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Image Formation Using Fast Factorized Backprojection
Based on Sub-Aperture and Sub-Image for General Bistatic

Forward-Looking SAR with Arbitrary Motion

Dong Feng1, Daoxiang An1, 2, *, Xiaotao Huang1, 2, and Tian Jin1

Abstract—In this paper, a fast time domain imaging algorithm called bistatic forward-looking fast
factorized backprojection algorithm (BF-FFBPA) based on sub-aperture and sub-image is proposed for
general bistatic forward-looking synthetic aperture radar (BFSAR) with arbitrary motion. It can not
only accurately dispose the large spatial variant range cell migrations and complicated motion errors,
but also achieve high imaging efficiency. First, the imaging geometry and signal model are established,
and the implementation of back projection algorithm (BPA) in the BFSAR imaging is given to provide
a basis for the proposed BF-FFBPA. Then, considering motion errors, the more accurate requirements
of splitting sub-aperture and sub-image in the BF-FFBPA is introduced based on the range error
analysis to offer the tradeoff between the imaging quality and efficiency. Finally, the implementation and
computational burden of the BF-FFBPA is provided and analyzed. Simulated results and evaluations
are given to prove the correctness of the theory analysis and the validity of the proposed approach.

1. INTRODUCTION

Synthetic aperture radar (SAR) has gained wide attention these years [1–4], because it can not only get
high resolution images of the observed area, but also work day and night under all weather conditions [4].
Therefore, it plays a significant role in both military and civilian fields. However, since the monostatic
SAR working in the forward-looking mode has awful azimuth resolution and serious left-right ambiguity
problem, its many applications, such as airplane navigation and terminal missile guidance, are greatly
limited.

Bistatic SAR refers to SAR systems whose transmitter and receiver are mounted on the separate
platforms, which is different from monostatic SAR with collocated transmitter and receiver. Compared
to monostatic SAR, bistatic SAR has many advantages, such as obtaining different object scattering
information, increasing system survival, and improving stealth in military. More importantly, bistatic
SAR can improve azimuth resolution and avoid lift-right ambiguity problem, and thereby can carry
out the scene imaging in the forward direction. Different bistatic forward-looking SAR (BFSAR)
experiments have been carried out these years [5–8], and a number of challenges have been shown
in deploying BFSAR, such as synchronization, coherency and signal processing. The objective of this
paper is focused on the signal processing in deploying BFSAR imaging, and imaging algorithm is the
key point in the signal processing.

The existing imaging algorithms for BFSAR are divided into two categories: the frequency
domain algorithms and the time domain algorithms. The frequency domain algorithms usually aim
for minimizing processing time. This aim can lead to a number of limits such as bandwidth, integration
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time, either interpolation or approximation in processing, and memory required by processing which
may constrain the usage of the frequency domain algorithms. Recently, some modified frequency domain
algorithms are applied on BFSAR imaging, such as the polar format algorithm (PFA) [9, 10], Omega-k
algorithm [11], chirp scaling algorithm (CSA) [12], and nonlinear chirp scaling algorithm (NLCSA) [4].
However, the Omega-k algorithm and CSA are only available for the azimuth-invariant BFSAR [3].
Thus, they cannot always satisfy the imaging requirement for the general BFSAR geometry in practice.
NLCSA has been used to implement the imaging for azimuth-variant BFSAR [4], but the approximations
of handling the spatial-variant range cell migration and range-azimuth coupling may cause large phase
errors in particular BFSAR cases.

Compared with the frequency domain algorithms, the back projection algorithm (BPA), which
operates in the time domain, can work with almost all configurations of BFSAR in theory. However, the
huge computational burden limits the application of the BPA. In order to solve the shortcoming of the
BPA, some bistatic fast backprojection algorithms (Bi-FBPA) and bistatic fast factorized backprojection
algorithms (Bi-FFBPA) have been proposed in [13–17], and they can be divided into two categories: one
works with sub-aperture and polar gird processing [13–16], and the other works on a sub-aperture and
sub-image basis [17]. In theory, the extensions of Bi-FBPA and Bi-FFBPA are totally valid for BFSAR
without any modification. However, in some special cases of BFSAR, e.g., the centers of the polar
grids are very close or even identical to one of the image coordinates, the performance of the Bi-FBPA
and Bi-FFBPA which work with sub-aperture and polar grid processing may be very poor since there
are difficulties in defining the polar grids [15]. But these difficulties are minimized in Bi-FBPA and
Bi-FFBPA which work on a sub-aperture and sub-image basis. Besides, in the intermediate processing
step, the Bi-FBPA and Bi-FFBPA which work with sub-aperture and polar gird processing use the polar
grids, i.e., working with matrices, while the Bi-FBPA and Bi-FFBPA which work on a sub-aperture
and sub-image basis use beams, i.e., working with vectors, hence, the computational burden required
by the former may be heavier than the latter. Paper [17] presents the Bi-FBPA and Bi-FFBPA which
work on a sub-aperture and sub-image basis, and the requirements of splitting sub-aperture and sub-
image are given, but the sampling requirement of the beams was not given, and the requirements of
splitting sub-aperture and sub-image are derived only for the linear track bistatic case. However, for the
practical BFSAR acquisitions, the radar’s motion errors in the requirements of splitting sub-aperture
and sub-image and the sampling requirement of the beams are essential details in the implementation
of a precise BF-FFBPA.

Based on the previous work, this paper explores a BF-FFBPA based on sub-aperture and sub-image
including the motion errors for the general BFSAR imaging. Firstly, the imaging geometry and signal
model are established, and the implementation of BPA in the BFSAR imaging is given. Secondly, based
on the range error analysis, the more accurate requirements of splitting sub-aperture and sub-image
including motion errors are deduced, which offers the tradeoff between the imaging quality and efficiency.
Thirdly, the method of beam forming is proposed, and the sampling requirement of the beams in the
beam forming stage of implementation of BF-FFBPA is derived. Finally, the speed-up factor of the
proposed BF-FFBPA with respect to BPA is derived.

The remainder of this paper is arranged as follows. Section 2 presents the BPA for general BFSAR
with arbitrary motion based on the analysis of the imaging geometry and signal model. Section 3 gives
details of the proposed BF-FFBPA. First, more accurate requirements of splitting sub-aperture and sub-
image including motion errors are derived. Then, the implementation of the proposed BF-FFBPA is
presented. Last but not the least, the computational burden is analyzed. Section 4 shows the simulated
results and evaluations to prove the validity of the proposed approach, and Section 5 concludes this
paper.

2. BPA FOR GENERAL BFSAR WITH ARBITRARY MOTION

2.1. Imaging Geometry and Signal Model

Since the platform’s speed is much less than the speed of light, the go-stop-go assumption is commonly
used in the pulsed SAR [3, 13]. For the pulsed BFSAR case, transmitter and receiver are assumed
stationary during the transmission and reception of the signal, and they move to the next position only
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after the echo signal is received. Thus, the signal can be modeled as a function of two independent
variables: fast time and slow time.

The imaging geometry of general BFSAR with arbitrary motion is shown in Fig. 1. The dashed
straight lines l1 and l2 indicate the nominal flight tracks of the transmitter and receiver, while their
actual flight tracks are solid curves l3 and l4, respectively. The transmitter operates on the side-looking
mode, while the receiver operates on the forward-looking mode. The positions of the transmitter and
receiver at the slow time η are denoted as (xt(η), yt(η), zt(η)) and (xr(η), yr(η), zr(η)), respectively.
P (x, y, 0) is assumed to be an arbitrary target in the imaging scene. The transmitter and receiver
are assumed to be perfectly synchronized. The travelling distance of a radar pulse radiated from a
transmitter aperture impinging on this target and then reflected to a receiver aperture position at slow
time η is calculated by

r (η;x, y) = rt (η;x, y) + rr (η;x, y) =
√

(xt(η) − x)2 + (yt(η) − y)2 + (zt(η))2

+
√

(xr(η) − x)2 + (yr(η) − y)2 + (zr(η))2 (1)
If the transmitted signal is the linear frequency modulation (LFM) pulse signal, and its mathematic

expression is p(τ) = wr(τ) exp(j2πfcτ + jπKτ2), where τ is the fast time, wr(·) the envelope of range,
fc the center frequency, and K the chirp rate, then, the received signal is

s (τ, η) = σP w [τ − r (η;x, y) /c] wa (η − ηc) exp
[
−j2πfcr (η;x, y) /c + jπK (τ − r (η;x, y) /c)2

]
(2)

where σP is the reflectivity of the target P , c the speed of light, wa(·) the envelope of azimuth, and ηc

the synthetic aperture center time. Assume that the time bandwidth product (TBP) of the transmitted
LFM pulse signal is very large and that the range envelope wr(·) is a rectangle function. Then, the
received signal after range compression can be approximated as

src (τ, η) � σP sinc [B (τ − r (η;x, y)/c)]wa (η − ηc) exp [−j2πfcr (η;x, y)/c] (3)
where B is the signal bandwidth, and the sinc(·) function is defined as

sinc(x) = sin(πx)/(πx) (4)
Due to the characteristic of azimuth space variance and serious range-azimuth coupling in the

BFSAR imaging, it is quite difficult to reconstruct the imaging scene using the frequency domain
algorithms. Different from the frequency domain algorithms, the time domain BPA is considered as a
linear transformation from the echo signal into the reconstructed image, so it avoids the disposal of the
spectrum of the BFSAR target and can be applied directly to the BFSAR imaging with perfect focusing
performance.

2.2. BPA for General BFSAR with Arbitrary Motion

For the imaging geometry of general BFSAR with arbitrary motion shown in Fig. 1, assume that (xp, yq)
is an arbitrary point in the discrete imaging scene grid. At slow time η, the travelling distance of a
radar pulse radiated from a transmitter aperture impinging on the position (xp, yq) and then reflected
to a receiver aperture position is calculated by

Rpq(η) =
√

(xt(η) − xp)2 + (yt(η) − yq)2 + (zt(η))2 +
√

(xr(η) − xp)2 + (yr(η) − yq)2 + (zr(η))2 (5)

The position (xp, yq) is reconstructed by the superposition of backprojected radar echoes along the
full synthetic aperture, and it is mathematically represented by the integral

h (xp, yq) =
∫ ηc+T/2

ηc−T/2
src (Rpq(η)/c, η) exp [j2πfcRpq(η)/c] dη (6)

where T is the synthetic aperture time. An ellipsoidal mapping is the basic for the backprojection in
BFSAR. The foci of the ellipsoid are defined by the actual aperture positions of the transmitter and
receiver platforms, as shown in Fig. 1.

Due to the characteristic of point-by-point calculation, the practical application of BPA is limited
by its heavy computational burden. Efficient time domain algorithms are urgently required to handle
the BFSAR imaging precisely.
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3. BF-FFBPA FOR GENERAL BFSAR WITH ARBITRARY MOTION

To reduce the computational burden of the BPA for general BFSAR imaging, a BF-FFBPA based on
sub-aperture and sub-image for general BFSAR with arbitrary motion is presented in this section.

The proposed BF-FFBPA processes the BFSAR data on a sub-aperture and sub-image basis, i.e.,
local processing. This means that the complete transmitter and receiver apertures are split into a
number of sub-apertures while the full reconstructed scene is segmented into a number of sub-images.
Due to the local processing, the efficiency of image formation is significantly improved, whereas the range
errors are caused in the processing stages, and the phase errors appear in the reconstructed image. The
lower the number of sub-apertures and sub-images is, the shorter processing time BF-FFBPA requires,
whereas the bigger phase error in the reconstructed image appears, so there is a tradeoff between the
imaging efficiency and the imaging quality. Therefore, the requirements of splitting sub-aperture and
sub-image play a significant role in the BF-FFBPA processing.
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Figure 1. Imaging geometry with arbitrary
motion of the general BFSAR.
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Figure 2. Range error analysis in BF-FFBPA for
general BFSAR with arbitrary motion.

3.1. Requirements of Splitting Sub-Aperture and Sub-Image Considering Motion Errors

The proposed BF-FFBPA is able to handle nonlinear flight tracks of the transmitter and receiver as
the derivation of the requirements of splitting sub-aperture and sub-image considers the motion errors.
The motion errors here refer to the trajectory deviation errors.

In order to investigate the requirements of splitting sub-aperture and sub-image, we need to
calculate the bistatic range error between the true travel distance of radar pulse and the processed
travel distance. In the lth transmitter sub-aperture, the kth sub-image and the corresponding lth
receiver sub-aperture, the bistatic range error between the true travel distance of radar pulse and the
processed travel distance are depicted in Fig. 2. Al,c and Bl,c are the positions of the lth transmitter
and receiver sub-aperture center, respectively. Let dt, dr and dk denote the length of the transmitter
sub-aperture, the length of the receiver sub-aperture and the maximum dimension of the sub-image,
respectively. Al,η and Bl,η are the transmitter and receiver aperture positions at slow time η belonging
to the lth sub-aperture, respectively. Let εt,η be the distance between the positions Al,c and Al,η along
the transmitter nominal track. δt,η is the across-track deviation of Al,η from the transmitter nominal
track. Similarly, we use εr,η to denote the distance between the positions Bl,c and Bl,η along the receiver
nominal track, and δr,η to denote the across-track deviation of Bl,η from the receiver nominal track.
The length of the beam belonging to the kth sub-image is limited by two dotted-dashed ellipses in the
ground. The foci of the ellipses are Al,gc and Bl,gc, which are the projections in the ground plane of
Al,c and Bl,c, respectively. Cl,gc is the center of the ellipses. P1 is the position of the ith sample of the
beam belonging to the kth sub-image. P2 is an arbitrary image pixel in the kth sub-image whose value
is mapped by the ith sample of the beam belonging to the kth sub-image.

Therefore, it is seen from Fig. 2 that the true travel distance of radar pulse radiated from the
transmitter position Al,η impinging on the image pixel P2 and then reflected to the receiver position
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Bl,η is R = Rt + Rr, where Rt and Rr indicate the lengths of the straight lines Al,ηP2 and Bl,ηP2,
respectively. However, the processed travel distance is R′ = R′

t + R′
r, where R′

t and R′
r indicate the

lengths of the straight lines Al,ηP1 and Bl,ηP1, respectively. The difference between the true travel
distance R and the processed travel distance R′ causes a range error and thus a phase error in the
reconstructed BFSAR image.

To calculate the range error in the BF-FFBPA for the general BFSAR with arbitrary motion,
some auxiliary variables need to be introduced. Let ρt, σt, ρr, and σr be the lengths of the straight
lines Al,cP1, Al,cP2, Bl,cP1 and Bl,cP2, respectively. Besides, we use βt to denote the angle between
the vector

−−−→
Al,cP1 and the transmitter nominal motion direction, and Δβt to denote the angle between

the vectors
−−−→
Al,cP1 and

−−−→
Al,cP2. Similarly, the angle between the vector

−−−−→
Bl,cP1 and the receiver nominal

motion direction is denoted by βr, and the angle between the vectors
−−−−→
Bl,cP1 and

−−−−→
Bl,cP2 is denoted by

Δβr. Thus, the true travel distance R and the processed travel distance R′ are determined by the law
of cosine as

R = Rt + Rr =
√

σ2
t +ε

′2
t,η−2σtε

′
t,η cos (βt+Δβt + ϕt)+

√
σ2

r + ε′2
r,η−2σrε′r,η cos (βr + Δβr + ϕr) (7)

R′ = R′
t + R′

r =
√

ρ2
t + ε

′2
t,η − 2ρtε′t,η cos (βt + ϕt) +

√
ρ2

r + ε′2
r,η − 2ρrε′r,η cos (βr + ϕr) (8)

where ε′t,η =
√

ε2
t,η + δ2

t,η and ε′r,η =
√

ε2
r,η + δ2

r,η indicate the lengths of the straight lines Al,cAl,η

and Bl,cBl,η, respectively. ϕt and ϕr are the angles which are defined by ϕt = arctan(δt,η/εt,η) and
ϕr = arctan(δr,η/εr,η), respectively. Applying the Taylor expansion for the square root terms on the
right hand side of (7) and taking only the first two terms of the Taylor series into account, the true
travel distance is then approximated by

R ≈ σt + σr − ε′t,η cos (βt + Δβt + ϕt) − ε′r,η cos (βr + Δβr + ϕr) (9)
Similarly, the processed travel distance can be approximated by

R′ ≈ ρt + ρr − ε′t,η cos (βt + ϕt) − ε′r,η cos (βr + ϕr) (10)
According to the principle of ellipsoidal mapping, P1 and P2 are in the same ellipse whose foci are

Al,c and Bl,c. Thus, due to the characteristics of an ellipse, the equation σt + σr = ρt + ρr always holds
true. Then, the range error is calculated as follows:

ΔR =
(R − R′)
2 cos(α)

=
ε′t,η [cos (βt + ϕt) − cos (βt + Δβt + ϕt)]

2 cos(α)
+

ε′r,η [cos (βr + ϕr) − cos (βr + Δβr + ϕr)]
2 cos(α)

=

√
ε2
t,η + δ2

t,η sin
(

βt + ϕt +
Δβt

2

)
sin

(
Δβt

2

)

cos(α)
+

√
ε2
r,η + δ2

r,ηsin
(

βr+ϕr +
Δβr

2

)
sin

(
Δβr

2

)

cos(α)
(11)

where α is half of the angle between the vectors
−−−−→
P2Al,η and

−−−−→
P2Bl,η. Assume that the maximum across-

track deviations of transmitter and receiver from the nominal track along the full synthetic aperture
are δt,max and δr,max, respectively. Then, the following inequations hold true:⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

0 ≤ εt,η ≤ dt/2
0 ≤ εr,η ≤ dr/2
0 ≤ δt,η ≤ δt,max

0 ≤ δr,η ≤ δr,max

sin (βt + ϕt + Δβt/2) ≤ 1
sin (βr + ϕr + Δβr/2) ≤ 1

(12)

Let εk, r1 and r2 be the lengths of the straight lines P1P2, Al,cP2 and Bl,cP2, respectively. Then
we can see from Fig. 2 that ⎧⎪⎪⎨

⎪⎪⎩
sin

(
Δβt

2

)
≈ εk

2r1
≤ dk

4r1,min

sin
(

Δβr

2

)
≈ εk

2r2
≤ dk

4r2,min

(13)
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where r1,min and r2,min are the minimum values of r1 and r2 along the full synthetic aperture, respectively.
Combining Eqs. (11), (12) and (13), the upper bound of the range error can be represented as

ΔR ≤
dk

√
(dt/2)2 + δ2

t,max

4r1,min cos(α)
+

dk

√
(dr/2)2 + δ2

r,max

4r2,min cos(α)
(14)

Assume that the lengths of the full transmitter aperture and receiver aperture are St and Sr and
that the size of imaging scene is Ix × Iy. Then the number of sub-apertures is L = St/dt = Sr/dr, and
the number of sub-images is K = 2IxIy/d

2
k. Therefore, the phase error appears in the reconstructed

image caused by the range error can be represented as

Δφ =
2π
λ

ΔR ≤ π
√

2IxIy/K

4λmin cos(α)

⎡
⎣

√
(St/L)2 + 4δ2

t,max

r1,min
+

√
(Sr/L)2 + 4δ2

r,max

r2,min

⎤
⎦ (15)

where λmin = c/(fc + B/2) denotes the minimum wavelength of the signal. As shown in [3] and [17], if
the maximum phase error is not bigger than π/8, the effect caused by the phase error can be neglected
in the far-field SAR imaging. Thus, the splitting requirements of sub-aperture and sub-image can be
represented as

K ≥
8IxIy

[√
(St/L)2 + 4δ2

t,max/r1,min +
√

(Sr/L)2 + 4δ2
r,max/r2,min

]2

λ2
min cos2(α)

(16)

Equation (16) indicates that if the number of sub-apertures L is selected, the number of sub-images
K should be selected no less than the right-hand side of Eq. (16).

3.2. Sampling Requirement of the Beams and Implementation

Reconstructing the BFSAR image by the proposed BF-FFBPA is divided into two stages, i.e., the
beamforming stage and the backprojection stage. The method of beamforming in the first beamforming
stage of the proposed BF-FFBPA is that all radar echoes after demodulation and range compression
belonging to a sub-aperture are backprojected into the range center line in the ground plane belonging
to a sub-image to form one beam. Take the lth sub-apertures and the kth sub-image shown in Fig. 2
for example, the range center line belonging to the kth sub-image is defined by the straight line crossing
through the center of this sub-image and the center of the ellipse whose foci are the projections of the
centers of the lth transmitter and receiver sub-apertures. In practice, the range center line is sampled
to generate some discrete positions, and the beam is formed by backprojecting the radar echoes to these
positions. The minimum length of the beam is limited by two dotted-dashed ellipses in the ground
shown in Fig. 2.

In order to avoid aliasing in the beamforming, the sampling of the beam must satisfy requirement.
Assume that the positions of the first and the last samples of the beam belonging to the lth sub-
apertures, and the kth sub-image is denoted by Pfirst and Plast, respectively. Let Nb, Δb, and Δr be the
number of samples that the beam consists of, the ground sampling interval of the beam, and the range
sampling interval of the signal, respectively. Assume that the travel distances of a radar pulse radiated
from the center of the lth transmitter sub-aperture impinging on the positions Pfirst and Plast, and then
reflected to the corresponding center of the lth receiver sub-aperture are Rfirst and Rend, respectively.
Let D be the length of the straight line PfirstPlast. Thus, the following equations hold true:{

D = NbΔb

Rend − Rfirst = NbΔr
(17)

According to the Nyquist sampling theorem, the range sampling interval of the signal Δr must
satisfy the requirement Δr ≤ c/B, then the ground sampling interval of the beam Δb should satisfy the
following requirement:

Δb ≤ cD

B (Rend − Rfirst)
(18)
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Figure 3. The flowchart of the implementation of the proposed BF-FFBPA.

Please note that the BF-FFBPA performs multiple beamforming stages before the backprojection
stage. Fig. 3 shows the flowchart of the implementation of the proposed algorithm. The processing in
the red solid rectangle is the beamforming stage, and the processing in the black dashed rectangle is
the backprojection stage.

In the first beamforming stage, the full transmitter and receiver apertures are firstly split into L1

sub-apertures which require a similar split of the range-compressed data at the same time, while the full
reconstructed scene is segmented into K1 sub-images according to Eq. (16). Take the l1th (1 ≤ l1 ≤ L1)
sub-apertures and the k1th (1 ≤ k1 ≤ K1) sub-image for example. Assume that (xl1,k1, yl1,k1) is the
position of an arbitrary sample of the beam belonging to the l1th sub-apertures and the k1th sub-image,
then the value of this sample is determined by

bl1,k1 (xl1,k1, yl1,k1) =
∫ ηl1

+Ts/2

ηl1
−Ts/2

src (Rl1,k1(η)/c, η) exp [j2πfcRl1,k1(η)/c] dη (19)

where ηl1 is the time instant corresponding to the l1th centers of the sub-apertures, and Ts is the
integration time of the l1th sub-apertures. Rl1,k1(η) is calculated by

Rl1,k1(η) =
√

(xl1
t (η) − xl1,k1)2 + (yl1

t (η) − yl1,k1)2 + (zl1
t (η))2

+
√

(xl1
r (η) − xl1,k1)2 + (yl1

r (η) − yl1,k1)2 + (zl1
r (η))2 (20)

where (xl1
t (η), yl1

t (η), zl1
t (η)) and (xl1

r (η), yl1
r (η), zl1

r (η)) denote the transmitter and receiver aperture
positions belonging to the l1th sub-apertures, respectively. Please note that yl1,k1 is the function of
xl1,k1 in the range center line, i.e., yl1,k1 = f(xl1,k1). Thus, bl1,k1(xl1,k1, yl1,k1) can be represented
as bl1,k1(xl1,k1, yl1,k1) = bl1,k1(xl1,k1, f(xl1,k1)) = bl1,k1(xl1,k1). Assume that the travel distance
of a radar pulse radiated from the center of the l1th transmitter sub-aperture impinging on the
position (xl′ ,k′ , yl′ ,k′ ) and then reflected to the center of the l1th receiver sub-aperture is denoted by
Rl1,c

l1,k1
(xl1,k1, yl1,k1), which is calculated by

Rl1,c
l1,k1

(xl1,k1 , yl1,k1) =
√

(xl1,c
t − xl1,k1)2 + (yl1,c

t − yl1,k1)2 + (zl1,c
t )2

+
√

(xl1,c
r − xl1,k1)2 + (yl1,c

r − yl1,k1)2 + (zl1,c
r )2 (21)

where (xl1,c
t , yl1,c

t , zl1,c
t ) and (xl1,c

r , yl1,c
r , zl1,c

r ) are the positions of the centers of the l1th transmitter
and receiver sub-apertures, respectively. Similarly, Rl1,c

l1,k1
(xl1,k1, yl1,k1) can be also represented as
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Rl1,c
l1,k1

(xl1,k1, yl1,k1) = Rl1,c
l1,k1

(xl1,k1). Therefore, xl1,k1 is the inverse function of Rl1,c
l1,k1

, i.e., xl1,k1 =

g(Rl1,c
l1,k1

). Therefore, the beam formed in the l1th sub-apertures and k1th sub-image can be represented
as

bl1,k1 (xl1,k1 , yl1,k1) = bl1,k1

(
Rl1,c

l1,k1

)
(22)

In the mth (2 ≤ m ≤ M , and M is the processing stages of beamforming) beamforming stage, the
number of sub-apertures is combined into Lm, and the number of sub-images is changed into Km. The
new sets of beams in the mth stage are generated from the old sets of beams formed in the (m − 1)th
beamforming stage. Assume that (xlm,km, ylm,km) is the position of an arbitrary sample of the beam
belonging to the lmth (1 ≤ lm ≤ Lm) sub-apertures and the kmth (1 ≤ km ≤ Km) sub-image in the mth
beamforming stage, and γ sub-apertures are combined into one sub-aperture each time, then the value
of this sample is determined by

blm,km (xlm,km, ylm,km) = blm,,km

(
Rlm,c

lm,km

)
=

lmγ∑
lm−1=1+(lm−1)γ

blm−1,,km−1

(
R

lm−1,c
lm,km

)
(23)

where

Rlm,c
lm,km

=

√(
xlm,c

t − xlm,km

)2
+

(
ylm,c

t − ylm,km

)2
+

(
zlm,c
t

)2

+

√(
xlm,c

r − xlm,km

)2
+

(
ylm,c

r − ylm,km

)2
+

(
zlm,c
r

)2
(24)

and

R
lm−1,c
lm,km

=

√(
x

lm−1,c
t − xlm,km

)2
+

(
y

lm−1,c
t − ylm,km

)2
+

(
z

lm−1,c
t

)2

+

√(
x

lm−1,c
r − xlm,km

)2
+

(
y

lm−1,c
r − ylm,km

)2
+

(
z

lm−1,c
r

)2
(25)

In Eq. (25), the coordinates (xlm,c
t , ylm,c

t , zlm,c
t ) and (xlm,c

r , ylm,c
r , zlm,c

r ) indicate the centers of the
lmth transmitter and receiver sub-apertures in the mth beamforming stage, respectively. In Eq. (26),
the coordinates (xlm−1,c

t , y
lm−1,c
t , z

lm−1,c
t ) and (xlm−1,c

r , y
lm−1,c
r , z

lm−1,c
r ) indicate the centers of the lm−1th

transmitter and receiver sub-apertures in the (m − 1)th beamforming stage, respectively.
In the backprojection stage, the beams formed in the Mth beamforming stage are backprojected

into the imaging grid to reconstruct the final BFSAR image. The number of sub-apertures is LM and
the number of sub-images is KM now. Take an arbitrary point in the kM th (1 ≤ kM ≤ KM ) sub-image
grid for example. (xp,kM

, yq,kM
) is supposed to be the position of this point, then the value of this point

after backprojecting is calculated by

hkM
(xp,kM

, yq,kM
) =

LM∑
lM =1

blM ,kM

(
RlM ,c

p,q,kM

)
(26)

where

RlM ,c
p,q,kM

=

√(
xlM ,c

t − xp,kM

)2
+

(
ylM ,c

t − yq,kM

)2
+

(
zlM ,c
t

)2

+

√(
xlM ,c

r − xp,kM

)2
+

(
ylM ,c

r − yq,kM

)2
+

(
zlM ,c
r

)2
(27)

The coordinates (xlM ,c
t , ylM ,c

t , zlM ,c
t ) and (xlM ,c

r , ylM ,c
r , zlM ,c

r ) indicate the centers of the lM th transmitter
and receiver sub-apertures, respectively. Therefore, the sampled version of the kM th sub-image can be
represented in the matrix form as follows:

HkM
=

⎡
⎢⎣

hkM
(x1,kM

, y1,kM
) hkM

(x1,kM
, y2,kM

) . . .

hkM
(x2,kM

, y1,kM
)

. . .
...

... . . .
. . .

⎤
⎥⎦ (28)
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The full BFSAR image is finally reconstructed by a union of all sub-images in a correct order.

3.3. Computational Burden

It is seen from the implementation of the proposed BF-FFBPA that the computational burden is mostly
contributed by three parts, i.e., backprojecting the radar echoes into the range center lines, interpolating
the old beams into the new beams, and interpolating the final beams into the image grids.

Assume that the number of transmitter and receiver aperture positions is Nl, and the imaging
scene grid has the dimensions Nx ×Ny. In the first beamforming stage, the number of samples included
in one beam is assumed to be Nb, then the computational burden of backprojecting the radar echoes
into the range center lines C1 is proportional to L1K1 × (Nl/L1) × Nb, i.e., C1 ∝ K1NlNb. In the
mth beamforming stage, the new beams are interpolated from the old beams formed in the (m − 1)th
beamforming stage, so the computational burden of interpolating the (m − 1)th beams into the mth
beams is proportional to γNbL1K1. Thus after M stages processing of beamforming, the computational
burden C2 can be represented as C2 ∝ MγNbL1K1. In the backprojection stage, the beams formed in
the Mth beamforming stage are backprojected to the imaging scene grid, i.e., interpolating the final
beams into the image grids. The needed number of operations can be represented as C3 ∝ L1NxNy/γ

M .
Therefore, the total computational burden of the proposed BF-FFBPA is

CBF-FFBPA = C1 + C2 + C3 ∝ K1NlNb + MγNbL1K1 + L1NxNy/γ
M (29)

Analogously, the computational burden of the BPA is given by

CBPA ∝ NlNxNy (30)

The speed-up factor of the proposed BF-FFBPA with respect to the BPA can be represented as

κBF-FFBPA =
CBPA

CBF-FFBPA
∝ NlNxNy

K1NlNb + MγNbL1K1 + L1NxNy/γM
(31)

Equation (16) shows that K1 can be represented as the function of L1, thus the speed-up factor
κBF-FFBPA is proportional to the function of L1. Based on Eqs. (16) and (31), the variation trend of the
speed-up factor κBF-FFBPA with respect to L1 is shown in Fig. 4. It is seen from Fig. 4 that the value of
the speed-up factor κBF-FFBPA changes along with the variety of the number of the sub-apertures L1,
and the maximum speed-up factor can be obtained when L1 lies on some location. That is to say, there
is an optimal splitting of sub-aperture to make the imaging efficiency to be improved highest compared
with the BPA.

Figure 4. The variation trend of the speed-up
factor with respect to L1.

Figure 5. The imaging geometry of the simulated
BFSAR imaging with arbitrary motion.
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4. SIMULATION RESULTS AND EVALUATIONS

In order to prove the validity of the proposed BF-FFBPA, a comparative simulation experiment for the
general BFSAR imaging is carried out in this section. The image reconstructed using BPA is used as a
reference for comparison, since BPA can be seen as the most accurate imaging algorithm without any
errors.

4.1. Arrangement

The simulation parameters are shown in Table 1, and the imaging geometry in this simulation is shown
in Fig. 5. The transmitter works on the side-looking mode, and the angle between the nominal track of
transmitter and Y -axis is 15◦. The receiver works on the forward-looking mode, and the nominal track
of receiver is parallel to Y -axis. The transmitter is assumed to be synchronized with the receiver
perfectly. The same motion errors are added to the nominal flight tracks of the transmitter and
receiver. The error added in X-axis is δx = 2 sin(2π(0.3/3)η) + 0.1η, the errors added in Y -axis is
δy = 3 sin(2π(0.8/3)η) + 0.2η, and δz = 5 sin(2π(0.5/3)η) + 0.3η is the errors added in Z-axis.

Table 1. Simulation parameters.

Parameters Values Parameters Values
Center frequency (GHz) 10 Synthetic aperture time (s) 3
Signal bandwidth (MHz) 200 Transmitter nominal velocity (m/s) 40

Sampling frequency (MHz) 240 Transmitter nominal altitude (m) 2000
Pulse repetition frequency (Hz) 500 Receiver nominal velocity (m/s) 50

Pulse duration (µs) 1 Receiver nominal altitude (m) 3500

The simulated ground scene consists of nine stationary point-like targets labeled as A-I in turn,
which are equally spaced in an area of 300m × 300 m (X × Y ). The intervals of the targets in X and
Y -directions are both 100 m, and the scene center position is (2000, 0, 0) m. The radar cross sections
(RCS) of these targets are normalized to be 1 m2.

4.2. Imaging Results

To examine the proposed algorithm, we use the BPA and the proposed BF-FFBPA to reconstruct the
same scene with the same simulated BFSAR data, and a comparative study between the results focused
by the BPA and the proposed BF-FFBPA is used to prove the validity of the proposed algorithm.

The BPA can be implemented conveniently, but the implementation of the proposed BF-FFBPA
needs to select the parameters carefully. The parameters here refer to the number of sub-apertures,
number of sub-images and number of samples included in one beam in the beamforming stage, and the
selections of these parameters for the BF-BBFPA directly affect the imaging efficiency and quality.

From Fig. 4 we can know that there is an optimal splitting of sub-aperture which can make the
speed-up factor arrive at maximum, and the optimal sub-aperture size in this simulation is calculated
to be L1 = 93. Thus, the number of sub-images can be selected to be K1 = 1521 according to Eq. (16).
In order to avoid aliasing in the beamforming, the number of samples included in one beam is selected
to be Nb = 128.

Figure 6 shows the focused results of the point-like targets by the BPA and the proposed BF-
FFBPA. The focused point-like targets shown in Figs. 6(b) and (c) are both inclined with a certain
angle, which is believed to be dependent on the motion parameters of the radar platforms. Besides,
the focused results of all point-like targets shown in Fig. 6(c) are very similar to the results shown in
Fig. 6(b). Visually, there is no difference between the results focused by the BPA and those focused by
the proposed BF-FFBPA, which indicates the validity of the proposed BF-FFBPA.
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(a) (b) (c)

Figure 6. Focused results by different algorithms. (a) Distribution of targets. (b) BPA. (c) The
proposed BF-FFBPA.

(a) (b) (c) (d)

Figure 7. Target A. (a) Focused by BPA. (b) Focused by BF-FFBPA. (c) Cuts in X direction. (d)
Cuts in Y direction.

(a) (b) (c) (d)

Figure 8. Target E. (a) Focused by BPA. (b) Focused by BF-FFBPA. (c) Cuts in X direction. (d)
Cuts in Y direction.

4.3. Evaluation

To further evaluate the performance of the proposed algorithm, three focused point-like targets labeled
as A, E and I are extracted from Fig. 6. The contours of targets A, E and I in the range [−30, 0] dB are
shown in Figs. 7, 8 and 9. Besides, the cuts containing the peak mainlobe in the X and Y directions of
the considered point-like targets are also shown to compare the algorithms’ performance. As observed
from Figs. 7∼9, the contours and cuts of the considered targets focused by the BPA and the proposed
BF-FFBPA are very similar.

The half-power beamwidths (HPBW) of the considered targets A, E and I in both X and Y
direction cuts are measured, and Table 2 shows the measured results. From Table 2, it is seen that
the measured HPBWs obtained by the BPA and the proposed BF-FFBPA are almost identical, which
allows us to predict that there is almost no loss in spatial resolutions due to phase errors caused by the
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(a) (b) (c) (d)

Figure 9. Target I. (a) Focused by BPA. (b) Focused by BF-FFBPA. (c) Cuts in X direction. (d)
Cuts in Y direction.

Table 2. Measured HPBWs of the extracted targets.

Algorithms Target A Target E Target I

BPA X direction (m) 1.664 1.583 1.515
Y direction (m) 0.392 0.392 0.392

The proposed BF-FFBPA X direction (m) 1.664 1.583 1.502
Y direction (m) 0.379 0.392 0.379

approximations in BF-FFBPA.
To prove the imaging efficiency of the proposed algorithm, the processing time of the proposed BF-

FFBPA and BPA is measured in the Matlab R2013b on a computer with a 3.20 GHz Intel processor and
8.00 GB Random Access Memory (RAM). The average processing time of the BPA and the proposed BF-
FFBPA are 1323 s and 138 s, respectively. Compared with BPA, the speed-up factor of the proposed
BF-FFBPA is about 9.6. Therefore, a hint of the processing time reduction is clearly given by the
measured results.

5. CONCLUSION

This paper presents a BF-FFBPA based on sub-aperture and sub-image for general BFSAR considering
motion errors. It can not only accurately dispose the large spatial variant range cell migrations and
complicated motion error, but also achieve high imaging efficiency. The imaging geometry and signal
model are firstly established, based on which the difficulty of using frequency domain algorithm to
reconstruct the BFSAR image is analyzed, and the implementation of BPA to reconstruct the BFSAR
image is given. To reduce the computational burden, the BF-FFBPA based on sub-aperture and sub-
image is successively proposed. The requirement of splitting sub-aperture and sub-image is deduced
considering motion errors in the general BFSAR configuration, and the sampling requirement of the
beams in the beamforming stages of the BF-FFBPA is given. Besides, the implementation of the
proposed algorithm is presented, and the computational burden is discussed. Finally, the correctness of
the theory analysis and validity of the proposed approach are proved by the simulations and evaluations.
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15. Vu, V. T., T. K. Sjögren, and M. I. Pettersson, “SAR imaging in ground plane using fast
backprojection for mono- and bistatic cases,” Proc. IEEE Radar Conf. (RADAR), 0184–0189,
Atlanta, GA, USA, 2012.

16. Shao, Y. F., R. Wang, Y. K. Deng, Y. Liu, R. P. Chen, G. Liu, and O. Loffeld, “Fast backprojection
algorithm for bistatic SAR imaging,” IEEE Geosci. Remote Sens. Lett., Vol. 10, No. 5, 1080–1084,
2013.
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