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Single/Dual-Band BPFs with Spurious Band Suppression by Using
Non-Uniform Coupled Resonators

Nagendra Kumar* and Yatendra K. Singh

Abstract—Transmission zero behavior of two coupled sections — interdigital and combline — is
investigated. It is shown that the shifting of transmission zero of any coupled-section of a particular
length depends on the width of various parts and the orientation of coupled-section. Mathematical
formulation has been performed to show the effect of stepped discontinuity on the transmission zero.
Further, this transmission zero allocation property is used in suppression of harmonics. The idea is
implemented in two types of resonators — first in parallel-coupled resonators and second in open-
loop resonators. Two parallel coupled resonator based bandpass filters (BPFs) with second harmonic
suppression — one of second-order and the other of fourth-order — using different coupled-sections have
been fabricated, and suppression up to −30 dB and −54 dB respectively has been achieved. A fourth-
order open-loop resonators based BPF with suppression of undesired passbands up to 6.3fo has been
fabricated. Further, the above property is also used to design a dual-band BPF with wide stopband
without increasing the size of the filter.

1. INTRODUCTION

Coupled resonators are the building block in designing microstrip BPFs. In past, these coupled
resonators are configured in so many different ways to achieve filtering property, i.e., end-coupled
configuration, edge- or parallel-coupled configuration [1], open-loop configuration [2], etc. Generally
in all these configurations resonators are half wavelength (λg/2). Distributed nature of these λg/2
microstrip lines leads to spurious passbands unlike in lumped element-based filters. These spurious
passbands results in selection of undesired channels in communication systems. So these undesired
passbands must be suppressed or controlled.

Several techniques have been used to control or suppress the undesired passbands in the bandpass
filters [3–12]. For example, an additional bandstop filter is cascaded with a bandpass filter to eliminate
the spurious passbands at the cost of larger filter size and higher insertion loss [3]. In [4], wiggly-line
structures are used to suppress spurious harmonic at 2fo by modulating the wave impedance. The
suppression of second harmonic can be achieved by creating periodic grooves in the resonators [5].
Fractal shaped filters are used in [6] to suppress second harmonic. Original transmission line is replaced
with T-shaped lines to create the transmission zero at the second harmonic [7]. Suitable selection
of coupling length leads to suppression of unwanted harmonics in [8]. Open-stubs are properly placed
along with the open-loop resonators to achieve wide stopband as presented in [9]. Higher order harmonic
suppression is also achieved by properly selecting the coupling region between shorted and open-loop
resonators [10]. In [11], stepped impedance resonators (SIRs) are selected in such a way that they have
the same fundamental resonating frequency but different spurious passband resonating frequencies, to
achieve higher-order harmonic suppression. In [12] asymmetrical quarter-wavelength SIRs are used to
suppress spurious harmonics.
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In [13], length of the coupling section is used to tune the transmission zero. In this paper, however,
it is shown that the width of different parts and orientation of coupled section are the key factors in
deciding the direction of tuning of transmission zeros created due to a particular coupled section of
fixed length. Also, effects of stepped discontinuity on the transmission zeros are studied. This paper is
organized as follows. Section 2 explains transmission zeros and their tuning associated with coupled-
sections with different configurations. Mathematical analysis of these transmission zeros associated
with the lumped parameters are discussed in Section 3. Section 4 deals with implementation of these
transmission zeros in harmonic suppression. Filter design is discussed in Section 5. Sections 6 and 7
present the fabricated single and dual-band filters based on parallel-coupled resonators and open-loop
resonators, respectively. A conclusion is given in 8.

2. COUPLED SECTIONS AND TRANSMISSION ZEROS

Figures 1(a) and 2(a) show the two widely used coupled sections — interdigital and combline —
respectively. Fig. 1(a) shows the uniform coupled resonator with open ends on opposite sides, having
width w and gap s. This uniform coupled resonator can be seen as consisting of three sections of uniform
width. This coupled resonator is modified to stepped impedance coupled resonator having non-uniform
width. Each stepped impedance coupled section consists of three equal-length sections having widths
w1, w2 and w3. Figs. 1(b) and 1(c) depict coupled resonator having different middle section widths, w2,
and corner section widths, w3, respectively. In contrast to this Fig. 2(a) shows the coupled resonator
having open-end on the same side with width w and gap s. Again this uniform coupled resonator is
modified to achieve non-uniform coupled resonator as shown in Figs. 2(b) and 2(c).

(a) (b) (c)

Figure 1. Interdigital coupled-section. (a) Uniform width. (b) Different middle width. (c) Different
corner width.

(a) (b) (c)

Figure 2. Combline coupled-section. (a) Uniform width. (b) Different middle width. (c) Different
corner width.

The ABCD parameter of the interdigital uniform coupled-section depicted in Fig. 1(a) can be
written as [14]:

A = D =
Zoe cot θe + Zoo cot θo

Zoe csc θe − Zoo csc θo
(1)

B =
j

2
Z2

oe + Z2
oo − 2ZoeZoo(cot θe cot θo + csc θe csc θo)

Zoe csc θe − Zoo csc θo
(2)

C =
2j

Zoe csc θe − Zoo csc θo
(3)

where θe and θo are even and odd-mode electrical lengths of coupled section, respectively. Zoe and Zoo

are even and odd-mode impedances, respectively. Using above equations, S21 can be calculated as [14]:

S21 =
2

A + B/Zo + CZo + D
(4)
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The frequency position of transmission zeros can be evaluated by equating S21 = 0 in Equation (4) and
can be written as:

csc θe

csc θo
=

Zoo

Zoe
(5)

So on putting all physical parameters of a coupled section in Equation (5), frequencies of transmission
zero are evaluated.

Similar type of mathematical analysis can be performed to find the frequency of transmission zeros
of non-uniform coupled-sections shown in Figs. 1(b), 1(c), 2(a), 2(b), and 2(c).

According to Equation (5), transmission zero shifts to lower frequency as length increases and
vice-verse. For a constant length l, effect of width w on the transmission zero is very small in uniform
coupled resonator. But for a non-uniform or stepped impedance coupled resonator the effect of width
of three sections cannot be ruled out. Further two coupled sections — interdigital and combline — of
lengths λgo/4 and λgo/8 respectively are studied in Fig. 3 and Fig. 4, respectively. Throughout this
paper, the substrate RT/Duroid 6010.2 with the relative dielectric constant of 10.2 having thickness of
0.635 mm is used for the simulation and measurement work.

Case A: S21 of interdigital coupled section depicted in Fig. 1(b), with respect to changing width
w2, is shown in Fig. 3(a). The length of coupled-section is λgo/4. Transmission zeros associated with
these types of coupled section shift to lower frequency as width of middle section, w2, of coupled-section
decreases. Interdigital coupled-sections of length λgo/4, having uniform width, have a transmission zero
after 2fo. So the transmission zero can be tuned to 2fo by choosing appropriate width, w2.

Case B: Fig. 3(b) shows the response S21 with respect to different w1 (w1 = w3) for the layout
shown in Fig. 1(c). In contrast to case A, in this case the first transmission zero shifts to higher frequency
as the width decreases. Again the coupled-length is λgo/4. Also the second transmission zero shifts to
lower frequency. So this type of coupled-section is useful to suppress third and higher order harmonic.
To suppress the second harmonic, length of the coupled section must be more than λgo/4 such that
transmission zero can be allocated near the second harmonic place.

Case C: In uniform λgo/8 combline coupled-section, transmission zero comes just before 2fo.
Fig. 4(a) shows the transmission zeros response with respect to different w2 for the structure shown
in Fig. 2(b). As width decreases, the first and second transmission zeros shift to higher and lower
frequencies, respectively. So this combline coupled-section can be used to suppress two harmonics at a
time by selecting appropriate width w2.

Case D: Fig. 4(b) shows the response of the λgo/8 length combline coupled-section shown in Fig. 2,
with respect to different w1 (w1 = w3). As width decreases the transmission zero shifts to 2fo.

Similar type of results can be plotted near 3fo for λgo/6 length interdigital coupled-section and
λgo/12 length combline coupled-section.

Basically decreasing or increasing width is related with the coupling between lines. So decrease
in the middle section width, w2, reduces the middle section coupling. Similarly, decrease in the last
sections width reduces the end section coupling. So overall, coupling between different sections of the
two coupled lines and the nature of arrangement — combline or interdigital — of these coupled lines
decide the tuning of the transmission zeros.

(a) (b)

Figure 3. Response of the interdigital coupled-section (a) with changing w2 (w1 = w3 = 0.59 mm,
s = 0.2 mm), (b) with changing w1 (w1 = w3, w2 = 0.59 mm, s = 0.2 mm).
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(a) (b)

Figure 4. Response of the combline coupled-section (a) with changing w2 (w1 = w3 = 0.59 mm,
s = 0.2 mm), (b) with changing w1 (w1 = w3, w2 = 0.59 mm, s = 0.2 mm).

3. MATHEMATICAL ANALYSIS OF TRANSMISSION ZERO

The proposed coupled-structure includes steps in width. So for complete analysis of coupled section, this
discontinuity must be included. The equivalent circuit at the stepped discontinuity of any microstrip
transmission line is shown in Fig. 5(a) [15]. The equivalent circuit includes two inductors connected
to micostrip line on either side and one capacitor to ground. Za and Zb represent the impedances
due to inductors L1 and L2, respectively. The impedances due to capacitors, C, are represented by
Zc. Fig. 5(b) shows the interdigital coupled-line having three sections with different widths and also
includes the lumped equivalent circuit of discontinuities in width. In order to analyze the transmission
zero associated with coupled-line, impedance parameters of the coupled-line are calculated. From Fig. 5,
Z matrix for Section 1 can be written as:⎡

⎢⎢⎣
V1

V2

V3

V4

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

Z11a Z12a Z13a Z14a

Z21a Z22a Z23a Z24a

Z31a Z32a Z33a Z34a

Z41a Z42a Z43a Z44a

⎤
⎥⎥⎦

⎡
⎢⎢⎣

I1

I2

I3

I4

⎤
⎥⎥⎦ (6)

Similarly, Z matrix for Section 2 can be written as:⎡
⎢⎢⎣

V5

V6

V7

V8

⎤
⎥⎥⎦ =

⎡
⎢⎢⎢⎣

Z11b Z12b Z13b Z14b

Z21b Z22b Z23b Z24b

Z31b Z32b Z33b Z34b

Z41b Z42b Z43b Z44b

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎣

I5

I6

I7

I8

⎤
⎥⎥⎦ (7)

(a)

(b)

Figure 5. (a) Equivalent circuit of the step discontinuity. (b) Coupled line with step discontinuities.
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and Z matrix for Section 3 with w1 = w3 can be written as:⎡
⎢⎣

V9

V10

V11

V12

⎤
⎥⎦ =

⎡
⎢⎣

Z11a Z12a Z13a Z14a

Z21a Z22a Z23a Z24a

Z31a Z32a Z33a Z34a

Z41a Z42a Z43a Z44a

⎤
⎥⎦

⎡
⎢⎣

I9

I10

I11

I12

⎤
⎥⎦ (8)

The Z matrix of T -network of equivalent circuit of discontinuity can be represented as:[
V4/3/8/7

V5/6/9/10

]
=

[
Z11d Z12d
Z21d Z22d

] [ −I4/3/8/7

−I5/6/9/10

]
(9)

where Z11d = Za + Zc, Z22d = Zb + Zc and Z12d = Z21d = Zc. Simplifying Equations (6)–(9), the
complete matrix of coupled section can be written as (keeping port 2 and port 12 open for interdigital
analysis): [

V1

V11

]
=

[
Z11 Z12
Z21 Z22

] [
I1

I11

]
(10)
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Figure 6. (a) Theoretical and simulated transmission zero response of a coupled-section. (b) Effect of
discontinuity capacitors and inductors.

Further, the S-parameter of the coupled section is found in Mathematica [16] by above calculated
Z-parameter using conversion formula described in [14]. Fig. 6(a) plots the the transmission zero of
coupled section for the values w1 = w3 = 0.2 mm, w2 = 0.59 mm, s1 = s3 = 0.5 mm, s2 = 0.2 mm. As
shown in Fig. 6(a), the position of transmission zeros without including discontinuity equivalent circuit
has a mismatch with respect to solver result. Difference in the widths of two adjacent sections leads to
change in the values of capacitors and inductors. In this specific case, the values of lumped components
are C = 1.0 pF and L1 = L2 = 0.15 nH. Fig. 6(b) shows the tuning of transmission zero with respect to
the discontinuity capacitor and inductor. As inductance increases for the fixed value of the capacitance,
transmission zero shifts to lower frequency. Similar conclusion can be drawn for the relation between the
capacitance and transmission zero, although the absence of the equivalent circuit has no effect on the
nature of the tuning of transmission zeros with respect to width of coupled-section. Similar to above,
mathematical analysis for the other three cases of coupled sections can be performed.

4. PROPOSED RESONATOR AND HARMONIC SUPPRESSION

Figure 7 depicts the proposed non-uniform width resonator. The resonator used in the λg/4 interdigital
coupled-section shown in Fig. 1(b) is depicted here for analysis. The resonator is λg/2 in length. It
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Figure 7. Proposed resonator.

consists of two different admittance microstrip lines Y1 and Y2. For simple calculation, a uniform
electrical length, i.e., θ1 = θ2 = θ3 = θ, is considered. The admittances of different sections, i.e., Yin1,
Yin2, Yin3, have been calculated to arrive at the final input admittance of the resonator, Yin. The input
admittance Yin of the resonator can be written as:

Yin = Y1
Yin4 + jY1 tan θ

Y1 + jYin4 tan θ
(11)

By evaluating Yin = 0, resonance condition of the proposed resonator can be written as:

θ = θo = tan−1

√
Y1Y2

Y 2
1 + Y1Y2 + Y 2

2

(12)

The other solutions can be written as [17]:

θs1 = tan−1

√
Y2(2Y1 + Y2)

Y 2
1

(13)

θs2 = π/2 (14)
θs3 = π − θs1 (15)
θs4 = π − θo (16)
θs5 = π (17)

Therefore, spurious frequency responses, fs1, fs2, fs3, fs4, fs5, of the proposed resonator can be
determined as:

fs1

fo
=

tan−1

√
Y2(2Y1 + Y2)

Y 2
1

tan−1

√
Y1Y2

Y 2
1 + Y1Y2 + Y 2

2

(18)

fs2

fo
=

π

2 tan−1

√
Y1Y2

Y 2
1 + Y1Y2 + Y 2

2

(19)

fs3

fo
= 2

fs2

fo
− fs1

fo
(20)

fs4

fo
= 2

fs2

fo
− 1 (21)

fs5

fo
= 2

fs2

fo
(22)

Similar to this, design equations for other resonators can also be achieved.
For wider stopband these harmonics need to be suppressed. The transmission zeros of the resonator

are relocated by changing the width at the position of the above harmonics to suppress them. As
discussed above, for interdigital coupled section of length λgo/4, the transmission zero is positioned
after 2fo. So to suppress spurious passband at 2fo, coupled section is modified to that of Case A so
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that transmission zero shifts to the position of undesired passband. If Case B coupled section is used,
then it is easy to suppress the third harmonic. But to suppress the second harmonic, the coupled-length
must be increased. Similarly, a open-loop resonator is introduced to use combline coupled-section. To
suppress more than one harmonics, multiple coupled-sections are required. So higher-order filters can
suppress more than one harmonics at a time. To design the filter, coupled-length (for case B coupled-
section only) and the width associated with these coupled-sections must be selected using EM solver or
Mathematica. Length of coupled-part and the width are selected according to the position of harmonic
suppression. One important point to be noted is that there is a slight change in the center frequency
due to the change in the coupled width.

5. COUPLING COEFFICIENT AND EXTERNAL QUALITY FACTOR

In this paper, element values of the low-pass prototype having Chebyshev response are used in all the
cases. From the given low-pass prototype element values, two important design parameters — external
quality factors and coupling coefficients — can be calculated as follows [15]:

Qei =
g0g1

FBW
(23)

Qeo =
gngn + 1
FBW

(24)

Mi,i+1 =
FBW√
gigi+1

, for i = 1 to n − 1 (25)

where Qei and Qeo are the external quality factors of the resonators at the input and output, respectively,
and Mi,i+1 is the coupling coefficient between the ith and (i + 1)th resonators. The FBW is the
abbreviation for fractional bandwidth. Full wave simulator High Frequency Structure Simulator
(HFSS) [18] is used to extract quality factor and coupling coefficient. From the simulator, coupling
coefficient can be evaluated by two dominant resonant frequencies fp and fq as [15]:

Mi,i+1 =
f2

p − f2
q

f2
p + f2

q

. (26)

So this equation guides the selection of a proper coupling gap between the resonators according to the
required coupling-coefficient. From simulation, the external quality factor can be determined as [15]:

Qe =
ωo

Δω±90◦
(27)

where ωo is the resonating frequency, and Δω±90◦ is the absolute bandwidth between the ±90◦ points
on the phase plot of S11 relative to its phase at ωo. In this paper, 0◦ tapped feed is used to design all
filters so that better selectivity can be achieved [19]. The above calculated quality factor determines
the tapping position.

6. PARALLEL-COUPLED RESONATOR BASED BANDPASS FILTER DESIGN

Based on the above analysis, harmonic-suppressed BPFs are designed. HFSS is used to analyze the
filters. The filters are fabricated on a substrate RT/Duroid 6010.2 with the relative dielectric constant
of 10.2, thickness of 0.635 mm and loss tangent of 0.0023. The responses of the fabricated filters are
measured by an Agilent E5071C network analyzer.

6.1. Fourth-Order BPF with Second Harmonic Suppression Using Case A
Coupled-Section

A fourth-order parallel-coupled type BPF consisting of interdigital open-ended resonators is designed
and fabricated with center frequency of 2.27 GHz having FBW of 0.19 or 19%. Fig. 8 shows the layout
of the BPF. Case A is used as the coupled-section to suppress the second harmonic. The lumped circuit
element values of the Chebyshev low-pass prototype filter with a passband ripple of 0.18 dB are g0 = 1,
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Figure 8. Layout of a fourth-order parallel-coupled BPF.

(a)

(b) (c)

Figure 9. Fourth-order parallel-coupled BPF. (a) Fabricated filter. (b) Simulated and measured
performance of the filter with the second harmonic suppression. (c) Group delay.

g1 = 1.2698, g2 = 1.2901, g3 = 1.9412 and g4 = 0.8439 and g5 = 1.5047. The input/output external
quality factors and coupling coefficients can be evaluated as:

Qei = Qeo =
g0g1

FBW
= 6.683

M12 = M34 =
FBW√

g1g2
= 0.1485

M23 =
FBW√

g2g3
= 0.1201.

This gives the tapping position t = 3.8 mm and the gap between the resonators s1 = 0.28 mm
and s2 = 0.35 mm by using Equations (27) and (26), respectively. Fig. 9(a) depicts the fabricated
fourth-order BPF having suppressed second harmonic. The dimensions of the fabricated BPF are
lc1 = lc2 = lc3 = 4.0 mm, lc4 = lc5 = lc6 = 4.0 mm, w1 = w3 = w = 0.59 mm, w4 = w6 = 0.59 mm,
w2 = w5 = 0.2 mm, and l = 12 mm. The simulation and measurement results of the fourth-order filter
are displayed in Fig. 9(b). The response shows two transmission zeros on either side of passband due
to 0◦ feed. The response shows a insertion loss of 2.55 dB. Also rejection of 54 dB has been achieved at
the second harmonic position. A group delay less than 3.8 ns has been achieved within the passband of
the fabricated BPF as depicted in Fig. 9(c).
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6.2. Second-Order BPF with Second Harmonic Suppression Using Case B
Coupled-Section

Filter design using case B type of coupled-section requires more coupled length to suppress the second
harmonic because the transmission zero shifts to higher frequency when corner width decreases. The
second-order parallel-coupled Chebyshev BPF having FBW of 10% centered at 2.24 GHz with 0.2 dB
ripple level is designed and fabricated. Case B type of coupled-section is used for suppression of second
harmonic. The element values of the Chebyshev low-pass prototype filter are g0 = 1, g1 = 1.0379,
g2 = 0.6746 and g3 = 1.5386. The input/output external quality factors and coupling coefficients can
be evaluated as:

Qei = Qeo =
g0g1

FBW
= 10.4

M12 =
FBW√

g1g2
= 0.12.

The tapping position and the gap between the resonators are found as t = 3 mm and s1 = 0.7 mm
respectively by using Equations (27) and (26). Fig. 10(a) shows the layout of the filter. The dimensions
of the fabricated second-order BPF are lc1 = 4.0 mm, lc2 = 10.0 mm, lc3 = 4.0 mm, w1 = w3 = 0.2 mm,
w2 = w = 0.59 mm, l = 6 mm. The response of the BPF is shown in Fig. 10(b). The suppression at
the second harmonic is up to −30 dB. The fabricated BPF shows a insertion loss of 0.77 dB. The first
and second transmission zeros of the coupled resonators come at 4.0 GHz and 4.75 GHz, respectively,
near the second harmonic position, which increase the rejection capability of the BPF as discussed in
Fig. 3(b). The group delay within the passband of the BPF is less than 1.95 ns as plotted in Fig. 10(c).

(a)

(a) (c)

Figure 10. Second-order parallel-coupled BPF. (a) Layout. (b) Simulated and measured performance
of the filter with the second harmonic suppression. (c) Group delay.

In a similar fashion, other higher-order filters can be designed with more higher-order harmonics
suppression.
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7. OPEN-LOOP RESONATOR BASED BPF DESIGN

7.1. Second-Order BPF with Second and Third Harmonic Suppression

To show the application of the changing width in combline coupled section open-loop resonators based
BPF is designed. The layout of second-order filter is depicted in Fig. 11(a). To retain the combline
property, open-loop resonators are coupled in such a way so that both open ends are on the same side.
Also Case C is used to design the coupled part. As discussed in Section 2, this type of coupled section
is able to suppress two harmonics at a time. Fig. 11(b) plots the S21 for the second order BPF for
two different values of w2. When the width w2 = 0.4 mm, suppression of −20 dB has been achieved
up to the second harmonic. But at w2 = 0.2 mm, the first and second transmission zeros associated
with the coupled parts are correctly placed near the second and third harmonic positions respectively,
which leads to the suppression of −20 dB up to 4fo. So by changing the width, two harmonics are
suppressed simultaneously without changing the coupled-length. The dimensions used for both the
simulations are lc1 = 2.0 mm, lc2 = 2.0 mm, lc3 = 2.4 mm, w1 = w3 = w = 0.59 mm. Quality factor and
coupling-coefficient must be maintained while changing the coupled section width.

(a) (b)

Figure 11. Second-order open-loop BPF. (a) Layout. (b) Simulated performance with the second and
third harmonic suppression at different w2.

7.2. Fourth-Order BPF with Second, Third and Fourth Harmonic Suppression

A fourth-order BPF consisting of open-loop resonator is designed and fabricated. A fourth-order BPF
has three coupled-lengths. The schematic of the BPF is depicted in Fig. 12. The first and last coupled-
sections are used to suppress the second harmonic, and the middle coupled-section is used to suppress
the third and fourth harmonics both at the same time. So the property of Case C is used to suppress
two harmonics at a time. The fourth-order Chebyshev BPF is designed with a 0.05-dB ripple level and
9.5% FBW at the center frequency of 2.27 GHz. The lumped circuit element values of the low-pass
prototype filter are g0 = 1, g1 = 0.9588, g2 = 1.2970, g3 = 1.6078 and g4 = 0.7735 and g5 = 1.2396.
The input/output external quality factors and coupling coefficients can be evaluated as:

Qei = Qeo =
g0g1

FBW
= 10.1

Figure 12. Layout of a fourth-order open-loop BPF.
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M12 = M34 =
FBW√

g1g2
= 0.0852

M23 =
FBW√

g2g3
= 0.0658.

This determines the tapping position t = 3.25 mm and the gap between the resonators s1 = 0.25 mm,
s2 = 0.28 mm, by using Equations (27) and (26). To suppress the second, third and fourth
harmonics, the required coupling lengths of the first and second coupled sections will be near λgo/8
and λgo/12, respectively. The dimensions of the proposed filter are lc1 = lc2 = 2mm, lc3 = 2.58 mm,
lc4 = lc5 = 1.5 mm, lc6 = 1.8 mm, d = 1.5 mm, w1 = w3 = w = 0.59 mm and w2 = 0.2 mm. The
fabricated fourth-order BPF and its responses are shown in Fig. 13. The insertion loss of the fabricated
BPF is 1.68 dB. The suppressions at the second, third and fourth harmonics are up to −39 dB. In
addition to this, a wide stopband up to 6.3fo at the level of −24 dB is also achieved. The group delay of
the fabricated BPF is depicted in Fig. 13(c). Within the passband, a group delay of 6.0 ns is attained.
Also Table 1 compares this work with the previous reported works.

(a)

(b) (c)

Figure 13. Fourth-order open-loop BPF. (a) Fabricated filter. (b) Measured and simulated
performance of the filter with higher-order suppression. (c) Group delay.

7.3. Dual-Band BPF with Harmonic Suppression

The proposed concept of harmonic suppression can be further extended to dual-band BPF. Fig. 14(a)
depicts the schematic of a dual-band BPF using stub-loaded open-loop resonators, where Z1, L1, Zs

and Ls represent the characteristic impedances and the lengths of the open-loop line and open-stub,
respectively. The open-stub is connected at the middle of the open-loop line. Now the odd and even-
mode analysis can be used to define the resonance frequencies of the symmetrical structure. By odd-
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Table 1. Comparison with the previous reported works.

Ref.
Cent.freq. Size Insert. Stopband

fo (GHz) λ2
o loss (dB) suppression level

[10] 0.97 0.14 × 0.073 0.9 20 dB up to 4fo

[11] 1.5 0.59 × 0.14 2.9 30 dB up to 5.4fo

[12] 1.5 0.16 × 0.12 2.52 23.7 dB up to 10.6fo

[20] 2.4 0.16 × 0.11 0.78 20 dB up to 4fo

[21] 2.5 0.20 × 0.10 - 20 dB up to 2.8fo

This work
2.27 0.35 × 0.035 1.68

39 dB up to 4.5fo

(Fig. 13) 24 dB up to 6.3fo

(a) (b)

(c) (d)

Figure 14. Dual-band BPF. (a) Layout. (b) Measured and simulated performance of the filter with
third and fourth harmonic suppression. (c) First passband group delay. (d), (c) Second passband group
delay.

mode analysis, the first passband fo can be derived as:

fo =
c

2L1
√

εeff
(28)

The second passband f1 which is due to the open-loop resonator and open-stubs can be written as:

f1 =
c

(L1 + 2Ls)
√

εeff
(29)

where c is the speed of light in free space. εeff stands for effective dielectric constant of the substrate.
Eq. (29) is derived for the special case Zs = 2Z1. For harmonic suppression, coupled sections are
changed from uniform to stepped as discussed before. The dual-band filter is designed for the frequencies
fo = 2.24 GHz and f1 = 4.02 GHz having FBWs of 17.6% and 9.7%, respectively. Similar to the above,
the quality factor and coupling-coefficient determine the tapping position t and the gap s between the
resonators. The dimensions of the proposed filter are lc1 = lc2 = 1.5 mm, lc3 = 1.27 mm, L1 = 25.6 mm,
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Ls = 3.2 mm, s = 0.25 mm, t = 2.7 mm, w1 = w3 = w = 0.59 mm and w2 = 0.21 mm. Fig. 14(b) shows
the response of the dual-band BPF. The uniform coupled width spurious passband appears at 6.4 GHz.
For w2 = 0.21 mm, the spurious passband is suppressed to −21 dB at 6.4 GHz. Also wide stopband up
to 9.5 GHz has been achieved. The insertion losses at the first and second passbands are 2.45 dB and
2.1 dB, respectively. Fig. 14(c) and Fig. 14(d) plot the group delays for the two passbands. The BPF
shows a group delay of less than 2.15 ns and 2.12 ns for the first and second passbands, respectively. So
this technique ensures the spurious band suppression in dual-band filters without increasing the size of
the filter.

8. CONCLUSION

Transmission zero behavior of two coupled-sections — interdigital and combline — has been studied.
Transmission zeros are shown to be tunable with respect to the coupled width and their orientation.
Further, these transmission zeros are implemented to suppress harmonics. To support the proposed
idea, the second harmonic is suppressed in two parallel coupled filters based on interdigital coupling
section. Also using this technique, higher-order harmonics are suppressed in open-loop filter based on
combline coupled-section. The technique is also applicable to dual-band filter. All measured results are
in good agreement with the simulated ones.
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