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Semi-Analytical Modeling of Spoke-Type Permanent-Magnet
Machines Considering the Iron Core Relative Permeability:

Subdomain Technique and Taylor Polynomial

Lazhar Roubache1, *, Kamel Boughrara1, Frédéric Dubas2, and Rachid Ibtiouen1

Abstract—This article presents a novel contribution to the improvement of the analytic modeling
of electrical machines using two-dimensional (2-D) subdomain technique with Taylor polynomial. To
validate this novel method, the semi-analytical model has been implemented for spoke-type permanent-
magnet (PM) machines (STPMM). Magnetostatic Maxwell’s equations are solved in polar coordinates
and in all parts of the machine. The global solution is obtained by using the traditional boundary
conditions (BCs), in addition to new radial BCs (e.g., between the PMs and the rotor teeth) which
are traduced into a system of linear equations according to Taylor series expansion. The magnetic
field calculations are performed for two different values of iron core relative permeability (viz., 10 and
1,000) and compared to finite-element method (FEM) predictions. The results show that a very good
agreement is obtained.

1. INTRODUCTION

The full calculation of magnetic field in electrical machines is the first step for their design and
optimization. The methods of magnetic field prediction can be classified in various categories [1]:
Lehmann’s graphical, numerical equivalent circuit, Schwarz-Christoffel mapping, Maxwell-Fourier Some
comprehensive reviews of magnetic field prediction in electrical machine can be found in [1–8], and
their references. Numerical methods (i.e., the finite-element, finite-difference, or boundary-element
analysis) [9–11], which can be classified as the very accurate method compared to the real results
with large flexibility to various geometries, include nonlinear and nonhomogeneous materials. The
most accurate models are three-dimensional (3-D) numerical methods. However, these approaches are
very time-consuming and not very suitable for optimization analysis. Nevertheless, in [12, 13], it is
possible to optimize electromagnetic systems from numerical methods. Nowadays, in order to reduce
the computation time, hybrid numerical methods can be developed [14]. The actual design works are
mainly based on (semi-)analytical models (i.e., equivalent circuit, SC mapping and Maxwell-Fourier
methods) [1]. These approaches have been proposed under some geometrical and physical assumptions.
Maxwell-Fourier methods are one of the most resent semi-analytic approaches with good accurate results
in 2D or 3-D electromagnetic performance calculation. These models are based on the formal resolution
of Maxwell’s equations applied in each subdomain of the electromagnetic devices. These subdomains can
be divided into two types of subdomains, viz., periodic (e.g., air-gap) and non-periodic (e.g., slots, teeth,
tooth-tips. . . ). In the second type, the general solution is derived by applying homogeneous Neumann
BCs. These conditions are obtained from the approximation that the iron parts are considered to be
infinitely permeable. In the literature, we find the applications of these methods for the analysis of
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several types of electrical machines, such as [2, 7, 8, 15–19] for PM synchronous machines, [20–22] for
solid or cage rotor induction motors, and [23–25] for reluctance machines. It is interesting to note that
an overview on the existing (semi-)analytical models in Maxwell-Fourier methods with the local/global
saturation has been realized in [1], whose some details and the (dis)advantages of these techniques
can be found. In [6, 23–25], the authors approximate the adjacent regions (e.g., rotor slots/teeth)in
the harmonic modeling technique as one homogeneous region with a relative permeability developed
as a Fourier series expansion. In [1], Dubas and Boughrara developed the first model introducing
the iron parts in the magnetic field calculation using subdomain technique, where the authors solved
partial differential equations (EDPs) of magnetic potential vector in Cartesian coordinates in which the
subdomains connection is performed directly in both directions (i.e., x- and y-edges). However, to apply
this contribution in the modulation of electrical machines, it should transform it to polar coordinates.
Thus, the work in this paper takes part in the development and improvement of the subdomain technique
on the scientific topic.

The aim of this paper is to propose a new contribution improving 2-D subdomain technique with
Taylor polynomial by focusing on the consideration of iron. The proposed technique involves solution
in polar coordinates of Laplace’s and Poisson’s equations in the stator yoke, stator slots and teeth,
air-gap, rotor teeth, PMs, and rotor nonmagnetic regions. For the rotor (i.e., PMs/teeth) and stator
(i.e., slots/teeth), we take the general solution considering the nonhomogeneous Neumann BCs. In
addition to traditional interface conditions between two adjacent regions represented with radius value
and interval of angles (e.g., between the air-gap and stator slots/teeth), we add the consideration of the
interface conditions between two adjacent regions represented with angle value and interval of radius
(e.g., between the PMs and the rotor teeth). The first type of interface conditions permits to get a
system of linear equations according to Fourier series expansion, and the second type permits to obtain a
system of equations according to Taylor series expansion. All results from the developed semi-analytical
model are then compared to those found by FEM [26].

2. PROBLEM DEFINITIONS

2.0.1. Magnetic Field Solution

Figure 1 represents the topology of fractional-slot STPM machines with the definition of region where
Region I represents the air-gap, Region II the nonmagnetic material under rotor magnetic (i.e., under
PMs and rotor teeth), Region III the stator yoke, Region IV the buried PMs, Region V the rotor

Figure 1. Example of fractional-slot STPM machines (i.e., 24-slots/22-poles) with the definition of
regions.
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teeth, Region VI the stator slots, and Region VII the stator teeth. The 2-D semi-analytical model is
formulated in magnetic vector potential Az and polar coordinates (r, θ) with the following assumptions:

• the end-effects are neglected (i.e., that the magnetic variables are independent of z);
• the stator tooth-tips and rotor bridge are not considered. However, they can be introduced easily;
• the stator slots/teeth, rotor teeth and PMs have radial sides;
• the current density has only one component along the z-axis;
• the electrical conductivities of materials are assumed to be null (i.e., the eddy-currents induced in

the copper/iron/PMs are neglected);
• the PMs demagnetization curve is assumed to be linear;

• the direction of PMs magnetization is supposed purely tangential, i.e.,
−→
M = {0,Mθ, 0}

In this article, we take into account the iron core relative permeability in stator (i.e., yoke and teeth)
and rotor (i.e., teeth) subdomain regions.

The general EDP issued from magnetostatic Maxwell’s equations in a continuous and isotopic region
can be expressed, in term of magnetic potential vector Az, by

ΔAz(r, θ) = 0, in Region I, II, III, V, and VII (1)

ΔAz(r, θ) = −μ0∇×−→
M, in Region IV (2)

ΔAz(r, θ) = −μ0Jz, in Region VI (3)

where
−→
M is the PMs magnetization, Jz the current density in the stator slots, and μ0 the vacuum

permeability. The field vectors
−→
B = {Br; Bθ; 0} and

−→
H = {Hr; Hθ; 0} in the different regions are

coupled by:
−→
B = μ0

−→
H, in Region I, II, and VI (4)

−→
B = μ0μrm

−→
H + μ0

−→
M, in Region IV (5)

−→
B = μ0μrc

−→
H, in Region III, V, and VII (6)

where μrm is the relative recoil permeability of PMs, and μrc is the relative permeability of the iron
core. Using

−→
B = ∇×−→

A , the r- and θ-components of magnetic flux density are deduced from Az by

Br =
1
r

∂A

∂θ
and Bθ = −∂A

∂r
(7)

2.1. General Solution of Laplace’s Equation with Nonhomogeneous Neumann BCs

In a general case of electrical machine analysis using subdomain technique, the iron parts are considered
to have infinite relative permeability (which leads to homogeneous Neumann BCs in slots/PMs/teeth
subdomains), and Laplace’s, Poisson’s or Helmholtz’s equations should be solved only in slots/PMs/Air-
gap regions [8, 20]. In order to add rotor/stator teeth in the magnetic field prediction in electrical
machines, it is necessary to consider the general solution of Maxwell’s equations with nonhomogeneous
Neumann BCs.

In slots/PMs/teeth subdomains, we have to solve the Laplace’s equation in polar coordinates

∂2Az(r, θ)
∂r2

+
1
r

∂Az(r, θ)
∂r

+
1
r2

∂2Az(r, θ)
∂θ2

= 0 (8)

The electrical machines have cylindrical form, and the following periodicity condition between 0 and 2π
should be added to solution

Az(r, θ)|θ=0 = Az(r, θ)|θ=2π (9)

Considering the periodicity condition given in Eq. (9), the general solution of Eq. (8) can be written as

Az(r, θ)=D10+D20ln(r)+
∞∑

k=1

(
D1kr

k+D2kr
−k
)
sin(k (θ−θ1))+

∞∑
k=1

(
D3kr

k+D4kr
−k
)
cos(k (θ−θ1)) (10)
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Figure 2. Slots/PMs/teeth subdomains with
nonhomogeneous Neumann BCs.

Figure 3. Description: Air-gap (i.e., Region I),
nonmagnetic material under rotor magnetic (i.e.,
Region II) and stator yoke (Region III).

where k is a positive integer, and D10 − D4k are the integration constants.
As shown in Figure 2, the slots/PMs/teeth subdomains are delimited by r ∈ [R1; R2]∧ θ ∈ [θ1; θ2]

and are associated with the following BCs:

D1(r) =
∂A(r, θ)

∂θ

∣∣∣∣
θ=θ1

=
∞∑

k=1

k
(
D1kr

k + D2kr
−k
)

(11a)

D2(r) =
∂A(r, θ)

∂θ

∣∣∣∣∣
θ=θ2

=
∞∑

k=1

k
(
D1kr

k + D2kr
−k
)

cos (ka)+
∞∑

k=1

k
(
D3kr

k+D4kr
−k
)
sin(ka) (11b)

In the case where D1(r) = D2(r) = 0 (i.e., homogeneous Neumann BCs), the derivation of
Eqs. (11a) and (11b) gives

∞∑
k=1

k
(
D1kr

k + D2kr
−k
)

= 0 ⇒ D1k = D2k = 0 (12a)

∞∑
k=1

k
(
D3kr

k + D4kr
−k
)

sin (k a) = 0 ⇒ k =
mπ

a
(12b)

where m is a positive integer, and the solution of Eq. (10) can be simplified as

Az(r, θ) = D10 + D20 ln(r) +
∞∑

m=1

(
D3mr

mπ
a + D4mr−

mπ
a

)
cos
(mπ

a
(θ − θ1)

)
(13)

As explicated in [1], D10 − D4m can be determined by Fourier series expansions associated with BCs
for the radii R1 and R2. In the general case where the variation of Az versus θ for θ = θ1 and θ = θ2

is not necessarily null, it should consider the general solution of Eq. (10), which can be written with
another form as

Az = D10 + D20 ln(r) +
∞∑

m=1

(
B1mr

mπ
a + B2mr−

mπ
a

)
cos
(mπ

a
(θ − θ1)

)

+
∞∑

k=1

(
D1kr

k + D2kr
−k
)

sin (k(θ − θ1)) +
∞∑

k=1
k �= mπ

a

(
D3kr

k + D4kr
−k
)

cos (k(θ − θ1)) (14)
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where B1m & B2m are new integration constants which respectively represent D3k & D4k for k = mπ/a.
It is interesting to note that the added Fourier constants D1k −D4k can be determined by Taylor series
expansions associated with BCs for θ1 and θ2, and some explanations of the obtained equations are
explained in Section 2.6. The solution of Poisson’s equations is derived by adding the corresponding
particular solution.

2.2. Solution of Laplace’s Equation in Regions I, II and III

1) Air-gap (Region I): In the air-gap, which is an annular domain at r ∈ [R2; R3] (see Figure 3), the
solution of Eq. (1) is defined by

AzI(r, θ) = A10 + A20 ln(r) +
∞∑

n=1

(
A1nrn + A2nr−n

)
sin(nθ) +

∞∑
n=1

(
A3nrn + A4nr−n

)
cos(nθ) (15)

where n is a positive integer, and A10 − A4n are the integration constants in Region I.
2) Nonmagnetic Material under Rotor Magnetic (Region II): The general solution in this subdomain

has the same form as the solution in Region I. Nevertheless, in adding the condition of the finite value
of Az for r = 0, the solution can be written as

AzII(r, θ) =
∞∑

n=1

A5nrn sin(nθ) +
∞∑

n=1

A6nrn cos(nθ) (16)

where A5n & A6n are the integration constants in Region II.
3) Stator Yoke (Region III): In the stator yoke, which is an annular domain at r ∈ [R4; Rext] (see

Figure 3), the general solution has the same form as the solution in Region I. Nevertheless, in adding
the Dirichlet’s BC for r = Rext, the solution can be written as

AzIII(r, θ) =
∞∑

n=1

A7n

((
r

Rext

)n

−
(

r

Rext

)−n
)

sin(nθ)+
∞∑

n=1

A8n

((
r

Rext

)n

−
(

r

Rext

)−n
)

cos(nθ) (17)

where A70 − A8n are the integration constants in Region III.

2.3. Solution of Poisson’s Equation with Nonhomogeneous Neumann in Regions IV and
VI

1) Buried PMs (Region IV): In each buried PM subdomain (j) of Region IV (see Figure 1), we have to
solve Eq. (2), i.e., Poisson’s equation. Because the direction of PMs Magnetization is purely tangential,
Eq. (2) can be reduced to

∂2Az(r, θ)
∂r2

+
1
r

∂Az(r, θ)
∂r

+
1
r2

∂2Az(r, θ)
∂θ2

= −μ0
Mθ

r
(18)

where Mθ = Mj = (−1)j · Brm/μ0 with j varying from 1 to 2p poles, and Brm is the remanent flux
density of PMs.

As shown in Figure 4(a), the jth PM is associated with nonhomogeneous Neumann BCs, and using
the method explicated in Section 2.2, the solution of Eq. (18) can be written as

AzIV j(r, θ) = B1j0 + B2j0 ln(r) − μ0Mjr +
∞∑

m=1

(
B1jmr

mπ
a + B2jmr−

mπ
a

)
cos
(mπ

a

(
θ − αj +

a

2

))

+
∞∑

k=1

(
D1jkr

k + D2jkr
−k
)

sin
(
k
(
θ − αj +

a

2

))

+
∞∑

k=1
k �= mπ

a

(
D3jkr

k + D4jkr
−k
)

cos
(
k
(
θ − αj +

a

2

))
(19)
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(a) (b)

Figure 4. Nonhomogeneous Neumann BCs for (a) jth buried PMs and (b) ith stator slot.

where m and k are the positive integers; B1j0 − B2jm and D1jk − D4jk are the integration constants;
αj is the angular position of the jth PMs; a is the PM-opening.

2) Stator Slots (Region VI):In each slot subdomain (i) of Region VI, we have to solve Eq. (2), i.e.,
Poisson’s equation,

∂2Az(r, θ)
∂r2

+
1
r

∂Az(r, θ)
∂r

+
1
r2

∂2Az(r, θ)
∂θ2

= −μ0Ji (20)

where Jzi is the current density in the ith stator slot with i varying from 1 to Qs in which Qs represents
the number of stator slots.

Taking into account the BCs shown in Figure 4(b), the solution of Eq. (20) can be written as

AzV Ii(r, θ) = C1i0 + C2i0 ln(r) − 1
4
μ0Jir

2 +
∞∑

m=1

(
C1imr

mπ
c + C2imr−

mπ
c

)
cos
(mπ

c

(
θ − γi +

c

2

))

+
∞∑

k=1

(
E1ikr

k + E2ikr−k
)

sin
(
k
(
θ − γi +

c

2

))
+

∞∑
k=1

k �= mπ
c

(
E3ikrk + E4ikr

−k
)

cos
(
k
(
θ − γi +

c

2

))
(21)

where m and k are the positive integers; C1i0 −C2im and E1ik −E4ik are the integration constants; γi

is the angular position of the ith stator slot; c is the stator slot-opening.

2.3.1. Solution of Laplace’s Equation with Nonhomogeneous Neumann BCs in Regions V and VII

1) Rotor Teeth (Region V): The jth rotor tooth is a subdomain region with nonhomogeneous Neumann
BCs as shown in Figure 5(a). As explicated in Section 2.2, the solution of Eq. (1), i.e., Laplace’s
equation, can be written as

AzV j(r, θ) = B3j0 + B4j0 ln(r) +
∞∑
l=1

(
B3jlr

lπ
b + B4jlr

− lπ
b

)
cos
(

lπ

b

(
θ − βj +

b

2

))

+
∞∑

k=1

(
D5jkr

k + D6jkr
−k
)

sin

(
k

(
θ − βj +

b

2

))

+
∞∑

k=1

k �= lπ
b

(
D7jkr

k + D8jkr
−k
)

cos
(

k

(
θ − βj +

b

2

))
(22)
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(a) (b)

Figure 5. Nonhomogeneous Neumann BCs for (a) jth rotor and (b) ith stator teeth.

where l and k are the positive integers; B3 j0 – B4 jl and D5 jk – D8 jk are the integration constants; βj

is the angular position of the jth rotor teeth; b is the rotor tooth-opening.
2) Stator Teeth (Region VII): The ith stator tooth is a subdomain region with nonhomogeneous

Neumann BCs shown in Figure 5(b). As explained in Section 2.2, the solution of Eq. (1), i.e., Laplace’s
equation, can be written as

AzV IIi(r, θ) = C3i0 + C4i0 ln(r) +
∞∑
l=1

(
C3ilr

lπ
d + C4ilr

− lπ
d

)
cos
(

lπ

d

(
θ − δi +

d

2

))

+
∞∑

k=1

(
E5ikrk + E6ikr−k

)
sin
(

k

(
θ − δi +

d

2

))

+
∞∑

k=1
k �= lπ

d

(
E7ikrk + E8ikr−k

)
cos
(

k

(
θ − δi +

d

2

))
(23)

where l and k are the positive integers; C3i0 −C4il and E5ik −E8ik are the integration constants; δi is
the angular position of the ith stator teeth; d is the stator tooth-opening.

2.3.2. Interfaces Conditions between Regions

To determine the integration constants in Eqs. (15)–(17), (19), and (21)–(23), the BCs at the interface
between the various regions should be introduced.

The interfaces conditions in this model can be divided into two types. One is over angle
interval for given radius value {R1, R2, R3, R4}, and the other is over radius interval for given angle
{αj ± a/2, βj ± b/2, γi ± c/2, δi ± d/2}. As the obtained equations from each type of these interfaces
conditions have the same form, it is sufficient to show one example for each type. The interface conditions
are:

• between Region IV, V and I at r = R2:

AzI(R2, θ) = AzIV j(R2, θ) for αj − a

2
≤ θ ≤ αj +

a

2
(24)

AzI(R2, θ) = AzV j(R2, θ) for βj − b

2
≤ θ ≤ βj +

b

2
(25)

HθI(R2, θ) = HθIV j(R2, θ) for αj − a

2
≤ θ ≤ αj +

a

2
(26)
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HθI(R2, θ) = HθV j(R2, θ) for βj − b

2
≤ θ ≤ βj +

b

2
(27)

• between Region IV and V at αj + a/2 = βj − b/2 and αj+1 − a/2 = βj + b/2 for r ∈ [R1; R2]:

AzIV j

(
r, αj +

a

2

)
= AzV j

(
r, βj − b

2

)
(28)

Hr IV j

(
r, αj +

a

2

)
= Hr V j

(
r, βj − b

2

)
(29)

AzIV (j+1)

(
r, αj+1 − a

2

)
= AzV j

(
r, βj +

b

2

)
(30)

Hr IV (j+1)

(
r, αj+1 − a

2

)
= Hr V j

(
r, βj +

b

2

)
(31)

The interface conditions in Eqs. (24)–(27) concern regions with different subdomain frequencies which
need Fourier series expansions to satisfy equalities of magnetic potential vector and tangential magnetic
field. According to Fourier series expansion, the interface condition in Eq. (24) gives

B1j0 + B2j0 ln(R2) − μ0MjR2 +
1
a

∞∑
k=1

(
D1jkR

k
2 + D2jkR

−k
2

) αj+
a
2∫

αj− a
2

sin
(
k
(
θ − αj +

a

2

))
dθ

+
1
a

∞∑
k=1

k �= mπ
a

(
D3jkR

k
2 + D4jkR

−k
2

) αj+
a
2∫

αj− a
2

cos
(
k
(
θ − αj +

a

2

))
dθ =

1
a

αj+
a
2∫

αj− a
2

AI(R2, θ)dθ (32)

B1jmR
mπ
a

2 +B2jmR
−mπ

a
2 +

2
a

∞∑
k=1

(
D1jkR

k
2+D2jkR

−k
2

) αj+
a
2∫

αj− a
2

sin
(
k
(
θ−αj+

a

2

))
cos
(mπ

a

(
θ−αj+

a

2

))
dθ

+
2
a

∞∑
k=1

k �= mπ
a

(
D3jkR

k
2 + D4jkR

−k
2

) αj+
a
2∫

αj− a
2

cos
(
k
(
θ − αj +

a

2

))
cos
(mπ

a

(
θ − αj +

a

2

))
dθ

=
2
a

αj+
a
2∫

αj− a
2

AI(R2, θ) cos
(mπ

a

(
θ − αj +

a

2

))
dθ (33)

The interface condition in Eq. (25) gives

B3j0 + B4j0 ln(R2) +
1
a

∞∑
k=1

(
D5jkR

k
2 + D6jkR

−k
2

) βj+
b
2∫

βj− b
2

sin
(

k

(
θ − βj +

b

2

))
dθ

+
1
b

∞∑
k=1

k �= mπ
a

(
D7jkR

k
2 + D8jkR

−k
2

) βj+
b
2∫

βj− b
2

cos

(
k

(
θ − βj +

b

2

))
dθ =

1
b

βj+
b
2∫

βj− b
2

AI(R2, θ)dθ (34)

B3jmR
mπ
a

2 +B4jmR
−mπ

a
2 +

2
b

∞∑
k=1

(
D5jkR

k
2+D6jkR

−k
2

) βj+
b
2∫

βj+
b
2

sin
(
k

(
θ−βj+

b

2

))
cos
(

mπ

a

(
θ−βj+

b

2

))
dθ
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+
2
b

∞∑
k=1

k �= mπ
b

(
D7jkR

k
2 + D8jkR

−k
2

) βj+
b
2∫

βj+
b
2

cos
(

k

(
θ − βj +

b

2

))
cos
(

mπ

a

(
θ − βj +

b

2

))
dθ

=
2
b

βj+
b
2∫

βj+
b
2

AI(R2, θ) cos
(

mπ

a

(
θ − βj +

b

2

))
dθ (35)

The interfaces conditions in Eqs. (26) and (27) give

A20

R2
=

1
2π

Qr∑
j=1

αj+
a
2∫

αj− a
2

HθIV j(R2, θ)dθ +
1
2π

Qr∑
j=1

βj+
b
2∫

βj− b
2

HθV j(R2, θ)dθ (36)

−n

μ0

(
A1nRn−1

2 −A2nR−n−1
2

)
=

1
π

Qr∑
j=1

αj+
a
2∫

αj− a
2

HθIV j(R2, θ) sin(nθ)dθ+
1
π

Qr∑
j=1

βj+
b
2∫

βj− b
2

HθV j(R2, θ)sin(nθ)dθ (37)

−n

μ0

(
A3nRn−1

2 −A4nR−n−1
2

)
=

1
π

Qr∑
j=1

αj+
a
2∫

αj− a
2

HθIV j(R2, θ)cos(nθ)dθ+
1
2π

Qr∑
j=1

βj+
b
2∫

βj− b
2

HθV j(R2, θ)cos(nθ)dθ (38)

The interface conditions in Eqs. (28)–(31) concern two polynomials equations with a different degree,
which need Taylor series expansions around Rt such as Rt ∈]R1; R2] to satisfy equalities of magnetic
potential vector and radial magnetic field. The Taylor polynomial degree is chosen to satisfy the lack of
equations obtained by Fourier series expansion of previous interface conditions compared to the number
of unknowns in system, so for k varying from 1 to Kr it is enough to take Taylor polynomial of degree
2Kr − 1. Therefore, the interface condition in Eq. (28) gives

AIV j

(
Rt, αj +

a

2

)
= AV j

(
Rt, βj − b

2

)
(39)

∂kAIV j

∂rk

(
Rt, αj +

a

2

)
=

∂kAV j

∂rk

(
Rt, βj − b

2

)
(40)

From the interface condition in Eq. (29), we get

HrIV j

(
Rt, αj +

a

2

)
= HrV j

(
Rt, βj − b

2

)
(41)

∂kHrIV j

∂rk

(
Rt, αj +

a

2

)
=

∂kHrV j

∂rk

(
Rt, βj − b

2

)
(42)

From the interface condition in Eq. (30), we get

AIV j+1

(
Rt, αj+1 − a

2

)
= AV j

(
Rt, βj +

b

2

)
(43)

∂kAIV j+1

∂rk

(
Rt, αj +

a

2

)
=

∂kAV j

∂rk

(
Rt, βj − b

2

)
(44)

From the interface condition in Eq. (31), we get

HrIV j+1

(
Rt, αj+1 − a

2

)
= HrV j

(
Rt, βj +

b

2

)
(45)

∂kHrIV j+1

∂rk

(
Rt, αj +

a

2

)
=

∂kHrV j

∂rk

(
Rt, βj − b

2

)
(46)
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There are no simple expressions to define the system obtained by Taylor series expansions (39)–(46).
However, the coefficients of the unknowns in this system can be defined recursively. For example, the
development of interface conditions (Eq. (39)) and (Eq. (40)) permits to define new coefficients CB1k

for the vector potential of region IV as⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

k = 0 B1j0 + . . . + B1jmR
mπ

a
t cos(mπ) + . . . = AzV j

(
Rt, βj − b

2

)
⇒ CB1 0 = R

mπ
a

t cos(mπ)

k = 1
B2j0

Rt
+ . . . + B1jm

mπ

aRt
R

mπ
a

t cos(mπ) + . . . =
∂AzV j

∂r

(
Rt, βj − b

2

)
CB1 1 =

mπ

aRt
CB1 0

k = 2
−B2j0

R2
t

+ . . . + B1jm
mπ

a Rt

mπ
a

− 1

Rt
R

mπ
a

t cos(mπ) + . . . =
∂2AzV j

∂r2

(
Rt, βj − b

2

)
CB1 2 =

mπ
a

− 1

Rt
CB1 1

(47)

The coefficients CB1 k can be defined by the recursive formula as:{
CB1 0 = R

mπ
a

t cos(mπ)
CB1 k+1 =

mπ
a

+1−k

Rt
CB1 k

(48)

The other coefficients are deduced with the same reasoning.
It is interesting to note that the interface conditions for the radii {R1, R3, R4} and for the angels

{γi ± c/2, δi ± d/2} are developed with the same previous method

3. RESULTS AND VALIDATION

The developed semi-analytical method for fractional-slot STPM machines taking into account the iron
core relative permeability is used to determine electromagnetic performances (viz., the magnetic flux
density, the magnetic flux linkage, the back EMF, the electromagnetic/cogging/ripple torques, the non-
intrinsic unbalanced magnetic forces,. . . ) whose various formulas have been clarified in [19].

The main dimensions and parameters of the fractional-slot STPM machines (e.g., 24-slots/22-poles)
with the buried PMs and a single layer winding are given in Table 1. Then, semi-analytic results are
verified by 2-D FEM [26]. For the finite-elements simulation, we have used 99,199 nodes and 194,796
elements.

Table 1. Parameters of the studied machine.

Symbol Parameters Value (Units)
Brm Remanence flux density of PMs 1.2 (T)
μrm Relative permeability of PMs 1
Nc Number of conductors per stator slot 108
Im Peak phase current 18 (A)
Qs Number of stator slots 24
c Stator slot-opening 7.5 (deg)
a PM-opening 3.27 (deg)
p Number of pole pairs 11

Rext Radius of the external stator surface 110 (mm)
R4 Outer radius of stator slot 100 (mm)
R3 Radius of the stator outer surface 79 (mm)
R2 Radius of the rotor inner surface at the PM surface 78 (mm)
R1 Radius of the rotor inner surface at the PM bottom 57 (mm)
g Air-gap length 1 (mm)
Lu Axial length of the machine 63 (mm)
Ω Mechanical pulse of synchronism 1,100 (rpm)
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Figure 6. Radial and tangential components of the magnetic flux density in the middle of the air-gap
(i.e., Region I): (a) PMs alone, (b) stator current alone and (c) on load condition.
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The waveforms of radial and tangential components of the magnetic flux density in the various
regions are computed with a finite number of harmonic terms, viz., N = 200, M = L = 20 and K = 2.
The analytic calculation of magnetic flux distribution in all regions is done with two different values
of the iron core relative permeability (viz., 10 and 1,000). In each case, the relative permeability is
supposed the same for all iron parts (i.e., stator yoke, stator and rotor teeth). However, it should be
noted that it is possible to take special permeability value for each region.

In Figure 6, a comparison between the numerical results and semi-analytical predictions is shown
in term of the magnetic flux density in the middle of the air-gap (i.e., Region I) for three operating
conditions : i) PMs alone, ii) stator currents alone, and iii) on load condition. One can see that
the diminution of the iron core relative permeability is accompanied by a decrease in magnetic flux
amplitude. It can be seen that a very good agreement for the radial and tangential components of the
magnetic flux density is obtained.

The proposed model is characterized by the ability to know the magnetic flux density in all machine
regions, such as stator/rotor yoke, stator slots, stator/rotor teeth and PMs. Figure 7(a) shows the radial
and tangential components of the magnetic flux density in the middle of the PMs/rotor teeth under a
pole-pitch for on load condition. Very good agreement is obtained for the tangential component. For
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Figure 7. Radial and tangential components of the magnetic flux density under tooth-pitch for on load
condition in the middle of (a) PMs/rotor tooth and (b) stator slot/tooth.
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Figure 8. Radial and tangential components of the magnetic flux density for on load condition at: (a)
θ = α1 and (b) θ = γ3.

the radial component, the results are good with agreeable error, the same order of accuracy is seen for
stator slot/teeth under a tooth-pitch shown in Figure 7(b).

Another presentation of obtaining results is shown in Figure 8, where the radial and tangential
components of the magnetic flux density for on load condition are plotted in function of the radius at
a given angle. For the semi-analytic results, the magnetic flux density is calculated for each interval of
radius by the corresponding solution. The results are obtained for θ = α1 and θ = γ3, and very good
agreement is obtained.

The static torque versus rotor position is presented in Figure 9(a). The stator currents are supposed
constant, and the rotor position is updated to have nominal rotation speed. As obtained, the mechanical
angle has Θrs = 2π/p fundamental period, and the maximum torque is obtained for Θrs = π/2p.
The maximum torque decreases for small value of relative permeability. It can be seen that a very
good agreement is obtained for the two proposed values of relative permeability. Figure 9(b) shows
the electromagnetic torque waveform versus electrical angle. At each instant, the stator currents are
updated to have a sinusoidal current waveform. The initial rotor position is taken for giving maximum
torque value, i.e., Θrs0 = π/2p.

The induced back EMF for no-load condition is shown in Figure 10. The simulation is done for
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Figure 9. (a) Static torque and (b) electromagnetic torque at Θrs0 = π/2p for on load condition (with
I = 18 A).
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Figure 10. Induced back EMF for no-load condition (with I = 0A).

two different values of iron core relative permeability, and the obtained results confirm the accuracy of
the proposed semi-analytical model.

Figure 11(a) shows the evolution of simulation time versus the number of harmonics. To reduce
the computation time of the semi-analytical model, the number of spatial harmonics N , M , L and K
can be reduced. However, this leads to reduction in accuracy. It is seen that for a giving value of spatial
harmonics, the RMS error will not be affected very much by increasing the number of spatial harmonics.
This value can be chosen as an optimal value. Figure 11(b) shows the evolution of RMS error for the
radial component of the magnetic flux density in the middle of the air-gap versus harmonic order of
Regions I, II, and III (i.e., N) for several values of harmonic order of the other regions. The RMS error
is calculated by

error =

√√√√Npc∑
m=1

(
BNumeric

Ir,m − BAnalytic
Ir,m

)2
/

Npc (49)

It can be seen from Figure 11(b) that the error starts to converge around N = 180, M = L = 6 and
K = 1.
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Figure 11. Influence of the number of harmonics associated with Regions I, II and III (i.e., N) on the
radial component of the magnetic flux density in the middle of the air-gap versus numeric simulations
for several values of the number of harmonics associated with the other regions: (a) the calculation time
and (b) the RMS error.

4. CONCLUSION

In this paper, we have proposed an improved semi-analytical model based on subdomain technique with
Taylor polynomial for prediction open-circuit, armature reaction and on load magnetic field distribution
in STPM machines. The proposed model takes into account the relative permeability in all machine
regions including the iron parts.

One of the largest advantages of the discussed approach is its ability to account the finite
permeability in rotor/stator teeth and yoke, with the possibility to get the solution of magnetic flux in
these regions. Currently, only linear PM material proprieties are considered. However, nonlinear PM
materials could be accounted by means of an iterative algorithm, and also the proposed model offers
the possibility to take especial finite permeability for each PM or rotor/stator teeth, same for rotor and
stator yoke.

Semi-analytic results are in excellent agreement with the ones obtained by 2-DFEM. From these
results, we show the accuracy of the semi-analytical model for several values of iron core relative
permeability.

APPENDIX A. NOMENCLATURE

Hrx,Hθx Radial and tangential components of the magnetic flux intensity in x domain where x can
be I, II, III, IV, V, VI, or VII.

Az x Magnetic potential vector in x domain.
αj, a Position and opening width of jth PMs.
βj , b Position and opening width of jth rotor tooth.
γi, c Position and opening width of ith stator slot.
δi, d Position and opening width of ith stator tooth.
n Harmonic order for air-gap, nonmagnetic material, and stator yoke.
k,m, l Harmonic order for slots/PMs/teeth.
Jz Current density.
μ0 Vacuum permeability.
μrc Relative permeability of iron core.
μrm Relative permeability of PMs.
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