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Abstract—Recent technological achievements have made it low cost to realize indoor localization using
the received signal strength (RSS) information from Wi-Fi signals. However, the current RSS-based
indoor localization techniques have two major challenges: one is that the RSS signal is quite sensitive
to channel conditions, and the other is that sufficient number of access points (APs) is needed to
provide enough RSS measurements for guaranteeing good performance. To solve these problems, this
paper proposes an adaptive compressive sensing (CS) based indoor localization method based on the
IEEE 802.11 Wi-Fi standard. The novel feature of this method is to dynamically adjust both the
dictionary and the sparse solution using an online dictionary learning (DL) technology so that the
location solution can better match the real-time RSS scenario. Meanwhile, an improved approximate l0
norm minimization algorithm is presented to enhance sparse recovery speed and reduce the number of
APs required by indoor localization systems. The effectiveness of the proposed scheme is demonstrated
by experimental results where the proposed algorithm yields substantial improvement for localization
performance and reduces computation complexity.

1. INTRODUCTION

Although Global Positioning System (GPS) has been in service for many years, it is only available in
GPS-enabled devices and may encounter problems in indoor environments because of its poor signal
penetration capabilities [1]. Thus, the location estimation based on existing wireless infrastructures
has been advanced rapidly in recent years. Nowadays, IEEE 802.11 based Wi-Fi has become a critical
component of networking architecture and is available in most corporate environments and commercial
buildings [2, 3]. With the widespread deployment of Wi-Fi, indoor positioning based on Wi-Fi is
especially favored because of little requirement for extra infrastructure investments. Since RSS can
be easily obtained by a Wi-Fi-integrated mobile device without any additional hardware modification,
many Wi-Fi positioning systems rely on the location information of RSS.

Although we have witnessed swift advances in Wi-Fi over the last decade, wireless channels in indoor
environments are generally noisy, and the RSS measurement is quite sensitive to channel conditions.
Generally, the main challenges for RSS-based positioning systems come from two aspects:

1) In indoor environments, a number of factors affect the RF signal propagation including multi-
path, channel fading, shadowing, temperature and humidity variations and the presence and mobility
of human beings, etc. Many experiments have demonstrated the effects of these factors which result in
the RSS variations as high as 7–20 dBm [4, 5]. Therefore, a practical RSS-based positioning system has
to be adaptable to the variations of environmental dynamic factors.

Received 16 October 2016, Accepted 2 December 2016, Scheduled 15 December 2016
* Corresponding author: Wei Ke (wkykw@sina.com).
1 Jiangsu Key Laboratory on Optoelectronic Technology in School of Physics and Technology, Nanjing Normal University, Nanjing
210023, China. 2 Jiangsu Key Laboratory of Meteorological Observation and Information Processing, Nanjing University of
Information Science & Technology, Nanjing 210044, China. 3 Jiangsu Center for Collaborative Innovation in Geographical Information
Resource Development and Application, Nanjing 210023, China.



74 Ke et al.

2) Due to the deployment of access points (APs) in indoor environments, the total number
of detectable APs is generally finite for positioning, which will lead to only a small number of
RSS measurements in real scenarios. However, most presented location schemes require as many
RSS measurements as possible for accurate position estimates [6]. The shortage of detectable RSS
measurements reduces the accuracy of the location estimation considerably.

Therefore, building an indoor localization system to estimate the locations of targets is still a
challenging problem. Since targets generally lie at a few points in the discrete spatial domain, this
inherent sparsity can be exploited to convert the localization problem into a sparse recovery problem.
In recent years, the compressive sensing (CS) theory that receives a great deal of attentions has been
successfully applied to outdoor and indoor localization, which results in higher localization accuracy
and reduces the dimensions of measurement vectors [7–12] Different from that the line-of-sight (LOS)
path is dominant in an open outdoor environment, multipath is common in an indoor environment, and
thus the change in RSS becomes unpredictable. Although these CS-based efforts are easy to implement,
these algorithms ignore the effects of environmental variations, and thus they cannot achieve stable
localization performance under complex indoor circumstances.

In this paper, we continue to investigate the CS-based indoor positioning problem with respect to
the adverse impact of RSS changes under the condition of small number of detectable APs. Different
from the previous works, we take advantage of CS theory to handle the spatial sparsity to reduce the
number of APs required by indoor localization systems and exploit the online DL technique to deal with
the problem of the RSS sensitivity. We also propose an improved sparse reconstruction algorithm based
on approximate l0 norm minimization for the fast recovery of sparse signals. The notation used in this
paper is according to the convention. Symbols for matrices (upper case) and vectors (lower case) are in
boldface. (·)T , ‖θ‖0, ‖θ‖1 and ‖θ‖2 denote transpose, l0 norm, l1 norm and l2 norm, respectively. The
remainder of the paper is organized as follows. Section 2 presents the related works. Section 3 describes
the system model and problem formulation. We introduce a new positioning scheme to calibrate the
dictionary dynamically and estimate the sparse solution adaptively in Section 4. Experimental results
are given in Section 5. Finally, Section 6 concludes the paper.

2. RELATED WORKS

Indoor localization is a promising technique that receives extensive attention, and lots of works have
been carried out to realize localization based on Wi-Fi. In this section, we briefly summarize the most
relevant research on the RSS-based indoor localization and the CS-based localization.

Generally, there are two kinds of main methods for the RSS-based indoor positioning, which are
the model-based method [13, 14] and the fingerprinting based method [15, 16]. Existing model-based
positioning approaches mainly depend on the specific path loss model that converts RSS measurements
into corresponding distances, and then use the geometric method to find the position of each target. The
main difficulty of this method is to establish a reliable signal propagation model and estimate its path
loss parameters in an indoor environment due to the unpredictable nature of indoor radio channel. On
the other hand, the fingerprinting method need record RSSs at every possible location through off-line
training process and compare the RSS measurement of each target with the recorded RSSs to find the
best matching RSS pattern. However, this method is also environment dependent, and any significant
change on the topology implies a costly new recalibration.

Spatial sparsity, a main theme in CS, arises naturally in wireless localization. In [7], it was
realized that the localization problem can be formulated as a distributed sparse approximation problem.
However, in this method a localization dictionary has to be locally estimated at each sensor node.
On the contrary, Feng et al. proposed a server-based sparse multiple target localization algorithm
in [8], where the localization dictionary was constructed at the location center (i.e., the server) and
each sensor only transmitted a small number of compressive measurements to the location center.
In [9] Zhang and Tan adopted the l1 norm minimization to estimate the target location. However,
the computational complexity of the l1 minimization algorithm is too high and not suitable for
being adopted in Wi-Fi devices. To reduce the computational complexity reference [1] proposed a
greedy matching pursuit (GMP) algorithm to efficiently realize sparse signal reconstruction. Although
the above methods can achieve better performance for solving the indoor localization problem than
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the traditional positioning methods, these works neglect a number of factors that affect the signal
propagation in indoor environments. An affinity-based CS localization scheme (ACS) was proposed
by exploiting affinity propagation and cluster matching to reduce the effects of RSS variations in [11].
However, this method may result in large positioning bias because the false cluster matching can take
place due to environmental variations. In our previous work [12], we attempted to use the off-line
DL technique for improving the accuracy of localization. However, that work can only achieve high
location accuracy in stationary environments since the dictionary is only trained once at the beginning
of localization due to high computational complexity.

3. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we first present a linear model for relating the RSS measurements to the spatial locations
of targets under the CS framework and then discuss the problem of dictionary mismatch.

3.1. System Model under the CS Framework

The proposed system is composed of Wi-Fi APs and off-the-shelf 802.11-compliant devices such as smart
phones and panel computers, where APs with known locations serve as anchors The RSS measurements
are made periodically by APs and transmitted to the location server.

Consider that K unknown-location targets are located in an area of interest which is divided into
N grids, and assume M APs in the targeted area, which take RSS measurements from these targets.
In general, N �M > K. Since targets located at one or a few grid points in the localization area, the
positions of targets in the discrete spatial domain can be accurately represented as a sparse vector θ.
The elements of vector θ are equal to ones if targets are located at the corresponding positions in the
localization area, while other elements of vector θ are equal to zeros. In such a case, the localization
problem is converted to determine non-zero elements and their specific locations in the sparse vector
θ according to the received signals. Based on the CS theory, the sparse localization model can be
represented as:

y = Ψθ + v (1)
where y is the RSS measurement vector, Ψ the dictionary, and v the measurement noises. Since the
dictionary Ψ is a key factor for the sparse reconstruction, this paper firstly sets up an initial dictionary
based on the radio propagation model in [17] and then exploits the DL technique to modify the initial
dictionary for overcoming the model errors. According to [17], the mnth received RSS coming from the
target located at grid n by the mth AP can be expressed as:

ψmn = P (d0) + 10α log10(dmn/d0), m = 1, . . . ,M, n = 1, . . . , N (2)
where P (d0) is the path loss at a close-in reference distance d0, dmn is distance between the nth grid
and the mth AP, and α the path loss exponent. The path-loss exponent is usually set between 2 and 5
according to [17], and α = 2.6 is suggested to be used in an indoor environment with hard partitions
in [17].

3.2. Problem of Dictionary Mismatch

It should be noted that Ψ can be known in advance since grid locations and AP locations are known,
which means that we can estimate the coordinates of targets as long as we find the positions of nonzero
values in θ. Moreover, the number of these dominant nonzero values gives K.

However, the model described in Eq. (1) is only an approximate model, and the non-ideal factors
are inevitable in a practical localization system. In fact, since the RSS measure is susceptible to several
wireless propagation factors discussed in the above section, it is difficult to obtain a nice and close-form
theoretical model. Therefore, the predefined dictionary cannot effectively express the actual signal,
and may easily cause performance degradation in the sparse recovery process. We assume the error
dictionary matrix Γ which describes the difference between the predefined dictionary and the practical
received signals. Note that the error matrix Γ is time-varying and cannot be known in advance. Thus,
the sparse positioning model is correspondingly modified as:

y = (Ψ + Γ)θ + v = Dθ + v (3)
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where D = Ψ + Γ denotes the actual dictionary with time-varying interferences. Since the mismatch
exists between the columns of D and the corresponding columns of the ideal basis Ψ, the performance
degradation is inevitable in the sparse recovery process. To obtain accurate localization results, we will
exploit online DL technique to correct the dictionary variations dynamically.

4. ONLINE-CALIBRATED INDOOR LOCALIZATION ALGORITHM

Focused on the above problem, an adaptive sparse recovery algorithm combining online DL is proposed
in this section. So far, most DL methods are generally based on alternating minimization [18]. In
one step, a sparse recovery algorithm finds sparse representations of the training samples with a fixed
dictionary. In the other step, the dictionary is updated to decrease the average approximation error
while the sparse coefficients remain fixed. The proposed method in this paper also uses this formulation
of alternating minimization.

4.1. Sparse Recovery Phase

In the sparse reconstruction stagethe dictionary D is fixed, and thus the sparse signal recovery problem
can be converted into a following optimization problem,

min ‖θ‖0 s.t. y = Dθ (4)

Note that (4) is NP-hard to solve. An alternative is to use l1 norm instead of l0 norm to enforce sparsity,
which leads to

min ‖θ‖1 s.t. y = Dθ (5)

However, it should be emphasized that larger coefficients in θ are penalized more heavily in the
l1 norm than smaller coefficients, unlike the more democratic penalization of the l0 norm [19]. In
practice, large coefficients are usually the entries corresponding to the actual positions of targets, while
small coefficients commonly represent the noise entries. The imbalance of the l1 norm penalty will
seriously influence the recovery accuracy, which may result in many false targets. To overcome the
mismatch between l0 norm minimization and l1 norm minimization, in this section we propose an
improved approximate l0 norm minimization algorithm (called IAL0 in the following sections) as our
sparse recovery method. The IAL0 algorithm can not only avoid the drawbacks of using l1 norm to
approximate l0 norm, but also overcome the NP-hard problem of l0 norm constraints.

The problem of using l0 norm is the need for a combinatorial search for its minimization, since the
l0 norm of a vector is a discontinuous function of that vector. The main idea of IAL0 is to approximate
l0 discontinuous function by a suitable continuous one, which is the similar idea as the approach in [20].
However, different from the Gaussian function used in [20], we design the following combination function,
which is expressed as:

fσ(x) = λ
(
ex

2/2σ2 − e−x2/2σ2
) / (

ex
2/2σ2

+ e−x2/2σ2
)

+ (1− λ)(1 − e−x2/λσ2
) (6)

where 0 < λ < 1, which arranges the different proportions between the Gaussian function and hyperbolic
tangent function. Under an appropriate parameter σ, this combination function is steeper than the
Gaussian function around x = 0, and thus it can be more accurately approximated to l0 norm. Moreover,
fσ(x) is a continuous function and has the following properties:

lim σ → 0 (7)

Therefore, this function can meet the conditions required for a smoothing function as ] pointed out
in [20. Let Fσ(θ) =

∑N
i=1 fσ(θi) when σ is very small, we have Fσ(θ) ≈ ‖θ‖0 Then, Eq. (4) can be

converted into
arg min

θ
Fσ(θ) , s.t. y = Dθ (8)

Using the Lagrange multiplier method, Eq. (8) is converted into an unconstrained optimization problem:

min
θ
L(θ) = Fσ(θ) + β ‖y −Dθ‖22 (9)
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where β is the Lagrange multiplier. Now, we exploit the Fletcher-Reeves (FR) algorithm [21] to solve
the optimization problem in Eq. (9), instead of the steepest descent method used in [2]. The FR
algorithm belongs to the class of conjugate gradient methods which can be faster convergent than the
steepest descent method and has good numerical stability. Moreover, the FR algorithm does not need
to calculate the second derivative of the cost function (9) as the Newton method. According to the FR
algorithm, in the jth iteration θj+1 is updated as

θj+1 = θj + μjhj (10)
where μj is the step-size parameter and hj the conjugate direction which can be computed as

hj =
{ −g0, j = 0
−gj + ηj−1hj−1, j �= 0 (11)

where gj is the gradient vector when θ = θj, and ηj−1 = ‖gj‖22/‖gj−1‖22. For completeness, a full
description of the IAL0 algorithm is given in the sparse recovery part of Fig. 1.
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Figure 1. The proposed algorithm.

4.2. Dictionary Learning Phase

At this stage, the sparse vector is fixed, and we update the dictionary by using the DL algorithm.
Currently, there are some common DL algorithms, such as the K-SVD algorithm, agent function
optimization method, and recursive least squares method [18, 22]. However, these methods can only
effectively handle training data off-line, so they are unable to meet the requirement of rapid positioning.
To overcome this drawback, we tend to optimize the dictionary in the online manner. Fortunately,
Mairal et al. [23] proposed a new online optimization algorithm based on stochastic approximations for
DL, which can adapt to the dynamic training data changing over time.

Therefore, in order to be fit for the time-varying RSS measurements, this paper chooses the online
DL algorithm in [23], whose key idea is to simply add an increment element to each column of the
original dictionary. This method can avoid performing operations on large matrices and realize fast
positioning. According to [23], each column of the dictionary is updated as

uj ← dj + (bj −Daj)/A(j, j), j = 1, 2, . . . , N (12)

dj ← 1
max(‖uj‖2 , 1)

uj (13)

where dj, bj, aj are the jth column vector of D, Bt and At, respectively. Bt and At are intermediate
variables of the online DL algorithm. A (j, j) represents the element at the jth column and jth row of
At.

The corresponding procedure is summarized in Fig. 1, and the details can be found in [23].
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5. EXPERIMENTAL RESULTS

To evaluate the actual localization results of the proposed method under the time-varying environment,
RSS data were collected from an office building during different times (6:00 a.m.–10:00 p.m.) by the
monitor device at testing locations. The localization area of the scene is the part area of XingJian
Building in Nanjing Normal University, which is covered by 802.11 Wi-Fi signals. The selected area
(25m×20 m) is a typical office environment as shown in Fig. 2. A total of 12 detectable APs are used to
measure RSS values in the localization area, and each experiment selects 6 RSS measurements from 12
APs to realize its corresponding algorithms. For undetected APs, we set a default value, −95 dBm, as
the threshold value of detectable RSS. In experiments, the localization area is divided into N = 25× 20
grids which means yielding a 1 m resolution along both x and y axes. The testing locations are selected
at random, within the measurement area. A laptop with 3.1 GHz processor and 4GB memory is used
to gather the RSS signatures from nearby APs, and saves them for real-time processing. Positioning
performance is evaluated by average positioning error and root mean square error (RMSE). The results
of each time are obtained based on 30 experiments. In order to evaluate the performance of the proposed
algorithm, we compared it with the previously-reported CS-based indoor localization algorithms, namely
the convex-optimization based l1 minimization approach in [7], greedy-based GMP method in [10] and
t non-CS based least squares (LS) algorithm in [24] under the same conditions.

25 m 
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Figure 2. The configuration of localization area.
The black dots show the locations of the APs.
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Figure 3. Location errors under different testing
times.

For a single target, the influences on localization accuracies at different times are shown in Fig. 3.
From Fig. 3, the proposed algorithm could achieve the more stable localization performance than other
algorithms in one day. Especially, the variations of RMSE in the GMP and l1 algorithms are near
1.5 m, while the variations in the proposed algorithm are small under the same conditions. It should be
pointed out that although the l1 algorithm and GMP algorithm are CS-based algorithms, they achieve
nearly the same results as that of the LS algorithm. This is because of the fact that without the
accurate measurement matrix, the l1 algorithm and GMP algorithm could not reconstruct the sparse
signal effectively. The Fig. 3 demonstrates that the proposed algorithm is a robust and effective sparse
signal reconstruction algorithm without the need of the accurate knowledge about the measurement
matrix. Moreover, these results also confirm that the proposed algorithm is suitable for being adopted
in the positioning applications where electromagnetic environments are time-varying

The detailed statistical results of the localization performance of different algorithms are
summarized in Table 1. Compared with that of the l1 and GMP algorithms, the mean localization
error of the IAL0 algorithm decreases by 25.8% and 31.1%, respectively. Meanwhile, the proposed
approach has significantly better performance than the other two CS-based methods in terms of RMSE.
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Table 1. Comparisons of localization error and average running time.

Algorithm Average (m) RMSE (m) Running Time (ms)
l1 1.82 2.39 390.55

GMP 1.96 2.67 68.83
IAL0 1.35 1.44 115.67
LS 1.93 2.71 61.36

These results can be attributed to the fact that the IAL0 algorithm uses the continuous function to
approximate l0 norm constraint and the online DL method to dynamically adjust the dictionary for
matching the changes of radio signals. In the meantime, we can find that the localization performance
of the proposed algorithm is also better than the traditional LS algorithm with the improvement in
terms of the mean error and RMSE about 0.58 m and 1.27 m, respectively.

The complexity is also compared in terms of the average CPU running time. From Table 1, it
is shown that the average running times of the LS algorithm and the GMP algorithm are almost
identical and have the fastest running speed among four algorithms, while the l1 algorithm based on
convex optimization requires the longest running time. Due to adding the DL step in our algorithm,
the running speed of the proposed method is also slower than the LS and GMP algorithms, although
its execution time is far less than the l1 algorithm. However, since the online DL method can avoid
performing operations on large matrices, the increment of execution time is not too much. In addition,
we exploit the FR algorithm to solve the optimization problem in Eq. (9), instead of the steepest
descent method in [20], which also can reduce execution time. Although the running time of the
proposed method is larger than the LS and GMP algorithms, this slight growth of complexity is totally
acceptable considering the large performance gain that the proposed method achieves.

The effects of the number of APs on the localization performance are studied in Fig. 4. It can
be observed that as an overall trend, the localization errors of all CS-based algorithms decreases with
increasing number of APs, since more measurement information from more APs can be used to realize
sparse reconstruction and thus higher accuracy is achieved. However, even though the number of APs is
sufficient, the localization errors of the l1 and GMP methods are still more than 1.8 m due to the effects
of RSS fluctuations. By comparison, the localization error of the proposed algorithm is smallest because
of exploiting the online DL technique to mitigate the effects of RSS variations and directly utilizing the
l0 norm penalty instead of l1 norm penalty to find the sparsest solution in the reconstruction procedure.
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These results confirm that the proposed algorithm is suitable for indoor positioning by using only a
small set of noisy measurements, even if the fluctuations of RSS variations are serious. Different from
the CS-based localization methods, the localization performance of non-CS based LS algorithm is almost
not improved by the number of APs, and even the accuracy decreases slightly when the number of APs
increases to seven or higher.

Figure 5 illustrates the location error with respect to the number of targets. With the increase
in the number of targets, the accuracy of the GMP and LS algorithms decreases quickly due to the
high sensitivity to the estimated number of targets. On the contrary, the variations of accuracy in the
l1 and proposed algorithms are very small. The importance of the low sensitivity of our algorithm to
the number of targets is twofold. First, the number of sources is usually unknown, and low sensitivity
provides robustness against mistakes in estimating the number of targets. In addition, even if the
number of sources is known, low sensitivity may allow one to reduce the computational complexity.

6. CONCLUSION

RSS-based indoor localizations have attracted considerable attention due to their simplicity and low
cost. To mitigate the effects of RSS variations, a novel adaptive RSS-based sparse localization algorithm
is proposed to adjust both the dictionary and the sparse solution online so that location estimates
can better adapt to dynamic nature of indoor environments. At the same time, this algorithm can
perform well without prior knowledge about the environments and without time-consuming off-line
surveys. In addition, we propose an improved approximate l0 norm minimization algorithm to enhance
reconstruction performance for sparse signals, which has its capability for signal reconstruction without
prior information of the sparsity, i.e., the number of targets in this paper. The effectiveness of the
proposed scheme for indoor localization has been demonstrated by experimental results where the
proposed algorithm can get results more robust against noises and sensitivities of RSS measurements,
and substantial improvement for localization performance is achieved.
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