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Worst-Case Tolerance Synthesis for Low-Sidelobe Sparse
Linear Arrays Using a Novel Self-Adaptive Hybrid

Differential Evolution Algorithm

Tao Ni*, Yong-Chang Jiao, Li Zhang, and Zi-Bin Weng

Abstract—A worst-case tolerance synthesis problem for low-sidelobe sparse linear arrays is solved by
using a novel self-adaptive hybrid differential evolution (SAHDE) algorithm. First, we establish a worst-
case tolerance synthesis model for low-sidelobe sparse linear arrays, in which random position errors
are considered and assumed to obey the Gaussian distributions. Through the random sampling, the
random model is converted to a deterministic optimization problem. Then, a novel SAHDE algorithm
is presented for solving the problem. As a modification to the existing hybrid differential evolution
algorithm, a simplified quadratic interpolation (SQI) operator is used to tune the control parameters
self-adaptively, establishing the connections between control parameters and the fitness values. In order
to determine appropriate control parameter values quickly, a selection operation is also used. Detailed
implementation procedure for the SAHDE algorithm is presented, and some numerical results show its
effectiveness. Finally, for the deterministic optimization problem, we present a fast way for calculating its
fitness values. The SAHDE algorithm is used to obtain optimal nominal element positions. Simulated
results illustrate that the worst-case peak sidelobe levels for the sparse linear arrays are improved
evidently. The SAHDE algorithm is efficient for solving the worst-case tolerance synthesis problem.

1. INTRODUCTION

Over the past years, synthesis of unequally spaced arrays has been studied in depth. Compared with
periodic arrays, since the array periodicity is broken, unequally spaced arrays have shown several
promising characteristics and probably have some potential advantages [1–4]. Specifically, grating lobes
can be restrained in this case, and the array may get lower peak sidelobe levels (PSLLs), while the
sidelobes of equally spaced arrays with uniform excitation distribution are greater than about −13.4 dB.
Furthermore, it is possible to reduce the number of elements in one certain aperture, which helps to
reduce the array cost. Recently, the design techniques mainly focus on two kinds of unequally spaced
arrays: thinned arrays [5, 28–29], which are derived by exciting some elements in an equally spaced
array, and sparse arrays [2, 3, 6–11, 30–31], in which the spacings of elements are random. In the sparse
arrays with uniform excitation distribution, the element spacings with more degree of freedom are
optimized to gain lower PSLLs, which makes this kind of arrays be studied widely. Practically the
element positions of the spares array possess the random errors. However, in the existing research,
influence of the element position errors is always neglected. For sparse arrays, the low-sidelobe levels
are directly related to position of each element, and presence of the position errors will have a great
impact on peak sidelobe levels (PSLLs). Therefore, the tolerance synthesis problem considering random
position errors is worth of research.
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As a pioneering work, Schjaer-Jacobsen [13] studied the worst-case tolerance optimization of linear
broadside arrays, by using algorithms for optimum tolerance assignment problems [12]. However, in
his algorithms, derivative information is needed. In [14], Jiao et al. studied the worst-case tolerance
optimization synthesis for low sidelobe linear arrays by using the regular polyhedron method, a direct
local search method. However, a suitable initial value should be provided, and a local optimal solution
is obtained. In [15], the interval arithmetic is applied to analyze only impact of the manufacturing
tolerances of the excitation amplitudes on the radiated array patterns. In [32], the interval analysis is
applied to analyze the pattern tolerances when phase errors exist in the excitation weights. A design
of linear arrays in the presence of tolerances on the amplitude weights is optimized by interval analysis
and convex optimization in [33]. The linear array’s excitation tolerances are optimized for the robust
amplitude beamforming in [34]. However, these works in [33, 34] are designed for array’s excitations
and not for sparse array’s position errors. In [16], the tolerable linear arrays are designed by using the
genetic algorithm. The tolerance optimization is highly important and computationally difficult [16],
so evolutionary algorithms are suitable for solving the problems.

In recent years, evolutionary algorithms, such as genetic algorithm (GA) [5, 6, 9, 23], particle swarm
optimization (PSO) [7, 24–27], and differential evolution (DE) [8, 10, 11], are widely used to solve the
antenna optimization problem. In [5, 6, 9, 23], GA and modified GA are used to synthesize the thinning
array, sparse array, and adaptive array respectively. In [7], PSO is used to synthesis the linear array
and control the null location. In [24–26], PSO algorithms are used to optimize a prefractal monopole
antenna, broadband nanoplasmonic arrays and multiple band antenna. In [27], PSO algorithm is
applied in microwave image. As a population-based stochastic global optimization algorithm, DE has
been successfully applied to many optimization problems. In [8], the authors have been presented an
overview of DE-based approaches used in electromagnetics, which pointing out that the DE algorithm
and its modified algorithm are effective to solve the electromagnetics problem. However, tuning control
parameters involved in DE is a challenging task. For tolerance optimization problems, it is certain to
cause computationally difficult and waste time by tuning control parameters blindly. In some modified
self-adaptive algorithms such as SaDE and jDE [17, 18], the control parameters are self-adapted to
gain better optimal results, based on the learning experiences from previous generations. However,
these self-adaptive algorithms do not make full use of the fitness values available in their self-adaptive
strategies.

Simplified quadratic interpolation (SQI) is a powerful direct search method. In [19–22], the SQI
method is used to improve performance of some evolutionary algorithms, such as Price’s algorithm, the
genetic algorithm, and the DE algorithm. In [22], Zhang et al. proposed a hybrid differential evolution
(HDE) algorithm with the SQI operator to solve complex antenna design problems. However, the
self-adaptive technique is not used in [22].

In this paper, inspired by above ideas, we propose a novel self-adaptive hybrid differential evolution
(SAHDE) algorithm for solving worst-case tolerance synthesis problem. For the low-sidelobe sparse
linear array, taking the nominal element positions as design parameters, a worst-case tolerance synthesis
model considering the random position errors is established. The errors are assumed to obey the
Gaussian distributions. Sample points are chosen randomly within a fixed position tolerance region,
and then the random tolerance synthesis model is converted to a deterministic optimization problem.
In order to solve the problem easily, we presented a new self-adaptive parameter control technique,
and a novel SAHDE algorithm. In the algorithm, the control parameters (difference scale factor F ,
and crossover probability factor CR) are produced by the SQI operator, and the connections between
control parameters and fitness values available are established. 11 benchmark problems are used to
validate effectiveness of the novel algorithm. Moreover, a sparse linear array is optimized to gain lower
PSLLs by using the SAHDE algorithm. Simulated results show that the SAHDE algorithm is efficient.
Finally, a fast way for calculating fitness values of the deterministic optimization problem is presented.
The SAHDE algorithm is used to minimize the worst-case PSLLs and obtain optimal nominal element
positions for the low-sidelobe sparse linear array. Simulated results illustrate that the worst-case peak
sidelobe levels for the sparse linear arrays are improved evidently.

This paper is organized as follows. The worst-case tolerance synthesis model for the low-sidelobe
sparse linear array is established in Section 2. The SAHDE algorithm and its numerical experiments
are presented in Section 3. Worst-case tolerance synthesis of low sidelobe sparse linear arrays by using
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the SAHDE algorithm and related simulation results are shown in Section 4. Conclusions are drawn in
Section 5.

2. MODEL OF WORST-CASE TOLERANCE SYNTHESIS FOR THE
LOW-SIDELOBE SPARSE LINEAR ARRAY

Geometry of the symmetrical sparse linear array with isotropic point source element is shown
in Fig. 1, where N is the element number, and di represents position of the ith element, i =
−M, . . . ,−1, 0, 1, . . . ,M . Define

D = (d−M , . . . , d−1, d0, d1, . . . , dM ) (1)
The array pattern of the N -element sparse linear array with uniform excitation is expressed as

E(θ,D) =
M∑

i=−M

exp(jk sin θdi) (2)

where k = 2π/λ is the propagation constant.
When the array is symmetrical and the center element located in the origin of coordinates, d = 0,

di = d−i, and the array pattern is expressed as

E(θ,D) = 1 + 2
M∑
i=1

cos(jk sin θdi) (3)

The design objective is to minimize the PSLL value and find the optimal element positions. For
this purpose, the fitness function is defined as

fitness 0(D) = max
θ∈S

∣∣∣∣E(θ,D)
max(E)

∣∣∣∣ (4)

where S represents the sidelobe region corresponding to D. As a constraint condition, di should satisfy [6]
min {di − dj, 0 ≤ j ≤ i ≤ M} > dmin (5)

where dmin is the minimum element spacing of the array.
By minimizing Eq. (4) under constraint of Eq. (5), proper D can be gained. In engineering

applications, however, the element position errors always exist, and the random position errors
deteriorate the PSLL of the sparse linear array. In the following, taking the nominal element positions
as design parameters, a worst-case tolerance synthesis model considering random position errors with
fixed tolerance region is established.

Usually, the element positions are symmetrical. However, the element errors may be asymmetrical.
Define the actual element position vector as

Da = (da−M , . . . , da−1, da0, da1, . . . , daM ) (6)
For every element in Da, we assume that dai obeys the Gaussian distribution with mean di and

standard deviation σi

dai ∼ N(di, σ
2
i ) (7)

1d 2d
1Md − Md1−d2−d

1d 2d1)−(Md
−−Md

θ

... ...

Figure 1. Geometry of the symmetrical sparse linear array.
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Define the position error vector as

Dc = (dc−M , . . . , dc−1, dc0, dc1, . . . , dcM ) (8)

dci represents the ith element position error, i = −M,−(M − 1), . . . , 0, . . . ,M − 1,M . Actual position
coordinate vector Da is expressed as

Da = D + Dc (9)

For every element in Dc, obviously dci obeys the Gaussian distribution with mean 0 and standard
deviation σi

dci ∼ N(0, σ2
i ) (10)

In Gaussian distribution N(μ, σ), 99.7% data are within interval (μ − 3σ, μ + 3σ), and only 0.3%
data are outside. In fact, the 0.3% possibility is extremely small, and it can be ignored. Usually, interval
(μ − 3σ, μ + 3σ) is considered instead of all possibilities. So, the tolerance region is defined as

Ω = {Dc| − 3σi < dci < 3σi, i = −M, . . . ,M} (11)

For the N -element sparse linear array with uniform excitation considering the random position
errors, the array pattern is expressed as

E(θ,D,Dc) =
M∑

m=−M

exp[ik sin θ(dm + dcm)] (12)

The PSLLs can be calculated by

SLL(D,Dc) = max
θ∈S

∣∣∣∣E(θ,D,Dc)
max(E)

∣∣∣∣ (13)

where S represents the sidelobe region corresponding to D and Dc. In order to gain better PSLLs, taking
the nominal element positions D as design parameters, the optimization problem can be expressed as

minimize
D

SLL(D,Dc) (14)

Since Dc is a Gaussian random vector, Problem (14) is a stochastic optimization problem, and it is
difficult to solve Problem (14) directly. In order to solve Problem (14) easily, we randomly choose NS
sample points in the tolerance region of Eq. (11)

Dci, i = 1, 2, . . . , NS

The optimization task is to minimize the PSLLs for all possible Dc vectors, including the worst-case
PSLLs. Thus Problem (14) can be formulated as the multi-objective optimization problem

minimize
D

SLL(D,Dci), i = 1, 2, . . . , NS (15)

Problem (15) is a multi-objective optimization problem with many objectives, and it is also difficult
to solve Problem (15) directly. Usually, if the worst-case PSLL is minimized, the optimization task is
reached. We should pay attention to the worst-case PSLLs. Therefore, Problem (15) can be converted
to the single-objective optimization problem

minimize
D

maximize
1≤i≤NS

SLL(D,Dci) (16)

The fitness function is expressed as

fitness (D) = maximize
1≤i≤NS

SLL(D,Dci) (17)

We hope that Problem (16) can be solved by the HDE algorithm [22]. However, it is difficult to
choose the control parameters in the HDE algorithm, and proper control parameters may be obtained
after many times experiments. Since calculating the fitness function (17) is very time-consuming, it is
necessary to reduce blind experiment times. A self-adaptive HDE algorithm is suitable for solving this
problem. Aiming at this problem, we propose a novel SAHDE algorithm in the following section.
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3. NOVEL SELF-ADAPTIVE HYBRID DIFFERENTIAL EVOLUTION ALGORITHM
AND ITS NUMERICAL EXPERIMENTS

3.1. Hybrid Differential Evolution Algorithm

Differential evolution (DE) is a simple powerful population-based stochastic search algorithm. In the
HDE algorithm (DESQI for short in [22]), the simplified quadratic interpolation operator is incorporated
with DE to accelerate the convergence of DE. The main operations in the HDE algorithm are described
as follows.

3.1.1. Initializing Parameters and Population

Initializing parameters, difference scale factor F , crossover probability factor CR, population size NP ,
and original population X0, X0 = (X1,0,X2,0, . . . ,Xi,0, . . . ,XNP,0), where Xi,0 is a D-dimension vector.
In [22], F = 0.5, CR = 0.9, and NP is chosen based on the specific problem.

3.1.2. Mutation

At Gth generation, Xi,G = (x1,i,G, x2,i,G, . . . , xj,i,G, . . . , xD,i,G). This operation creates the mutant trial
vector Vi,G+1 = (v1,i,G+1, v2,i,G+1, . . . , vj,i,G+1, . . . , vD,i,G+1) based on the current parent population XG.
The DE’s strategy is expressed as

Vi,G+1 = Xr1,G + F · (Xr2,G − Xr3,G) (18)

where Xr1,G,Xr2,G, and Xr3,G represent three individuals in Gth generation, and indexes r1, r2,
and r3 represent different random integers in range [1, NP ], which are also different from index i,
i = 1, 2, . . . , NP .

3.1.3. Crossover

After mutation, the offspring vector Ui,G+1 = (u1,i,G+1, u2,i,G+1, . . . , uj,i,G+1, . . . , uD,i,G+1) is produced
by the binomial crossover operation

uj,i,G+1 =
{

vj,i,G+1, if rand(0, 1) < CR or j = rand(1,D)
xj,i,G, otherwise (19)

3.1.4. Selection

The selection operation chooses the better one from the parent vector Xi,G and the trial vector Ui,G,
according to their fitness values f(·). For example, if we deal with a minimization problem, the selected
vector is given by

Xi,G+1 =
{

Ui,G+1, if f(Ui,G+1) < f(Xi,G)
Xi,G, otherwise (20)

3.1.5. The SQI Operator

As a powerful direct search method, the simplified quadratic interpolation (SQI) operator can be used
to improve the local search ability in DE [22]. The SQI operator with three points, x1, x2 and x3, is
defined as follows.

p.,i = 0.5 · (x2
2i − x2

3i) ∗ f(x1) + (x2
3i − x2

1i) ∗ f(x2) + (x2
1i − x2

2i) ∗ f(x3)
(x2i − x3i) ∗ f(x1) + (x3i − x1i) ∗ f(x2) + (x1i − x2i) ∗ f(x3)

(21)

where P = (p.,1, p.,2, . . . , p.,D), xj = (xj1, xj2, . . . , xjD), j = 1, 2, 3. P is a new trial vector.
The SQI operator is described briefly as follows. Firstly, find the best and worst individuals, as

well as two random individuals which are different from the best and worst ones, and set the best one
as x1, and two random individuals as x2 and x3. Secondly, compute P by Eq. (21), and evaluate P .
Thirdly, if P is better than the worst one, replace the worst one by P in the population.
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3.2. Self-Adaptive Parameter Control Technique

In the DE algorithm, parameter F , the difference scale factor, is real, which regulates the difference
vector. Larger F values are helpful for improving the population diversity, while smaller F values make
the algorithm converge fast. Crossover probability factor CR represents the proportion of parents in
offspring. Besides, an inverse correlation between CR and the local search ability exists. Therefore, the
search ability of the algorithm can be regulated by monitoring F and CR effectively.

In the HDE algorithm [22], the self-adaptive technique is not used, and the control parameters
are set as constants, thus the algorithm cannot adapt to different optimization problems. Some self-
adaptive DE algorithms, such as SaDE and jDE, do not make full use of the fitness values available in
their self-adaptive strategies. So far, connection between fitness values available and control parameters
is not concerned widely.

Based on these observations, we propose a new self-adaptive parameter control technique. In
Gth generation, one individual corresponds to a set of control parameters (Fi,G, CRi,G), which is
shown in Table 1. Thus, the control parameters are no longer scalar quantities, but vectors. We
use FG = (F1,G, F2,G, . . . , Fi,G, . . . , FNP,G) and CRG = (CR1,G, CR2,G, . . . , CRi,G, . . . , CRNP,G) in the
evolutionary process.

Table 1. Individual with control parameters.

Individual F CR
X1,G F1,G CR1,G

X2,G F2,G CR2,G

. . . . . . . . .
XNP,G FNP,G CRNP,G

In order to solve a specific optimization problem efficiently, the control parameter values should
adapt to the problem. Our self-adaptive parameter control technique should find a set of proper control
parameter values corresponding to the problem, by using the fitness values available. The SQI operator
can be used to achieve this goal. Now we introduce the new self-adaptive parameter control technique
in detail. Define difference scale factor intervals: Ft and Fb, Fb ⊆ Ft. Define the selection intervals of
the crossover probability factor: CRt and CRb, CRb ⊆ CRt.

In the first generation, F0 and CR0 are randomly produced in intervals Ft and CRt, respectively.
In other generations, the control parameter vectors are generated by the SQI operator. However, the
produced control parameters may lie in inappropriate intervals, which may reduce the solution accuracy.
In order to overcome this shortcoming, we introduce a generation interval Gt. When the generation
number is a multiple of Gt, the prior knowledge for the control parameters is used. Values in vectors
FG and CRG are chosen randomly in intervals Fb and CRb, respectively. When the generation number
is not a multiple of Gt, if the produced control parameters are not in intervals Ft and CRt, we choose
the new control parameters as those corresponding to r1 in Eq. (18); Otherwise, the produced control
parameters are chosen as the new ones.

It is worth to note that a selection operation for control parameters is also used for determining
the appropriate control parameter values quickly. When the offspring is better than the corresponding
individual, the element in the produced control parameter vectors is also selected; otherwise, it remains
unchanged. By using the SQI operator with three points r1, r2 and r3 in the current population, values
in FG are generated by Eqs. (22) and (23).

Fpi,G = 0.5 ∗ (F 2
r2,G − F 2

r3,G)f(Xr1,G) + (F 2
r3,G − F 2

r1,G)f(Xr2,G) + (F 2
r1,G − F 2

r2,G)f(Xr3,G)
(Fr2,G − Fr3,G)f(Xr1,G) + (Fr3,G − Fr1,G)f(Xr2,G) + (Fr1,G − Fr2,G)f(Xr3,G)

(22)

Fnewi,G+1 =

{
Fpi,G, if Fpi,G ∈ Ft & mod (G,Gt) �= 0
Fr1,G, if Fpi,G /∈ Ft & mod (G,Gt) �= 0
rand(Fb), if mod (G,Gt) = 0

i = 1, 2, . . . , NP (23)
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While values in CRG are also generated by Eqs. (24) and (25).

CRpi,G=0.5∗
(CR2

r2,G−CR2
r3,G)f(Xr1,G)+(CR2

r3,G−CR2
r1,G)f(Xr2,G)

+(CR2
r1,G− CR2

r2,G)f(Xr3,G)
(CRr2,G−CRr3,G) ∗ f(Xr1,G)+(CRr3,G−CRr1,G)
∗f(Xr2,G)+(CRr1,G−CRr2,G) ∗ f(Xr3,G)

(24)

CRnewi,G+1 =

{
CRpi,G, if CRpi,G ∈ CRt & mod (G,Gt) �= 0
CRr1,G, if CRpi,G /∈ CRt & mod (G,Gt) �= 0
rand(CRb), if mod (G,Gt) = 0

i = 1, 2, . . . , NP (25)

where Fnew i,G+1 and CRnew i,G+1 represent the produced control parameters for the ith individual in
the G+1th generation. In order to search appropriate control parameter values quickly, the selection
operation is also used for FG and CRG. Better values in vectors FG+1 and CRG+1 are selected by
Eqs. (26) and (27) respectively for the minimization problem

Fi,G+1 =
{

Fnewi,G+1, if f(Ui,G+1) < f(Xi,G+1)
Fi,G, otherwise (26)

CRi,G+1 =
{

CRnewi,G+1, if f(Ui,G+1) < f(Xi,G+1)
CRi,G, otherwise (27)

Based on the new self-adaptive parameter control technique, we propose a novel SAHDE algorithm,
and its flow chart is shown in Fig. 2. And the detail procedure is presented as follows.

Step 0: Set parameters: Choose suitable NP , Ft, CRt, Fb, CRb and Gt. Set G = 0.

Figure 2. A flow chart of the SAHDE algorithm.
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Step 1: Initialize population: Choose randomly the initial population X0 = (X1,0,X2,0, . . . ,XNP,0) in
the feasible region.

Step 2: Evaluate the fitness values for the initial population: Calculate f(Xi,0), i = 1, 2, . . . , NP .
Step 3: Produce vectors F1 and CR1: Produce Fi,1 randomly in Ft, and CRi,1 randomly in CRt,

i = 1, 2, . . . , NP . Form F0 = (F1,1, F2,1, . . . , FNP,1), and CR1 = (CR1,1, CR2,1, . . . , CRNP,1).
Step 4: Mutation: Calculate the mutant trial vector Vi,G+1 by using the DE mutation strategy

Vi,G+1 = Xr1,G + Fi,G · (Xr2,G − Xr3,G) (28)

where indexes r1, r2, and r3 are three different random integers in range [1, NP ], and also different
from index i. Especially, among r1, r2, and r3 individuals in current population, r1 is the best,
and r3 is the worst.

Step 5: Crossover : Calculate the offspring vector Ui,G+1 = (u1,i,G+1, u2,i,G+1, . . . , uj,i,G+1, . . . , uD,i,G+1)
by the binomial crossover operation

uj,i,G+1 =
{

vj,i,G+1, if rand(0, 1) < CRi,G or j = rand(1,D)
xj,i,G, otherwise (29)

Step 6: Evaluate the fitness values for the offspring vector : Calculate f(Ui,G+1), i = 1, 2, . . . , NP .
Step 7: Selection: Determine a new vector Xi,G+1 by using the selection operation Eq. (20).
Step 8: The SQI operation: Execute the SQI operation, as shown in the original HDE algorithm.
Step 9: Termination condition judgement : If the stopping criterion is not met, go to Step 10.

Otherwise, the algorithm is terminated.
Step 10: Produce vectors FG+1 and CRG+1: First, calculate Fnew i,G+1 by using Eq. (23), and

CRnew i,G+1 by Eq. (25), i = 1, 2, . . . , NP , where indexes r1, r2 and r3 are same as those in
Step 4. Then, determine Fi,G+1 by Eq. (26), and CRi,G+1 by Eq. (27), i = 1, 2, . . . , NP . Finally,
form FG+1 = (F1,G+1, F2,G+1, . . . , FNP,G+1), and CRG+1 = (CR1,G+1, CR2,G+1, . . . , CRNP,G+1).
Set G = G + 1, and go to Step 4.

3.3. Numerical Experiments

The SAHDE algorithm is tested by using 11 benchmark problems listed in Table 2. In the table, n is
the dimension of the problem, S the search space, S ⊆ Rn, and fmin represents the minimum value of

Table 2. Benchmark problems.

Test function n S fmin

f1(x) =
∑n

i=1 x2
i 30 [−100, 100]n 0

f2(x) =
∑n

i=1 |xi| +
∏n

i=1 |xi| 30 [−10, 10]n 0
f3(x) =

∑n
i=1 (

∑i
j=1 xj)2 30 [−100, 100]n 0

f4(x) = maxi {|xi| , 1 ≤ i ≤ n} 30 [−100, 100]n 0
f5(x) =

∑n−1
i=1

[
100(xi+1 − x2

i )
2 + (xi − 1)2

]
30 [−30, 30]n 0

f6(x) =
∑n

i=1 (�xi + 0.5	)2 30 [−100, 100]n 0
f7(x) =

∑n
i=1 ix4

i + random[0, 1) 30 [−1.28, 1.28]n 0
f8(x) =

∑n
i=1 −xi sin

√|xi| 30 [−500, 500]n −12569.5
f9(x) =

∑n
i=1 [xi − 10 cos(2πxi) + 10] 30 [−5.12, 5.12]n 0

f10(x) = −20 exp(−0.2
√

1
n

∑n
i=1 x2

i )
− exp( 1

n

∑n
i=1 cos 2πxi) + 20 + e

30 [−32, 32]n 0

f11(x) = 1
4000

∑n
i=1 x2

i −
∏n

i=1 cos( xi√
i
) + 1 30 [−600, 600]n 0
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the problem. In our experiments, the population size NP is set to 100. Other parameters are suggested
as: Gt = 25, Ft = (0.1, 2), CRt = (0.1, 1), Fb = (0.4, 1) and CRb = (0.5, 0.95). We use the maximum
generation number Gmax as the stopping criterion If G > Gmax, then the algorithm is terminated. For
each problem, 30 independent runs of an algorithm are tested. In order to verify the superiority of
the algorithm, the results obtained by the standard DE algorithm, the jDE algorithm [18], the DESQI
algorithm [22] are shown simultaneously.

Experimental results are given in Table 3. In the table, Mean and Std Dev represent the average
function value found by the algorithm and the standard deviation of the found function values for 30
independent runs, respectively. As illustrated in Table 3, for problems f1, f2, f7, f8 and f10, the SAHDE
algorithm yields a smaller minimum objective function value. While for problems f5, f6, f9 and f11, the
average function value found by the SAHDE algorithm is equal to that obtained by other algorithms.
However, for problems f3 and f4, the average function value found by the SAHDE algorithm is a little
bit larger than that obtained by the DESQI algorithm and the jDE algorithm. Therefore, the SAHDE
algorithm yields relatively accurate solutions for all the problems, and performs favorably.

Table 3. Comparison results of average function values and the standard deviations for 11 benchmark
problems.

Gmax
SAHDE

Mean (Std Dev)

DESQI [22]

Mean (Std Dev)

jDE [18]

Mean (Std Dev)

DE/rand/1/bin

Mean (Std Dev)

f1 1500 2.34E-45(6.77E-45) 2.05E-23(2.02E-23) 1.1E-28(1.0E-28) 5.14E-14(4.39E-14)

f2 2000 3.39E-34(3.39E-34) 7.02E-16(3.31E-16) 1.0E-23(9.7E-24) 3.78E-10(1.96E-10)

f3 5000 2.30E-12(2.30e-11) 6.65E-18(1.58E-17) 3.1E-14(5.9E-14) 2.92E-11(2.45E-11)

f4 5000 4.86E-19(1.75E-18) 2.17E-20(3.07E-20) 00E+00(0E+00) 1.62E-01(4.29E-01)

f5 20000 00E+00(0E+00) 1.3E-01(7.1E-01) 00E+00(0E+00) 00E+00(0E+00)

f6 1500 00E+00(0E+00) 00E+00(0E+00) 00E+00(0E+00) 00E+00(0E+00)

f7 3000 1.1E-03(3.05E-04) 1.50E-03(4.91E-04) 3.15E-03(7.5E-04) 4.80E-03(1.30E-03)

f8 9000 −12569.5(1.81E-12) −12364.55(242.34) −12569.5(7.0E-12) −11890.53(1447.78)

f9 5000 00E+00(0E+00) 2.29E+01(1.97E+01) 00E+00(0E+00) 7.29E+01(3.08E+01)

f10 1500 4.4E-15(0E+00) 1.58E-12(7.28E-13) 7.7E-15(1.4E-15) 5.90E-08(2.16E-08)

f11 3000 00E+00(0E+00) 00E+00(0E+00) 00E+00(0E+00) 2.46E-04(1.3E-03)

In order to prove that the SAHDE algorithm is efficient for solving array synthesis problems, the
SAHDE algorithm is used to minimize the fitness function (4) under constraint of Eq. (5). To compare
the algorithm with other existing algorithms, a 37-element linear aperiodic array is considered, which
has been synthesized by MGA [6], SaDE [11], and SHDE [10]. The array is also symmetric and with an
aperture size is equal to 21.996λ, where λ is the wavelength. That means dM = 10.998λ. Here, dmin is
set to 0.5λ.

For the SAHDE algorithm, we choose NP = 80. Other parameters are chosen as suggested.
The termination condition is that the maximum number of function evaluations reaches 40000. The
optimal PSLLs and element positions are illustrated in Table 4. Compared with other algorithms, the
SAHDE algorithm yields −21.268 dB PSLL, which is better than −20.562 dB by MGA [6], −20.942 dB
by SaDE [11] and −21.12 dB by SHDE [10]. As shown in Fig. 3, the PSLLs obtained by the SAHDE
algorithm for the array in 20 independent runs are stable. Comparison of the radiation patterns
obtained by four algorithms for the array is also shown in Fig. 4. Simulated results indicate that the
SAHDE algorithm yields better results than other existing algorithms in the same conditions. Results
demonstrate the SAHDE algorithm is efficient for solving the array synthesis problem.

Since the self-adaptive parameter control technique is adopted, the SAHDE algorithm could find
a set of proper control parameter values, making the algorithm converge fast and adapt itself to the
problem being solved. The comparison results with some existing algorithms show that the self-adaptive
parameter control technique could determine the appropriate control parameter values quickly, and that
the performance of the SAHDE algorithm is efficient.
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Table 4. PSLLs and element positions for the 37-element sparse linear array.

Algorithm MGA [6] SaDE [11] SHDE [10] SAHDE
PSLL −20.562 dB −20.942 dB −21.12 dB −21.268 dB

D

d1 0.5024λ 0.5000λ 0.5000λ 0.5002λ
d2 1.0024λ 1.0000λ 1.0000λ 1.0004λ
d3 1.5024λ 1.5000λ 1.5000λ 1.5008λ
d4 2.0032λ 2.0000λ 2.0000λ 2.0008λ
d5 2.5035λ 2.5000λ 2.5000λ 2.5009λ
d6 3.0036λ 3.0000λ 3.0000λ 3.0016λ
d7 3.5081λ 3.5000λ 3.5000λ 3.5034λ
d8 4.0784λ 4.0000λ 4.0000λ 4.0575λ
d9 4.6153λ 4.5000λ 4.5000λ 4.5742λ
d10 5.1347λ 5.0510λ 5.0000λ 5.1236λ
d11 5.7215λ 5.5780λ 5.6003λ 5.7760λ
d12 6.2980λ 6.1620λ 6.1752λ 6.3461λ
d13 7.0717λ 6.9040λ 6.7895λ 7.0343λ
d14 7.7762λ 7.6640λ 7.6300λ 7.8534λ
d15 8.7827λ 8.4880λ 8.3314λ 8.6103λ
d16 9.6633λ 9.4880λ 9.6445λ 9.8212λ
d17 10.4926λ 10.4880λ 10.4547λ 10.4949λ
d18 10.9980λ 10.9880λ 10.9980λ 10.9980λ
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Figure 3. PSLLs obtained by the SAHDE algo-
rithm for the 37-element array in 20 independent
runs.
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Figure 4. Comparison of the radiation patterns
obtained by four algorithms for the 37-element
array.

4. WORST-CASE TOLERANCE SYNTHESIS OF LOW-SIDELOBE SPARSE LINEAR
ARRAYS BY USING THE SAHDE ALGORITHM

In this section, for the low sidelobe sparse linear array with random element position errors, Problem (16)
is solved by the SAHDE algorithm. The fitness function for Problem (16) is calculated by Eq. (17).
Obviously, bigger NS leads to the more accurate results; however, bigger NS will increase the
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computational burden greatly. In [14], Jiao et al. chose the vertices of the tolerance region as the sample
point candidates for calculating the worst-case PSLLs of the linear arrays. However, Problem (16) is
a non-convex problem, and the worst cases may not appear in the vertexes of the tolerance region. In
order to solve this problem, we present a fast way for calculating the fitness function (17).

Although Problem (16) is a non-convex problem, the points around boundary of the tolerance
region in Eq. (11) have greater contribution to the worst-case PSLLs of the sparse linear array, while
the points far from its boundary have very little contribution. In order to calculate the fitness function
(17) efficiently, we choose some sample points around boundary of the tolerance region in Eq. (11)
randomly.

Since it is difficult to depict the multidimensional problem, the 2-dimensional problem is taken as
an example to illustrate the sampling way. Fig. 5 shows schematic diagram of the sampling way. In the
figure, (d1, d2) denotes the nominal element position vector, and the dash-line box represents boundary
of the tolerance region in Eq. (11). The sample points are chosen randomly around boundary of the
region based on the Gaussian distribution. Define the Chebyshev distance between the sample point
and the nominal element position vector as

dchj = max
(∣∣∣(d1 + dcj

1

)
− d1

∣∣∣ , ∣∣∣(d2 + dcj
2

)
− d2

∣∣∣) = max
(∣∣∣dcj

1

∣∣∣ ,
∣∣∣dcj

2

∣∣∣) (30)

The greater the Chebyshev distance is, the closer the sample point approaches the boundary. In the
tolerance region, we recommend to choose some sample points with greater Chebyshev distances instead
of choosing all the points. Only these sample points are used to calculate the fitness function (17). The
detail procedure for calculating the fitness function is presented as follows.

Step 0: Set parameters: Set the fixed standard deviation σi, the tolerance region for every element
position (−3σi, 3σi), i = −M,−(M − 1), . . . , 0, . . . ,M − 1,M , the total sample point number J ,
and the used sample point number NS (NS < J) in Eq. (17).

Step 1: Produce error vectors: Produce JDc vectors in the tolerance region (11) based on Eq. (10).

Table 5. Optimal element positions for the 37-element sparse linear array.

3σi = 0.01λ 3σi = 0.05λ 3σi = 0.1λ

D

d1 0.5006λ 0.5019λ 0.5288λ
d2 1.0064λ 1.0040λ 1.0456λ
d3 1.5074λ 1.5047λ 1.5469λ
d4 2.0099λ 2.0059λ 2.0803λ
d5 2.5108λ 2.5141λ 2.5819λ
d6 3.0109λ 3.0341λ 3.111λ
d7 3.5256λ 3.5375λ 3.6696λ
d8 4.0989λ 4.0545λ 4.278λ
d9 4.6437λ 4.5959λ 4.7889λ
d10 5.2405λ 5.2919λ 5.4363λ
d11 5.8805λ 5.9609λ 6.0361λ
d12 6.4918λ 6.4894λ 6.6221λ
d13 7.2017λ 7.1572λ 7.3887λ
d14 8.0048λ 8.0142λ 8.2541λ
d15 8.7441λ 8.8458λ 9.0574λ
d16 9.8921λ 9.6786λ 9.8464λ
d17 10.4968λ 10.4866λ 10.4883λ
d18 10.998λ 10.998λ 10.998λ
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Step 2: Calculate the Chebyshev distance: Calculate the Chebyshev distance between every Dc and
the nominal element position vector by Eq. (30), sort the distances in the descending order, and
choose NS sample points with larger Chebyshev distances.

Step 3: Evaluate the fitness function: The NS sample points are used to calculate the fitness function
value by Eq. (17).

Parameters J and NS are set as 50000 and 2500, respectively. The SAHDE algorithm is used to
solve Problem (16). For its control parameters and the termination condition, refer to Section 3.

When the tolerance regions are fixed to three levels 3σi = 0.01λ, 0.05λ, 0.1λ, the optimal element
positions are given in Table 5, and the optimal PSLLs are shown in Table 6. The worst PSLLs are

Table 6. Optimal PSLLs for the 37-element sparse linear array.

Tolerance level
Without tolerances With tolerances

Nominal value (dB) Worst (dB) Nominal value (dB) Worst (dB)
3σi = 0.01λ

−21.268
−20.477 −20.92 −20.84

3σi = 0.05λ −17.734 −20.56 −20.09
3σi = 0.1λ −15.011 −19.04 −17.12

(d1,d2) 1
2

j

K-1

K

(d1-3σ 1,d2-3σ 2 ) (d1+3σ 1,d2-3σ 2 )

(d1+3σ 1,d2+3σ 2 )(d1-3σ1,d2+3σ 2 )

Figure 5. Schematic diagram of the sampling way.
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Figure 6. Comparison of the radiation patterns for the 37-element sparse linear array with three fixed
position tolerance levels. (a) 3σi = 0.01λ. (b) 3σi = 0.05λ. (c) 3σi = 0.1λ.

−20.84 dB, −20.09 dB and −17.12 dB, and the nominal PSLLs are −20.92 dB, −20.56 dB and −19.04 dB.
As comparison, without considering the element position errors, the nominal PSLL is −21.268 dB,
as shown in Table 4. Analysis results show that the worst PSLLs are −20.477 dB, −17.734 dB and
−15.011 dB, corresponding to three tolerance levels. Although the nominal PSLLs −20.92 dB, −20.56 dB
and −19.04 dB obtained by the tolerance optimization are higher than −21.268 dB without considering
the errors, the worst-case PSLLs are improved from −20.477 dB to −20.84 dB, −17.734 dB to −20.09 dB
and −15.011 dB to −17.12 dB, as shown in Table 6. Comparison of the radiation patterns considering
the errors are also shown in Fig. 6. The compared results show that the worst-case peak sidelobe levels
for the sparse linear arrays are improved evidently.

5. CONCLUSION

In this paper, a worst-case tolerance synthesis for low-sidelobe sparse linear arrays with random
position errors has been studied. First, the worst-case tolerance synthesis model considering random
position errors is established. Through the random sampling, the random optimization problem is
converted to a deterministic optimization problem. In order to solve the problem, a novel self-adaptive
hybrid differential evolution algorithm is proposed then, in which a novel self-adaptive parameter
control technique is adopted. The control parameters have been produced by the simplified quadratic
interpolation operator, and the connections between control parameters and fitness values available
are established. In order to determine the appropriate control parameter values quickly, a selection
operation for control parameters is also used. 11 benchmark problems have been used for verifying
the effectiveness of the algorithm. Moreover, a sparse linear array is synthesized by using the SAHDE
algorithm. Simulated results demonstrate that the SAHDE algorithm is efficient not only for global
optimization problems, but also for synthesizing low sidelobe sparse antenna arrays. Finally, the worst-
case tolerance synthesis problems with three fixed position tolerance levels are solved by the SAHDE
algorithm. Simulated results illustrate that the worst PSLLs have been improved evidently. The SAHDE
algorithm can also be used to solve the worst-case tolerance synthesis for other antenna arrays.
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