

k2
T

2k2r
Re

({(
|cTE|2 + |cTM|2

)
kνJ2

ν (rkT ) + 2c∗TE cTMkzJν (rkT )

[rkTJν−1 (rkT ) − νJν (rkT )]}) , (36b)〈
�Sz

〉
=

√
ε

μ

1
2k2r2

Re
({(

|cTE|2+|cTM|2
)
kkz

[
r2k2

TJ
2
ν−1(rkT )+2ν2J2

ν (rkT )−2νrkTJν−1 (rkT )Jν(rkT )
]

+2
(
k2cTE c

∗
TM + k2

zc
∗
TE cTM

)
νJν (rkT ) [rkTJν−1 (rkT ) − νJν (rkT )]

})
. (36c)
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Figure 3. The magnitude of the Poynting vector of a Bessel beam with ν = 0, k = 630m−1 and
kT = 300m−1. The beam is mixed, it has cTE = cTM = 1.

Figure 4. Different projections of the Poynting vector of a Bessel beam of order zero with k = 630m−1

and kT = 300m−1. The beam is mixed, it has cTE = cTM = 1.

The previous equations resemble the component expressions presented for �Sθ and �Sz and the interference
part reported in [28]. Note that in this case not only ∇ · 〈�Strans〉 = 0, but 〈�Sr〉 = 0, i.e., we have a zero
transversal flux of energy [30].

When ν = 0, we have a zero order Bessel beam, and〈
�Sr

〉
=

√
ε

μ

k3
T

2k
Re

[
iJ0 (kT r)J1 (kT r)

(
|cTE|2 − |cTM|2

) ]
= 0, (37a)

〈
�Sθ

〉
= −

√
ε

μ

kzk
3
T

k2
J0 (kT r)J1 (kT r)Re (c∗TEcTM) , (37b)

〈
�Sz

〉
=

√
ε

μ

kzk
2
T

2k
J2

1 (kT r)
(
|cTE|2 + |cTM|2

)
. (37c)

In Figures 3 and 4, we show the Poynting vector of a Bessel beam of zero order with cTE = cTM = 1. Note
that the Poynting vector transversal components circulate the beam center, as reported theoretically [31]
and experimentally [32].

5. MAXWELL STRESS TENSOR

Recently, the Maxwell stress tensor has been used to calculate many optical properties of beams, such
as angular momentum [33], density flux [34, 35] and counter-propagation vortexes [36]. Some force and
torque problems have also been approached using it [37]. Also the scattering of invariants beams for
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arbitrary homogeneous dielectric particles (Bessel [38, 39], Weber [40], Mathieu [41]) can be benefited
from the employment of this tensor [42]. However, a general formulation in terms of scalar fields has
not been presented. Such a presentation can provide new physical insight, apart from simplifying
the theoretical treatment by choosing only certain modes for a particular problem and also including
“interference between modes”.

The Maxwell tensor is a symmetric rank-two tensor, and it is useful to calculate the force
interactions when using the Lorentz force is not a suitable alternative. It can be compared to the
pressure tensor, where each Tij element can be interpreted as the force per unit of area parallel to the
i -th axis suffered by a surface normal to the j -th axis. The diagonal components represent the pressure
while the off-diagonal terms can be interpreted as shear stress elements [17]. The time average stress
tensor is given by [15–17]

↔
T = Re

[
1
2
ε �E ⊗ �E∗ +

1
2
μ �H ⊗ �H∗ −

�E · �E∗ + �H · �H∗

4
(ê1 ⊗ ê1 + ê2 ⊗ ê2 + ê3 ⊗ ê3)

]
, (38)

where ⊗ means the usual outer product, and êi, i = 1, 2, 3 are the basis orthonormal vectors. After a
lengthy calculation, we obtain a general expression for the Maxwell stress tensor,

↔
T = |cTE|2

↔
TTE + |cTM|2

↔
TTM +

↔
T int, (39)

where
↔
TTE = Re

{
ε

2k2

[
k4

Tϕϕ
∗ê3⊗ê3+k2∇⊥

Tϕ⊗∇⊥
Tϕ

∗+k2
z∇Tϕ⊗∇Tϕ

∗+ikzkT
2(ϕ∗ ∇Tϕ⊗ê3−ϕ ê3⊗∇Tϕ

∗)
]

−1
4

[
ε

μ

1
k2

(
k4

Tϕϕ
∗ + k2

z∇Tϕ · ∇Tϕ
∗) + ∇⊥

Tϕ · ∇⊥
Tϕ

∗
]↔
I

}
(40)

is the transversal electric stress tensor,
↔
T TM = Re

{
ε

2k2

[
k4

Tϕϕ
∗ê3⊗ê3+k2∇⊥

Tϕ⊗∇⊥
Tϕ

∗+k2
z∇Tϕ⊗∇Tϕ

∗+ikzkT
2(ϕ∗ ∇Tϕ⊗ê3−ϕ ê3⊗∇Tϕ

∗)
]

−1
4

[
1
k2

(
k4

Tϕϕ
∗ + k2

z∇Tϕ · ∇Tϕ
∗) +

ε

μ
∇⊥

Tϕ · ∇⊥
Tϕ

∗
]↔
I

}
(41)

is the transversal magnetic stress tensor, and
↔
T int = Re

{(
cTEc

∗
TM+c∗TEcTM

) ε
2k

[
−k2

T

(
ϕ ê3⊗∇⊥

Tϕ
∗+ϕ∗∇⊥

Tϕ⊗ê3
)
+ikz

(
∇⊥

Tϕ⊗∇Tϕ
∗−∇Tϕ⊗∇⊥

Tϕ
∗
)]

− kz

4k

[
i

(
cTEc

∗
TM +

ε

μ
c∗TEcTM

)
∇⊥

Tϕ · ∇Tϕ
∗ − i

(
ε

μ
cTEc

∗
TM + c∗TEcTM

)
∇Tϕ · ∇⊥

Tϕ
∗
]↔
I

}
(42)

is the “interference” stress tensor.

5.1. Maxwell Stress Tensor in Cylindrical Coordinates

Using (15) in the expression that we have obtained for the Maxwell stress tensor, we find the following
components

T1,1 =
|cTE|2
4k2μr2

{
2ν2J2

ν (rkT )
[
(ε− 1)k2μ+ ε(μ− 1)k2

z

] − εr2k4
TJ

2
ν (rkT )

+2νrkTJν−1 (rkT )Jν (rkT )
[
k2μ+ (ε− 2εμ)k2

z

] − r2k2
TJ

2
ν−1 (rkT )

[
k2μ+ (ε− 2εμ)k2

z

]}
+

|cTM|2
4k2μr2

{
2ν2J2

ν (rkT )
[
εk2(μ− 1) + (ε− 1)μk2

z

] − μr2k4
TJ

2
ν (rkT )

+2νrkTJν−1 (rkT )Jν (rkT )
[
εk2 + (μ− 2εμ)k2

z

] − r2k2
TJ

2
ν−1 (rkT )

[
εk2 + (μ− 2εμ)k2

z

]}
+ (cTE c

∗
TM + c∗TE cTM)

kz

2kμr2
{[
ε(2μ−1)−μ]

νJν (rkT )
[
rkTJν−1 (rkT ) − νJν (rkT )

]}
, (43)
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T2,2 =
|cTE|2
4k2μr2

{
2ν2J2

ν (rkT )
[
(ε− 1)k2μ+ ε(μ− 1)k2

z

] − εr2k4
TJ

2
ν (rkT )

+2νrkTJν−1 (rkT )Jν (rkT )
[
(1 − 2ε)k2μ+ εk2

z

]
+ r2k2

TJ
2
ν−1 (rkT )

[
(2ε − 1)k2μ− εk2

z

]}
+

|cTM|2
4k2μr2

{
2ν2J2

ν (rkT )
[
εk2(μ− 1) + (ε− 1)μk2

z

] − μr2k4
TJ

2
ν (rkT )

+2νrkTJν−1 (rkT )Jν (rkT )
[
εk2(1 − 2μ) + μk2

z

]
+ r2k2

TJ
2
ν−1 (rkT )

[
εk2(2μ− 1) − μk2

z

]}
+ (cTE c

∗
TM + c∗TE cTM)

kz

2kμr2
{[
ε(2μ−1)−μ]

νJν(rkT )
[
rkTJν−1(rkT ) − νJν (rkT )

]}
, (44)

T3,3 =
|cTE|2
4k2μr2

{
J2

ν (rkT )
[
ε(2μ− 1)r2k4

T − 2ν2
(
k2μ+ εk2

z

) ] − r2k2
T

(
k2μ+ εk2

z

)
J2

ν−1 (rkT )

+2νrkT

(
k2μ+ εk2

z

)
Jν−1 (rkT ) Jν (rkT )

}
+

|cTM|2
4k2μr2

{
J2

ν (rkT )
[
(2ε − 1)μr2k4

T − 2ν2
(
εk2 + μk2

z

) ] − r2k2
T

(
εk2 + μk2

z

)
J2

ν−1 (rkT )

+2νrkT

(
εk2 + μk2

z

)
Jν−1 (rkT ) Jν (rkT )

}
+ (cTE c

∗
TM + c∗TE cTM)

kz

2kμr2
{
ν(ε+ μ)kzJν (rkT )

[
νJν (rkT ) − rkTJν−1 (rkT )

]}
, (45)

T1,2 = T2,1 = 0, (46)

T1,3 = T3,1 = 0, (47)

T2,3 = T3,2 = −
(
|cTE|2 + |cTM|2

) k2
Tkz

2k2r
ενJ2

ν (rkT )

+ (cTE c
∗
TM + c∗TE cTM)

k2
T

2kr
εJν (rkT )

[
νJν (rkT ) − rkTJν−1 (rkT )

]
. (48)

In the case of zero-order Bessel beam (ν = 0), we get

T1,1 = |cTE|2 k2
T

4k2μ

{
J2

1 (rkT )
[
ε(2μ − 1)k2

z − k2μ
] − εk2

TJ
2
0 (rkT )

}

+ |cTM|2 k2
T

4k2μ

{
− J2

1 (rkT )
[
εk2 + (1 − 2ε)μk2

z

] − μk2
TJ

2
0 (rkT )

}
, (49)

T2,2 = |cTE|2 k2
T

4k2μ

{
− J2

1 (rkT )
[
(1 − 2ε)k2μ+ εk2

z

] − εk2
TJ

2
0 (rkT )

}

+ |cTM|2 k2
T

4k2μ

{
J2

1 (rkT )
[
εk2(2μ− 1) − μk2

z

] − μk2
TJ

2
0 (rkT )

}
, (50)

T3,3 = |cTE|2 k2
T

4k2μ

{
ε(2μ− 1)k2

TJ
2
0 (rkT ) − J2

1 (rkT )
(
k2μ+ εk2

z

) }

+ |cTM|2 k2
T

4k2μ

{
(2ε − 1)μk2

TJ
2
0 (rkT ) − J2

1 (rkT )
(
εk2 + μk2

z

) }
, (51)

T1,2 = T2,1 = 0, (52)

T1,3 = T3,1 = 0, (53)

T2,3 = T3,2 = (cTEc
∗
TM + c∗TEcTM)

k3
T

2k
εJ0 (rkT ) J1 (rkT ) . (54)
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6. AN EXAMPLE. THE FORCE OVER A CYLINDER

In order to show and emphasize the utility of the Maxwell stress tensor, let us calculate the
electromagnetic force over a small cylinder on which a transversal electric (cTM = 0) impinges a zero-
order Bessel field. The electromagnetic force is given in this case by [15–17]

F =
∮

S

↔
T · �da. (55)

The Maxwell stress tensor reduces to (cTE = 1 and cTM = 0)

T1,1 =
k2

T

4k2μ

{
J2

1 (rkT )
[
ε(2μ − 1)k2

z − k2μ
] − εk2

TJ
2
0 (rkT )

}
, (56)

T2,2 =
k2

T

4k2μ

{
− J2

1 (rkT )
[
(1 − 2ε)k2μ+ εk2

z

] − εk2
TJ

2
0 (rkT )

}
, (57)

T3,3 =
k2

T

4k2μ

{
ε(2μ− 1)k2

TJ
2
0 (rkT ) − J2

1 (rkT )
(
k2μ+ εk2

z

) }
, (58)

T1,2 = T2,1 = T1,3 = T3,1 = T2,3 = T3,2 = 0. (59)

We consider that the axis of the cylinder coincides with the Z axis has a longitude 2L and radius R.
The integrals over the two plane circular surfaces cancel each other and the integral over the curved
side gives the following pressure in the radial direction

P =
k2

T

4k2μ

{[
ε (2μ− 1) k2

z − μk2
]
J2

1 (kTR) − εk2
TJ

2
0 (kTR)

}
. (60)

This pressure can be positive (directed outside) or negative (directed inside) depending on the
parameters.

7. CONCLUSIONS

We have shown how to obtain the principal properties for invariant propagation beams such as plane
wave, Bessel, Mathieu and Weber. Based on the scalar approach, we provide general expressions for
energy density, Poynting vector and Maxwell stress tensor. In fact, these results can be used to study
the orbital angular momentum of nonparaxial beams [43] and new optical phenomena, where these fields
are present. Additionally, there are analytical expressions to study the interaction between modes, as
in [28]. Furthermore, the scalar formalism can invite researchers to calculate electromagnetic properties
for any new optical field not discovered yet but written in a scalar form [18]. The present results should
be of interest to a wide audience due to its fundamental character.
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5. Rodŕıguez-Lara, B. M. and R. Jáuregui, “Dynamical constants for electromagnetic fields with
elliptic-cylindrical symmetry,” Phys. Rev. A, Vol. 78, No. 033813, 2008.
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