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Abstract—A regularization is integrated with Forward-Backward Time-Stepping (FBTS) method
which is formulated in time-domain utilizing Finite-Difference Time-Domain (FDTD) method to solve
the nonlinear and ill-posed problem arisen in the microwave inverse scattering problem. FBTS method
based on a Polak-Ribiète-Polyak conjugate gradient method is easily trapped in the local minima.
Thus, we extend our work with the integration of edge-preserving regularization technique due to
its ability to smooth and preserve the edges containing important information for reconstructing the
dielectric profiles of the targeted object. In this paper, we propose a deterministic relaxation with Mean
Square Error algorithm known as DrMSE in FBTS and integrate it with the automated edge-preserving
regularization technique. Numerical simulations are carried out and prove that the reconstructed results
are more accurate by calculating the edge-preserving parameter automatically.

1. INTRODUCTION

Inverse scattering in microwave imaging has been widely studied by many researchers for last decades.
Microwave imaging [1] is a very promising approach for many practical applications. It has huge
potential in measuring the characteristic of the embedded objects inside a bounded space region by
illuminating electromagnetic waves. Microwave imaging has the ability to retrieve information about
the distribution of the dielectric properties space region, the shape and the location of the embedded
object. Besides that, microwave imaging has lower cost than other well-known screening approaches, for
example, positron emission tomography and computed tomography. Furthermore, microwave imaging is
safer with low nonionizing radiation than X-ray mammography. Thus, it is recommended that microwave
imaging is applied as a diagnostic tool for several areas which involve civil and industrial engineering [2–
5], nondestructive testing and evaluation [6–10], geophysical prospecting [11] buried object detection
for military [12–14] medical diagnostic for biomedical engineering [15–19], and screening tool for wood
industry [20].

Solving an inverse scattering problem is a very challenging task due to nonlinearity of the scattering
equations, ill-posedness of the problem and uniqueness of the solution [21]. This problem could be
dealt with either in frequency-domain or time-domain. The frequency-domain based technique has
successfully reconstructed satisfactory results [22, 23], but it showed some drawbacks. Firstly, the use
of higher frequencies may improve the spatial resolution, but it leads to highly nonlinear formulation
and more complexity when measuring the scattered field. Secondly, collected information is limited
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when using single-frequency data. To overcome this problem, it is suggested to use time-domain based
technique. Time-domain based technique has demonstrated the ability to reconstruct the distribution of
dielectric properties more accurately [24–28]. Currently, time-domain based technique includes Lagrange
multipliers technique by Rekanos [24], time-domain inverse scattering by Winters et al. [25] and FBTS
method by Takenaka et al. [26–28].

Since the microwave imaging is a nonlinear inverse scattering problem, the adoption of
regularization technique is needed to obtain a stable solution by avoiding the ill-posed nature [29, 30].
The most popular technique is using Tikhonov regularization technique to solve the ill-posed nature [31–
34]. It has been applied in many different fields, and unfortunately, Tikhonov regularization strongly
penalizes the discontinuities and smooths the object edges resulting blurred images. This weakness
may lead to false result to the observer; for example, a doctor hardly identifies an organ or a
tumor correctly due over-smoothed dielectric properties. To overcome this problem, edge-preserving
regularization [26, 35] is suggested because it uses local smoothness constraints with account of intensity
discontinuities.

In our previous study [36], preliminary results showed that the integration of edge-preserving
regularization provided more accurate reconstructed profile. In this paper, we use bigger size and more
complicated target object to prove efficiency of the Edge-preserving regularization technique. This
technique is extended with automated procedures which has the ability of finding the regularization
technique parameters such as weighting parameters and threshold parameters to detect the edges for
each iteration. Common regularization technique parameters are exploited by numerical experiment.
Based on our experiences, it is not an easy task to find those parameters for the regularization technique.

This paper is organized as follows. Section 1 introduces some challenges and problem solving
of the microwave imaging approaches. Section 2 explains our proposed method, FBTS integrated
with automated Edge-preserving regularization technique. Section 3 presents the numerical results and
discussion. Finally, Section 4 concludes the paper.

2. METHOD

2.1. Forward-Backward Time-Stepping Method

Let us consider a region of interest (ROI) representing the 2D object embedded in a homogeneous
medium. The object is assumed inhomogeneous and has different dielectric properties compared to
ROI. We assume that the ROI is located in free-space medium and surrounded by 16 antennas as shown
in Figure 1. Each antenna will take turn to act as a transmitter, m to transmit Gaussian pulse to ROI
and the remaining antennas becoming receiver, n to receive the scattered signals until a combination of
240 transmitter/receiver data set is obtained.

The inverse scattering problem considered here is to reconstruct the dielectric profiles of the ROI

Figure 1. Configuration of the 2-D FBTS method.
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by using the scattered signal collected by the receiver. In Forward-Backward Time-Stepping (FBTS)
method, the collected data are formulated as an optimization problem with the form of cost functional
Qrec(p) to be minimized as follows:

Qrec (p) =
∫ cT

0

M∑
m=1

N∑
n=1

Wmn (t) |em (p; rn, t) − ẽm (rn, t)|2 d (ct) (1)

where p is a medium parameter vector function given by

p = [p1 (r) , p2 (r)] = [εr (r) , σ (r)] r = [x, y, z] (2)

In Eq. (1), Wmn(t) is a nonnegative weighting function which takes a value of zero at time t = T (T is
the time duration of the measurement), and em(p; rn, t) and ẽm(rn, t) are the calculated electromagnetic
fields in time domain for an estimated medium parameter vector p and the measured electromagnetic
fields due to the mth source, respectively.

To find the solution of medium parameter p, a gradient-based optimization method is applied
to cost functional in Eq. (1). By taking the Fréchet derivative of Eq. (1), the gradients of medium
parameter vector equations are derived as

gεr (r) =
∫ cT

0

M∑
m=1

2um (p; r, t)
d

dct
em (p; r, t) d (ct) (3)

gσ (r) =
∫ cT

0

M∑
m=1

2um (p; r, t) em (p; r, t) d (ct) (4)

where um(p; r, t) and em(p; r, t) are the adjoint fields and electromagnetic fields calculated in the ROI,
respectively. The adjoint fields, um(p; r, t), are time reversed fields with equivalent current sources which
are identical to a difference between the measured and calculated electromagnetic field data. In this
paper, Polak-Ribiète-Polyak conjugate gradient method is used as optimization technique to solve the
inverse scattering problem.

2.2. Edge-Preserving Regularization Technique

Since the inverse scattering problem is nonlinear and ill-posed in the sense of Hadamard [37], an edge-
preserving regularization technique is needed to handle this problem. Therefore, the cost functional in
Eq. (1) is modified into a new total cost functional equation.

Qtotal (p) = Qrec (p) +Qedge (p) (5)

where the first term, Qrec(p), is residual term as in Eq. (1), and the second term, Qedge(p), is the
edge-preserving regularizing term as follows:

Qedge (p) = λεr

∫∫
S
ϕ

(‖∇pεr‖
χεr

)
dS + λσ

∫∫
S
ϕ

(‖∇pσ‖
χσ

)
dS (6)

In this paper, Sobel operator is used to find the norm of gradient, ‖∇p‖
‖∇p‖ =

√
p2

x + p2
y (7)

px =
1
8

[ −1 −2 −1
0 0 0
1 2 1

]
, py =

1
8

[ −1 0 1
−2 0 2
−1 0 1

]

In Eq. (6), the function ϕ is a regularization function which has the ability for smoothing in
the homogeneous areas, while edges are preserved [29, 35]. Many regularization functions have been
discovered, and some well-known functions are ϕHL [38] and ϕGR [39]. In this paper, we use ϕGM [40]
as our regularization function because it has horizontal asymptote behaviour when approaching infinity.

In dealing with the reconstruction of dielectric profile, we consider the relative permittivity εr and
conductivity σ profile of the contrast as independent of the regularization scheme. Therefore, the edge
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preserving regularization term is applied separately on the relative permittivity εr and conductivity
σ profile. The weighting parameters λεr and λσ are used to balance the effect of the residual term
and regularization term. The threshold parameters χεr and χσ are used to determine the value of the
gradient norm of which discontinuity is preserved without smoothing it. Note that many researchers
have used numerical observation to determine the parameters of λ and χ [26, 41].

In this work, we develop two automated procedures with a simple calculation to automatically
determine the regularization technique parameters for each iteration. Firstly, the weighting parameters
λ are calculated based on the gradient values of Eqs. (3) and (4), respectively. Secondly, the values of
the threshold parameters χ are calculated based on half of the highest value of the norm of gradient
‖∇p‖ in the ROI.

Suppose that Qedge(p) has a minimum in p, but to find the minimum, it is a difficult task due
to nonlinearity [35]. Thus, in order to make the minimization simple, the potential function can be
modified as in [42].

ϕGM (t) =
(
bt2 + ψ (b)

)
(8)

where the expression of ψ(b) is b − 2
√
b + 1, and b is auxiliary vector also known as the discontinuity

reference.
bGM =

1
1 + (∇p/χ)2

(9)

Then, the regularization term Qedge(p) can be modified into half-quadratic regularization term,
Qedge(p, b)

Qedge (p, b) = λεr

∫∫
S

[
bεr

‖∇pεr‖2

χ2
εr

+ ψ (bεr)

]
dS + λσ

∫∫
S

[
bσ

‖∇pσ‖2

χ2
σ

+ ψ (bσ)

]
dS (10)

Hence, the total cost functional will be evolved as
Qtotal (p, b) = Qrec (p) +Qedge (p, b) (11)

By taking the Fréchet derivative of Eq. (10), the gradients of medium parameter vector for the new
edge-preserving regularization term are derived as

gi (r) = −2
λi

χ2
i

∇ · (bi∇pi) , i = εr, σ (12)

Thus, the total gradient is obtained as
gtotal (r) = gFBTS,i (r) + gEdge,i (r) , i = εrσ (13)

2.3. Deterministic Relaxation with Mean Square Error (DrMSE) Algorithm

In order to solve the total cost functional that expressed as in Eq. (11), we introduce alternate
minimizations scheme over p and b. When the auxiliary vector b is fixed, the edge-preserving
regularization term Qedge(p, b) is quadratic in p. Thus, the minimization of Eq. (11) can be performed
by the Polak-Ribiète-Polyak conjugate gradient method. When p is fixed, the values of b are analytically
obtained for each point (x, y) in each profile with Eq. (9). In order to control this scheme, we propose
the integration of Mean Square Error (MSE) with the deterministic relaxation processes.

MSE =
1
XY

X∑
x=1

Y∑
y=1

[
pn+1 (x, y) − pn (x, y)

]2 (14)

where pn+1 is the current dielectric profile, pn the previous dielectric profile, and X, Y are the point of
the profile.

In this work, we are dealing with relative permittivity and conductivity profile reconstruction.
Therefore, in order to reconstruct both profiles at the same time, DrMSE is introduced. To the best of
our knowledge, there is no proper method to alternate this scheme reported. Most researchers have only
mentioned deterministic algorithm. In the DrMSE algorithm, the MSE for each profile is calculated
iteratively. When MSE for either one of the profiles is small enough, a new auxiliary vector will be
estimated and applied for the minimization of Eq. (10). This procedure is repeated until the total cost
functional achieves its convergence. The iterative scheme can be summarized as follows.
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Begin, set n = 0
Reconstruct initial profile p0

Reconstruct initial auxiliary vector b = b0

Repeat
Reconstruct new profile pn+1 by minimize Qtotal (pn, b)
Compute MSE by using pn+1 and pn

if MSE<1e-6
Reconstruct new auxiliary vector b = bn+1

Endif
Until convergence.

3. RESULTS AND DISCUSSION

In this work, we consider an object embedded in the ROI as an unknown scatterer and surrounded by
16 antennas as shown in Figure 1. In FBTS reconstruction algorithm, we use 1mm × 1mm cell size
for the FDTD lattice. The antennas will take turn to transmit sinusoidally modulated Gaussian pulse
with center frequency, fc of 2 GHz with bandwidth of 1.3 GHz. Convolutional Perfectly Matched Layer

(a) (b)

(c) (d)

Dotted area 

Figure 2. Relative permittivity profile: (a) Original profile. (b) Reconstructed profile by FBTS
method. (c) Reconstructed profile by FBTS with Tikhonov regularization technique. (d) Reconstructed
profile by FBTS with automated edge-preserving regularization technique.
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(CPML) with thickness of 15 mm as an absorber is added at the borders of the FDTD lattice. This
CPML has the ability to prevent the reflections of the signal at the boundary of the FDTD lattice and
helps to save computation time during numerical simulation work.

In the setup, a 50 mm radius circular shape ROI with the relative permittivity εr = 9.98 and
conductivity σr = 0.18 S/m is immersed in a free-space medium. A 20mm × 20mm rectangular shape
with a 8mm × 8mm void rectangular shape of object is embedded at the center of ROI. This object
has the relative permittivity of 21.45 and conductivity of 0.45 S/m. Assume that a priori known profile
with the relative permittivity of 13.7 and the conductivity of 0.18 S/m which is slightly near the original
profile of ROI as initial guess p0.

In this work, all numerical simulations are carried out up to 200 iterations. The original profile,
FBTS reconstructed profile, FBTS with Tikhonov regularization technique reconstructed profile and
FBTS with automated Edge-preserving regularization technique reconstructed profile images for the
object relative permittivity spatial distribution are illustrated in Figure 2. Figure 3 shows the
corresponding conductivity spatial distribution. As shown in Figure 2 and Figure 3, all these techniques
have successfully reconstructed the location and shape of the embedded object in ROI. However, there
are enormous different reconstructed profile images for these three techniques.

In FBTS method, the reconstructed profile successfully points out the location and shape of the
embedded object. However, for the reconstructed relative permittivity profile, some dotted areas at

(a) (b)

(c) (d)

Ring Object 

Figure 3. Conductivity profile: (a) Original profile. (b) Reconstructed profile by FBTS method. (c)
Reconstructed profile by FBTS with Tikhonov regularization technique. (d) Reconstructed profile by
FBTS with automated edge-preserving regularization technique.
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the edges of the object can be observed as illustrated in Figure 2(b). As for the reconstruction of
conductivity, the reconstructed image having a rough surface within the ROI. Two unknown ring objects
are marked in dotted circle as illustrated in Figure 3(b). These reconstructed profile images give false
reading where it may indicate that some other objects exist in the ROI. We believe that the results are
trapped in local minima during the optimization process.

In order to avoid being trapped in local minima, regularization is needed. In this paper, the profile
of reconstruction for two different regularization techniques is presented. The first one is the Tikhonov
regularization technique, and the second is the proposed automated edge-preserving regularization
technique. In FBTS with Tikhonov regularization technique, the reconstructed relative permittivity
profile is improved as shown in Figure 2(c). However, for the reconstructed conductivity profile, the
shape of the embedded object is changed from rectangle to circle, and the ring object in ROI can
be clearly identified as shown in Figure 3(c). This occurs due to over-smoothing by the Tikhonov
parameters.

In order to solve the over-smoothing effect, automated edge-preserving regularization technique is
then proposed to preserve the edge while smoothing. As shown in Figure 2(d) and Figure 3(d), the FBTS
with automated Edge-preserving regularization technique reconstructs more accurate profile than the
other two techniques. In the result, no dotted area appears as shown in Figure 2(b), and there is no ring
object presented in the ROI. It is believed that those false results are smoothed while maintaining the
shape of embedded object. Thus, the FBTS with automated edge-preserving regularization technique
provides a solution in smoothing the dotted area and ring object while preserving the edge of the
embedded object.

In Figure 4, the cross-sectional views at axis x = 107 for relative permittivity and conductivity
profiles are presented. It shows that the edges are smoothed when FBTS method is applied with the
integration of Tikhonov regularization technique. However, the reconstructed results show that the
ROI and embedded object are improved while the edges are preserved when FBTS integrated with
automated edge-preserving regularization technique is applied.

The computed auxiliary variables for relative permittivity profile during simulation are obtained as
illustrated in Figure 5. The initial step for the auxiliary variables is initialized as shown in Figure 5(a).
The initial auxiliary variables at first iteration are assumed homogeneous and uniformly equal to 1.
The weighting parameters λ are calculated automatically to the nearest decimal value of gradient as in
Eq. (3). This will automatically stabilized both terms in Eq. (13).

At Step 1, new auxiliary variables are computed when the MSE for the current profile pn+1 and
previous profile pn is less than 1e-6 as shown in Figure 5(b). The threshold values χ are calculated to
determine the discontinuity or edge in the reconstructed profile. It is based on half of the highest value

(a) (b)

Figure 4. (a) Relative permittivity profile for cross-sectional view at axis x = 107. (b) Conductivity
profile for cross-sectional view at axis x = 107.
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(a) (b)

(c) (d)

(e) (f)

Figure 5. Auxiliary variables for relative permittivity. (a) Initial step, b0. (b) Step 1, b1. (c) Step 5,
b5. (d) Step 15, b15. (e) Step 30, b30. (f) Step 51, b51.
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of the norm of gradient ‖∇p‖. If the values are higher than χ, it is assumed as edge and needs to be
preserved. This discontinuity or edge maps are roughly estimated and introduced for following profile
estimate, and so on.

As the DrMSE algorithm proceeds, the auxiliary variables will become more precise as shown in
Figure 5. At each step, new auxiliary variables are introduced, and the profile reconstruction becomes
closer to actual profile. The DrMSE procedure takes 51 steps to reconstruct the relative permittivity
profiles. Figure 5(b) through Figure 5(f) give the auxiliary variables for steps 1, 5, 15, 30 and 51
which take part in the 50th, 70th, 103th, 133th, and 188th iterations, respectively. Meanwhile, DrMSE
procedure takes 45 steps to reconstruct the conductivity profile.

Figure 2 through Figure 4, FBTS integrated with automated Edge-preserving regularization
technique yields better accurate result than FBTS method only and FTBS integrated with Tikhonov
regularization technique. It is also proven by using MSE comparison of reconstructed dielectric profile
and original profile as shown in Table 1. It shows that FBTS with edge-preserving regularization
technique gives the smaller error than the other two techniques. All three numerical simulations only
take about 40 seconds per iteration.

Table 1. MSE comparison and time per iteration.

MSE

Relative

Permittivity

Profile

Conductivity Profile Time per iteration

FBTS method 3.1085e-04 1.1505e-05 37 second

FBTS with Tikhonov

regularization technique
1.1797e-04 4.4966e-06 38 second

FBTS with edge-preserving

regularization technique
6.7612e-05 1.4303e-06 38.5 second

4. CONCLUSIONS

Since the inverse scattering problem has nonlinear and ill-posed nature, edge-preserving regularization
is integrated with FBTS method to avoid being trapped in the local minima during the minimization of
cost functional. In this paper, we use DrMSE algorithm to control the alternate minimization scheme.
Besides, the weighting parameters λ and threshold parameters χ are automatically decided by automated
procedures iteratively. From the results, the FBTS with automated edge-preserving regularization
technique has been successfully reconstructed with more accurate relative permittivity and conductivity
profiles than using FBTS method only and FBTS with Tikhonov regularization technique. Therefore,
we will extend this research to focus on more complicated and/or realistic model for our future research
works.
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