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ROF for the Combined Field Integral Equation
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Abstract—This article proposes a computational scheme for a combined field integral equation to
compute electromagnetic scattering, which is Reduced order Fitting Green’s function’s Gradient and
Fitting Green’s function with Fast Fourier Transform (ROF). This new scheme can greatly reduce
computation time compared to integral equation Fast Fourier Transform (IE), as well as Fitting Green’s
function’s Gradient and Fitting Green’s function with Fast Fourier Transform (FGG). Firstly, based
on the property of Green’s functions’ integral under special condition, real-coefficient fitting method
is utilized to replace the original complex values expression of combination coefficients with the real
values. Secondly, a cross-shaped grid named as reduced order grid is presented to reduce computation
time for modified near-field coupling impedance. Thirdly, by combining real-coefficient fitting method
and reduced order grid, a new scheme of ROF is achieved. Finally, some examples verify ROF, which
has advantages, such as higher efficiency than that of IE based on original grid and FGG based on
cross-shaped grid, being not sensitive to grid spacing, and keeping the same precision as that of IE
based on original grid.

1. INTRODUCTION

The method of moments (MOM) [1] is one of the typical numerical algorithms based on partitioning
the IE with triangles as surface elements where vector basis functions are defined to transform the
integral equation into a matrix equation. Focusing on accelerating matrix-vector products of MOM’s
resultant matrix equation, there are two kinds of methods: those related to the fast multipole method
(FMM) [2, 3] and multilevel fast multipole algorithm (MLFMA) [4] based on addition theorem [5, 6],
and those based on FFT that relies on decoupling the source points and field points to make resultant
matrix sparse, using FFT to accelerate resultant matrix-vector products [7–9]. Compared to the former
kind of methods, FFT-based methods are more suitable for the case of dense meshing [10]. When
solving multiscale problem, Kong et al. [10] have given a meaningful attempt to propose a combined
scheme of these two kinds of methods. Among the latter methods, Integral Equation with FFT (IE) [9]
projects Green’s function on Cartesian Grid nodes by Lagrange interpolation; however, computation
precision is not high. Aiming at improving precision, Fitting Green’s function’s Gradient and Fitting
Green’s function with FFT (FGG) [11] is proposed utilizing fitting method, whose coefficients are
expressed by complex values [12]. For transforming complex fitting coefficients into real coefficients,
the authors proposed real-coefficient fitting method [12], which can reduce half storage requirement of
fitting coefficient and accelerate solving process. Usually, all of FFT-based algorithms need a cube-like
grid enclosing source/field points, so that basis functions or Green’s functions can be expressed by the
linear combination of the ones on this cube-like grid. After dividing computation domain into two parts
of near- and far-field couplings, in which the part of far-field coupling can be accelerated by FFT, and
the part of near-field coupling must be computed directly. It is noticeable that if the grids of source
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and field points have common grid nodes, near-field coupling impedance elements need to be modified
to avoid the singularity of Green’s function, and mass modified computations based on the original grid
costs a great deal of computation time.

In this article, ROF has been proposed. Firstly, new fitting method or real-coefficient fitting
method is used to compute purely real combination coefficients, which can reduce half of the storage
requirement for combination coefficients and resultant sparse matrices, and accelerate iteration process
compared to original fitting method in FGG. Secondly, reduced order grid or the cross-shaped grid
different from original grid is proposed to reduce the modified products’ number concerning near-field
coupling impedances. Reduced order grid is very suitable for fitting method [11, 12] rather than Lagrange
interpolation in IE due to low precision of the interpolation method. Thirdly, by combining new fitting
method and reduced order grid, a new scheme of ROF is presented. At last, for verifying ROF, some
examples are given to compare ROF, IE based on original grid and FGG based on reduced order grid,
which shows that ROF has less pre-computation time, higher efficiency than IE based on original grid
and FGG with reduced order grid, and ROF is almost not sensitive to grid spacing and keeps the same
precision as one of IE with original grid.

2. FORMULATIONS

2.1. Real-Coefficient Fitting Method Used in FGG

The unknown equivalent electric current distribution on the conductor’s surface can be achieved by
solving electric field integral equation (EFIE) and magnetic field integral equation (MFIE) [1]:

4πEinc|t = [jk0η0

∫
S

[g(r, r′)J(r) + (1/k2
0)∇g(r, r′)∇′ · J(r′)]ds′]|t,

4πHinc|t = [2π(n̂ × J(r)) + P.V.

∫
S
J(r′) ×∇gds′]|t,

(1)

where Einc and Hinc are the incident electric and magnetic fields, respectively; J(r) is the equivalent
electric current; η0 and k0 are the wave impedance and the wave number in the free space; P.V.
is the principal value integral; g(r, r′) is the Green’s function in the free space with the form of
g(r, r′) = e(−jk0|r−r′|)/|r − r′|; subscript t denotes the tangent part; n̂ is the unit outer normal vector
on the object’s surface. Then choose RWG [13] functions as the basis functions and testing functions
to formulate resultant matrix equation:

[aZEFIE + (1 − a)ZMFIE]I = V (2)

with a being the combination coefficient satisfying 0 ≤ a ≤ 1, whose impedance elements have the form
of:

ZEFIE
mn = jk0η0

∫
Tm

dsfm(r) ·
∫

Tn

g(r, r′)fn(r′)ds
′ − jη0

k0

∫
Tm

ds∇ · fm(r)
∫

Tn

g(r, r′)∇′ · fn(r′)ds′,

ZMFIE
mn = 2π

∫
Tm

fm(r) · fn(r)ds +
∫

Tm

ds[n̂ × fm(r)] ·
∫

Tn

∇g(r, r′) × fn(r′)ds
′
,

(3)

in which Tm and Tn are the triangular patches of fm(r) and fn(r), respectively. According to the
interaction between basis functions, resultant impedance matrix can be split into two parts of near-field
interaction and far-field interaction [12]:

aZEFIE + (1 − a)ZMFIE ≈ [a(ZEFIE-near
MOM − ZEFIE-near

FFT ) + (1 − a)(ZMFIE-near
MOM − ZMFIE-near

FFT )]

+aZEFIE-total
FFT + (1 − a)ZMFIE-total

FFT . (4)

As we know, if the distance between basis functions is less than near zone boundary dnear, near-
field interaction impedances computed by FFT-based algorithms present poor accuracy, so all of
the FFT-based algorithms need the pre-correction of near-field interaction impedances. In Eq. (4),
ZEFIE-near

MOM − ZEFIE-near
FFT and ZMFIE-near

MOM − ZMFIE-near
FFT are pre-corrected matrices, in which the subscript
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MOM stands for being computed by MOM, and subscript FFT stands for being computed by FFT-based
algorithm. ZEFIE

FFT and ZMFIE
FFT have the expressions of:

ZEFIE
FFT = jk0η0Π · GΠT − j(η0/k0)ΠdGΠT

d , ZMFIE
FFT = Πg · (∇G × ΠT ), (5)

where Π, Πd and Πg are sparse matrices with the expression similar to Eqs. (10)–(11) in [17], composed
of basis functions and fitting coefficients. G stands for a triple Toeplitz matrix on Cartesian grid nodes.
Superscript T identifies transpose operator. After substituting Eqs. (3)–(5) into Eq. (2), matrix-vector
products in Eq. (2) per iteration can be accelerated by FFT. Each iteration needs 11 FFTs, and the
whole computation complexity is reduced from O(N2) to O(N1.5 log N) [11].

Similar to other FFT-based methods, FGG also needs fitting cube Cm composed of NC = (M +1)3
grid nodes with the center being cm in which M is expansion order. Fig. 1 shows the case of M = 2.
Grid spacing is h in three coordinate directions. Suppose rm to be the minimum radius of spherical
surface enclosing Cm. Rm is the radius of testing spherical surface Sm with the same center cm. Assume
Rm = rm + 0.05λ, λ is the wavelength in free space. {rt}Te

1 are testing points located on Sm, which are
chosen according to [12]. So Green’s function and its gradient can be expressed as:

g(r, r′) =
∑

u∈Cm

πr
u,Cmg(ru, r′), ∇g(r, r′) =

∑
u∈Cm

πr
u,Cm∇g(ru, r′) (6)

where {πr
u,Cm}Nc

u=1 are the fitting coefficients. In this paper, both FGG and ROF employ direct inheriting
scheme for fitting the gradient which features easy formulation [11]. r and r′ are the position vector
of field and source points, respectively. r is surrounded by Cm, and ru is the grid node’s vector. For
solving fitting coefficients, we assume r′ = rt, and over determinant fitting matrix equation with the
dimension of Te × NC can be formulated as:

[X]{πr
Cm} = [Y ], {πr

Cm} = [X]+[Y ],
Xi,j = g(rj, rti), i ∈ [1, Te], j ∈ [1, NC ],
Yi = g(r, rti), i ∈ [1, Te],

(7)

in which [X]+ denotes the generalized inverse of [X]; fitting coefficients {πr
u,Cm}Nc

u=1 are determined by
solving this fitting matrix equation, so sparse matrices Π, Πd and Πg can be decided.

Figure 1. Illustration of representing Green’s function and its Gradient within Cartesian grid.

The most time-consuming per iteration is matrix-vector multiplications concerning sparse matrices
composed of fitting coefficients and basis functions. Noticeably, fitting coefficients by Adaptive Integral
Method [7] and IE are real values, and the fitting coefficients by pre-corrected-FFT [8] and FGG are
complex values, so Adaptive Integral Method and IE have higher efficiency and lower accuracy than pre-
corrected-FFT and FGG under the same grid spacing and expansion order. In essence, fitting technique
in pre-corrected-FFT and FGG is near-matching [14]. When testing points {rt}Te

1 on the testing
spherical surface obey the mean distribution, they have equal weight wt = 4πR2

m/Te, which is the area of
small cell on testing spherical surface. Obviously, [X]+ can be expressed as [X]+ =[wtX

HX]+[wtX
H ].
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Furthermore, taking the limit as the number of testing points Te → ∞ [12], we can rewrite Eq. (7) with
the expression of

{πr
Cm} = [A]+[B],

Ai,j =
∫

Sm

g∗(ri, rt)g(rj , rt)dS, i, j ∈ [1, NC ],

Bi =
∫

Sm

g∗(ri, rt)g(r, rt)dS, i ∈ [1, NC ].

(8)

Then, g(ri, rt) and g(rj, rt) can be expanded by the addition theorem. {k̂p}K1
1 and {k̂q}K2

1 with the
total number K1 = 2L2

1 and K2 = 2L2
2 are the angular directions on Ewald sphere, in which both satisfy

the symmetry to the center of Ewald sphere [12]. K1 and K2 are relative to g(ri, rt) and g(rj , rt),
respectively. So Ai,j has the approximation Āi,j satisfying

Āi,j= [(k0rt)2/2π]
∑K1/2

p=1

∑K2

q=1
ωpωq cos(kp · ri −kq · rj)

∑L

l1=0
(2l1 + 1)

∣∣∣h(2)
l1

(k0rt)
∣∣∣2 Pl1(k̂p · k̂q). (9)

where h
(2)
l1

is the 2nd kind spherical Hankel function of order l1; Pl1 is the Legendre function of order
l1; ωp and ωq are the Gauss weights, L = min{L1, L2}. When K = max{K1,K2}→ ∞,

Ai,j = lim
K→∞

Āi,j. (10)

Besides, Bi has a similar expression to Ai,j. As we can see, Ai,j and Bi are purely real when the test
points approximate infinite on testing spherical surface. The detailed deduction can be referred to [12].
We can use Āi,j and B̄i to approximate Ai,j and Bi, and the fitting coefficients are real values.

2.2. Reduced Order Grid with the Cross shape

As shown in Fig. 1, the original grid is a cube composed of (M + 1) grid nodes in each Cartesian
coordinate direction. When two grids of source and field points are close enough to have not less than
one common grid nodes, it will result in the singularity of Green’s functions and their gradients. So
these impedance elements with fitting grids having the common grid nodes need to be modified by
traditional MOM, which is named as near-field coupling modification shown below:

Zmodified
m,n =ZMOM

m,n −
∑

ru∈Cm
rv∈Cn
u �=v

{
a

[
jk0η0Πu ·Πv−j

η0

k0
Πd,uΠd,v

]
g(ru, rv)+(1−a)Πg,u ·(∇g(ru, rv)×Πv)

}
,

(11)
with Πi, Πd,i and Πg,i being the elements of sparse matrices. When adopting the original grid, the
modified products’ number concerning each near field coupling impedance is [(M + 1)6 − (M + 1)3] ≤
NM ≤ [(M + 1)6 − 1], in which NM is the number of series’ terms at the right hand in Eq. (11). This
process occupies mass pre-computation time and limits the total computation efficiency.

This article proposes a reduced order grid with the cross shape shown in Fig. 2. Fig. 2(a) belongs
to expansion order M = 2, and that grid has 7 grid nodes, which is less than the 27 grid nodes in
original grid. Fig. 2(b) belongs to expansion order M = 3, and that grid has 32 grid nodes, which is
less than the 64 grid nodes in original grid. Obviously, computation time for modified products based
on the reduced order grid is greatly less than that based on the original grid. This new grid is named as
reduced order grid. It is assumed that only one basis function exists within Cm, that one test function
exists within Cn, and that one point Gaussian integral formula is adopted onto basis and test functions’
triangular patches. Table 1 shows the comparison of these two kinds of grids in the number of each
impedance’s modified products. We can see that the maximum of modified terms in reduced order grid
is less than 25% of that in original grid. As a result, pre-computation time can be greatly reduced, and
computation efficiency will be improved.

Specially, if a reduced order grid is used in Lagrange interpolation to compute combination
coefficients, computation precision is not satisfied. So this paper adopts fitting method for reduced order
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(a) (b)

Figure 2. Illustration of reduced order grid with the cross shape, (a) expansion order M = 2 with 7
grid nodes, (b) M = 3 with 32 grid nodes.

Table 1. Comparison of two kinds of grids.

Expansion order Number of grid nodes Maximum of modified terms per Cm

Reduced order grid
2 7 36

3 32 961

Original grid
2 27 676

3 64 3969

grid, which can guarantee computation precision. However, combination coefficients with fitting method
are usually complex values, which results in increasing computation time. If combination coefficients can
be expressed with real values, computation time and storage requirement for combination coefficients
will be reduced by one half, and computation efficiency will be improved. This assumption can be
realized by new fitting method introduced in the following section.

It is worth to note that the truncated Green’s function in [A]+ and [B] of Eq. (8) has some common
terms for all of fitted points. [A]+ can be computed once since it only concerns common grid cube. And
[B] needs to be computed for the different fitted points except for the common terms. So the complexity
of computing fitting coefficients does not consume extra computation time.

2.3. New Scheme of ROF

New fitting method is introduced below:

1). According to fitting matrix Eq. (8), substitute Ai,j and Bi by their approximations Āi,j and B̄i.
Āi,j and B̄i have expressions similar to Eq. (9).

2). Solve Eq. (8) to achieve purely real fitting coefficients.

For comparing new fitting method based on reduced order grid, one example of reduced order grid
with expansion order M = 2 is shown in Fig. 3. Grid spacing satisfies h = 0.2λ (λ is wavelength in free
space), and a fixed point is located outside this reduced order grid for source point r′(0, 0, (M + 1)h),
whose position is right at the near-field coupling boundary dnear = (M + 1)h. The fitted point is set to
move along with the line (x = y = z) from its center to the point of (0.5h, 0.5h, 0.5h). The original
fitting method is based on reduced order grid, and Lagrange interpolation in IE is based on original grid.
For the new fitting method, we can set L1 = L2 = 14, K1 = K2 = 392, which are decided by truncated
Green’s function having the number of modes L = kd + 5 ln(π + kd) with d =

√
3Mh. The original

fitting method is actually Least-Square Method (LSM) [11], and test points obey mean distribution
on the testing spherical surface with the number of Te = 392. We also give the result of new fitting
method based on original grid. Then the relative error of Green’s function is defined as RE(g) with the
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Figure 3. Reduced order grid of expansion order M = 2 with 7 grid nodes and the relative position
between fixed point r′ = (0, 0, 3h) and the moving field point along with the line.
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Figure 4. Relative error curves of different methods based on different grids, (a) is for the fitted point
being along with the diagonal line; (b) is for the fitting point being along with x axis.

expression of

RE(g) =

∣∣∣∣∣∣g(r, r′) −
(M+1)3∑

u=1

πr
u,Cmg(ru, r′)

∣∣∣∣∣∣
|g(r, r′)| , (12)

which reflects different methods’ precision to approximate the original Green’s function. In Eq. (12),
N equals 7 in new fitting method and LSM, 27 in Lagrange interpolation. Relative error curves are
shown in Fig. 4(a). As we can see, new fitting method and LSM based on reduced order grid have
higher precision than Lagrange interpolation based on original grid, and the new fitting method has
comparable precision with LSM. The result of the new fitting method based on reduced order grid
has lower precision than that based on original grid, since reduced order grid has less grid nodes than
original grid. When the fitted point moves along with x axis from its center to the point of (0.5h, 0, 0),
the result shown in Fig. 4(b) is similar to that in Fig. 4(a), and the curve in Fig. 4(b) also monotonically
increases with the distance.

Subsequently, by combining new fitting method and reduced order grid, ROF for combined field
integral equation is achieved to compute electromagnetic scattering problem. Similar to original
fitting method, new fitting method only concerns Green’s function. Importantly, new scheme greatly
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reduces computation time of near-field coupling modification due to reduced order grid. Regardless of
computation efficiency, computation precision of the new scheme is lower than that of FGG based on
original grid, which can be improved by increasing expansion order or decreasing grid spacing.

3. NUMERICAL RESULTS AND DISCUSSION

This section gives several examples to demonstrate efficiency and precision of ROF. The principle of
choosing its grid for fitted point is that the distance from the grid’s center to the fitted point is not
more than 0.5h in each coordinate direction.

In order to accelerate the convergence for solving Eq. (2), an iteration solver of BiCGSTAB [15] is
adopted, and a high efficiency FFTW [16] library of OpenMP version is employed for parallel computing
FFTs in each iteration. The computing platform is AMD processor of 2.3 GHz with 64 kernel and 64 GB
RAM.

ROF and FGG are based on reduced order grid, whereas IE is based on original grid. ROF adopts
the new fitting method. FGG adopts original fitting method or LSM. IE adopts Lagrange interpolation.

3.1. A PEC Sphere

A PEC sphere with radius of 6λ is discretized by triangular patches, including 97864 unknowns. Set
expansion order M = 2 with 7 grid nodes. When grid spacing satisfies h = 0.1λ, 0.2λ, the truncation
number of infinite series in ROF satisfies L = 10, 14, and the number of test points in FGG satisfies
Te = 200, 392. Fig. 5 shows the bistatic RCS curves computed by ROF, FGG and IE, respectively. It
is worth to note that when adopting IE, combination coefficients of ∇g(r, r′) are the same as those of
g(r, r′) [17]. For comparing accuracy of three schemes, the root of mean square error (RMSE) [12] is
defined for comparison (N is the number of unknowns of the recorded zenith).

RMSE =

√√√√ 1
N

N∑
m=1

∣∣∣(RCS/λ2)Calculated − (RCS/λ2)MOM
∣∣∣2. (13)

0 20 40 60 80 100 120 140 160 180
10

15

20

25

30

35

40

45

50

55

R
C

S/
λ

2  (
dB

)

Theta (degree)

 

MOM

 

ROF
 FGG
 IE

0 20 40 60 80 100 120 140 160 180
10

15

20

25

30

35

40

45

50

55

R
C

S/
λ

2  (
dB

)

Theta (degree)

 

MOM

 

ROF
 FGG
 IE

(a) (b)

Figure 5. Comparison of three schemes with (a) h = 0.1λ and (b) h = 0.2λ.

Table 2 shows that due to reduced order grid, ROF reduces storage by 67%, improves efficiency by
almost 60% compared to IE, and due to real coefficients computed by new fitting method, the new scheme
only needs half of storage, 34% total consuming time compared to FGG. Due to adopting reduced order
grid in ROF and FGG compared to original grid in IE, they have less total memory, memory of sparse
coefficients matrices, pre-computation time and time per iteration than ones of IE. And due to adopting
real coefficient scheme in ROF, it has less total memory, memory of sparse coefficients matrices and
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Table 2. Comparison of three schemes.

Grid
spacing

h/λ

Memory
of sparse

coefficients
matrices/MB

Total memory
requirement/MB

Pre-computation
time(s)

Time per
iteration(s)

Total
time(s)

RMSE

0.1
ROF 82.12 875.6 422 42 758 0.10
FGG 164.05 1012.4 427 62.9 1065 0.10
IE 251.90 2124.3 687.5 102.8 2024 0.11

0.2
ROF 82.15 624.1 209 27.9 432 0.93
FGG 164.04 866.8 218 39.6 653 0.93
IE 251.86 1624.5 457 55.7 1125 0.98

time per iteration than ones in FGG. Simultaneously the new scheme keeps the comparable precision
to IE and FGG. Therefore, the new scheme can balance reducing computation time and precision.
Also, this example gives a fact that the performance of modified near-field coupling directly influences
the total computation efficiency, and computing method of combination coefficients directly influences
computation precision.

3.2. A PEC Dihedral

This example is a dihedral with angle of 90◦ shown in Fig. 6. Each plate has a dimension of 5λ × 5λ.
The number of unknowns is 9042. The direction and polarization of incident plane wave are also given
in Fig. 7.

Grid spacing is set to h = 0.15λ. Then RCS curves in xoy-plane are given in Fig. 7 with expansion
order M = 2, 3. The truncation number of the infinite series in ROF can be chosen as L = 12 and 17,
respectively. The number of test points in FGG can be chosen as Te = 288 and 578 respectively. When
expansion order increases, precision of three schemes is improved. ROF and FGG have almost the same
precision.

Furthermore, reduced order grid has fewer grid nodes, which results in reduction of near-field
coupling modification. Of course, reduced order grid has so few grid nodes that Lagrange interpolation
is not suitable. As we can see in Fig. 7, IE with Lagrange interpolation needs more points than the
former two schemes to keep higher precision.

x

y

z

k

Einc

Figure 6. A PEC dihedral with angle of 90◦ (ϕin = 45◦, θin = 90◦, θS = 90◦).
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Figure 7. Bistatic RCS curves of ROF, FGG and IE, (a) expansion order M = 2; (b) expansion order
M = 3.

The above examples verify ROF in computation efficiency and precision. The new fitting method
of ROF can enhance computation efficiency greatly without degrading precision [11]. The reduced order
grid of ROF reduces computation time in modified impedance for improving computation efficiency. It
is worth to note that the precision of ROF can satisfy the practical requirement. Furthermore, similar to
FGG, ROF only projects the original Green’s function onto the nodes of the reduced order grid, and the
ultimate computation error mainly comes from the fitting method. The independence of basis functions
makes ROF applicable to compute scattering from complex dielectric body by combining surface or
volume integral equation [18].

4. CONCLUSION

This paper proposes a new scheme of ROF for the combined field integral equation to compute
electromagnetic scattering problems. At first, an important property of Green’s function integral is
used to formulate a new fitting method, which results in real combination coefficients for decreasing
pre-computation time and improving efficient. Next, aiming at reducing computation time of near-field
coupling modification, reduced order grid is presented to greatly reduce computation time of near-field
coupling modification compared to original grid. In the following, combining reduced order grid and the
new fitting method, ROF is achieved which features that the efficiency is higher than that of FGG by
LSM in reduced order grid and IE by Lagrange interpolation in original grid; the precision is comparable
with that of IE in original grid. Finally, some examples are given for validating new scheme in efficiency
and precision. Besides, reduced order grid and the new fitting method can be used in other FFT-based
algorithms to reduce computation time of near-field coupling modification and keep high precision.
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