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Electromagnetic Spin Current Density of Surface Plasmon Polaritons

Shi Yao Chong and Jian-Qi Shen*

Abstract—A subject of plasmonic spinphotonics is developed for surface plasmon polaritons (SPPs).
Since an electromagnetic field is a vectorial field, it has spinning angular momentum, and thus
spin current is one of its degrees of freedom. A spin current density tensor has 24 independent
components because of its antisymmetry in coordinate indices. By using the law of conservation of
electromagnetic angular momentum (i.e., orbital angular momentum plus spinning angular momentum),
the electromagnetic spin current density tensor is derived, and its characteristics are indicated. Since
surface plasmon polaritons can exhibit various intriguing optical and electromagnetic effects and have
many practical applications, we consider a new potential effect relevant to spin current transfer. The
electromagnetic spin current density tensor and its intensity profile are analyzed for SPPs sustained
on a metal-dielectric interface. The plasmonic spin on a metal ring and a straight thin metal belt is
calculated, and based on this, a nanomechanical effect caused by plasmonic spin current transfer is
suggested. It is expected that such a nontrivial nanomechanical effect will be useful in the design of
new nanophotonic devices aiming at sensitive, accurate measurement techniques.

1. INTRODUCTION

Surface plasmon polaritons (SPPs) can be identified as electromagnetic eigenstates confined to an
interface, of which the two adjacent media are usually an ordinary dielectric with positive permittivity
and a metal with negative permittivity. Historically, the concept of SPPs originated from Ritchie’s
theoretical analysis of plasma losses relevant to fast electrons in 1957 [1]. In recent years, with
current progress in a wealth of electromagnetic simulation methods and the state-of-the-art nano
fabrication technologies, such as electron beam lithography [2], molecular beam epitaxy [3], and focussed
ion beam [4], researches of various mechanisms and applications of SPPs have become increasingly
intensive in a large number of fields [5, 6]. Surface plasmonics involves a variety of topics relevant
to optics, photonics, electronics and many other interdisciplines, e.g., artificial metamaterials [7],
surface-enhanced Raman scattering [8, 9], modern sensors [10], nanophotonic devices [11–13], and sub-
wavelength optics [14].

Most of the degrees of freedom of SPPs, e.g., field intensity, energy density, polarization and phase,
have been utilized in surface plasmonics. As far as we know, less attention has been paid to the spin
current density of SPPs. In this paper, we will concentrate our attention on the electromagnetic spin
current of SPPs as well as its potential applications in plasmonic nanomechanical effects. As well known,
in spintronics (spin electronics), electron spin and its transfer dynamics have attracted considerable
interest of many researchers [15,16]. For similar reasons, the duplicate of electron spin in photonics, i.e.,
plasmonic spin current, which will have important theoretical significance and potential applications
in some areas of nanophotonic device design, should also deserve consideration. For example, the
spin current density of SPPs may lead to some nontrivial mechanical effects, which can be utilized
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in the design of new photonic devices such as nanoscale-sensitivity sensors and spin-transfer–based
nanomechanical devices.

The present paper is organized as follows. First, we will address the concept of electromagnetic
spin current density tensor by using the conservation law of electromagnetic angular momentum. Such
a spin current density tensor has 24 independent components. We will obtain all the components for the
SPPs on a metal-dielectric interface. The profiles of the nonzero components of the spin current density
will be plotted for the SPPs. The volume integral of the SPPs spin current density will be evaluated,
and based on this, a new nanomechanical effect, where the plasmonic spin transfer plays a key role, will
be suggested for a thin metal film.

2. SPPS ON A METAL-DIELECTRIC SURFACE AND THE SPIN CURRENT
DENSITY OF ELECTROMAGNETIC FIELD

Surface plasmon modes can be confined onto metal surfaces due to boundary conditions of the Maxwell
fields. According to the dispersion relations, there can be two kinds of surface plasmon modes [15–17]:
specifically, one is localized in metal nanoparticles, called “localized surface plasmons”, which is not a
propagating mode, and the other is bounded on the interface between a metal and a dielectric medium.
Such surface modes can propagate through dozens of micrometers or even hundreds of micrometers
along the surface, but decays exponentially into two neighboring media within a penetration depth
of 200 or 300 nm perpendicular to the metal-dielectric interface [15–17]. Both of the surface plasmon
modes can have spin current density and exhibit some nanomechanical effects caused by plasmonic spin
current transfer. In this paper, we shall focus on only the propagating surface plasmon polaritons on the
metal-dielectric interface, which is shown in Figure 1. Here medium 1 is an ordinary dielectric medium
with positive relative dielectric constant, and medium 2 is a metal, of which the relative permittivity
is ε2 = 1 − ω2

p/ω
2, where ωp denotes the plasma frequency of metal. When the frequency of the

electromagnetic wave ω < ωp, the relative permittivity of medium 2 is negative. We assume that the
plane of incidence for the SPPs eigenstate is zOx. The TM-mode SPPs can propagate in the z-direction,
and its field decays exponentially in the x-direction.

Figure 1. The geometric configuration of a metal-dielectric interface, which can support SPPs. The
permittivity of one of the medium (say, medium 1) is positive, and the permittivity of the other medium
(medium 2) is negative.

From the Maxwell equations and electromagnetic boundary conditions, the electric field strengths
of the SPPs in both media are given by{

E1 = E(0)
1 exp (−α1x) exp [i (βz − ωt)] , x > 0

E2 = E(0)
2 exp (α2x) exp [i (βz − ωt)] , x < 0

(1)

where the attenuation coefficients are α1 =
√

β2 − k2
0ε1 and α2 =

√
β2 − k2

0ε2, and the phase constant
is β = k0

√
ε1ε2

ε1+ε2
. Here, the vacuum wavenumber square is k2

0 = (ω/c)2. Since α1 and α2 are positive,
the electric field decays exponentially away from the interface of the two media. With the help of Gauss’
law ∇ ·E = 0 and Faraday’s law of electromagnetic induction ∇×E = −∂B

∂t , the electric and magnetic
field strengths in both media can be derived by using the electromagnetic boundary conditions [5, 6].
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The result is given as follows⎧⎪⎪⎨
⎪⎪⎩

E1 =
(

iβ

α1
E

(0)
1z , E

(0)
1y , E

(0)
1z

)
exp (−α1x) exp [i (βz − ωt)] , x > 0

E2 =
(
− iβ

α2
E

(0)
2z , E

(0)
2y , E

(0)
2z

)
exp (α2x) exp [i (βz − ωt)] , x < 0

(2)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

H1 =
i

ωμ0

(
iβE

(0)
1y ,

k2
0ε1

α1
E

(0)
1z , α1E

(0)
1y

)
exp (−α1x) exp [i (βz − ωt)] , x > 0

H2 =
i

ωμ0

(
iβE

(0)
2y ,−k2

0ε2

α2
E

(0)
2z ,−α2E

(0)
2y

)
exp (α2x) exp [i (βz − ωt)] . x < 0

(3)

Here E
(0)
y and E

(0)
z are the amplitudes of electric field in the y- and z-directions, respectively. In

this situation, only the TM modes can exist, and according to the boundary conditions, we require
E

(0)
1y = E

(0)
2y = 0.

Now we shall consider the spin current density tensor of electromagnetic field by using the
conservation law of total angular momentum. From Noether’s theorem [18], the canonical energy-
momentum tensor, T μν , of the electromagnetic field is given by

T μν = −Fμσ∂νAσ − ημν�, � = −1
4
FμνFμν , (4)

where � denotes the Lagrangian density of the electromagnetic field, and Fμν is the electromagnetic
field tensor, i.e., Fμν = ∂μAν − ∂νAμ. Here, Aμ is a four-dimensional electromagnetic vector potential.
The electric field and magnetic flux density can be written explicitly as E

c = −(F 0x, F 0y, F 0z),
B = −(Fyz, Fzx, Fxy). ημν = ημν is Minkowski metric with signature (+,−,−,−), so that it has
the metric components η00 = 1, η11 = η22 = η33 = −1, and the remainders are zero. Here, all
the Greek letters represent the spacetime coordinate indices (0, x, y, z). The Einstein summation
convention (i.e., sum over repeated indices) is implied in tensor calculation Eq. (4). Since T μν is
neither a symmetric nor a gauge covariant energy-momentum tensor, its asymmetry in the indices μ, ν
indicates that the electromagnetic field can exhibit a nonzero spin current density sμλν . The orbital
angular momentum current density of the electromagnetic field can be defined as Lμλν = T μνxλ−T μλxν ,
where the indices μ, ν, λ range over 0, x, y, z [18]. By taking the four-dimensional covariant divergence
of the electromagnetic orbital angular momentum current density and using the conservation law of
electromagnetic energy and momentum (i.e., ∂μT μν = 0, ∂μT μλ = 0), one can obtain

∂μLμλν = T μν∂μxλ − T μλ∂μxν = T λν − T νλ. (5)

By using the relation in Eq. (4), the antisymmetric tensor T λν − T νλ yields

T λν − T νλ = −F λσ∂σAν + F νσ∂σAλ = −∂σ

(
F λσAν − F νσAλ

)
, (6)

where the equation of motion of the free electromagnetic field (i.e., the Maxwell equation ∂σF λσ = 0,
∂σF νσ = 0) is substituted. Now it follows from Eqs. (5) and (6) that a conservation law of the total
angular momentum turns out to be in the form

∂μ

[
Lμλν +

(
F λμAν − F νμAλ

)]
= 0. (7)

Since Lμλν is an orbital angular momentum current density (tensor) of the electromagnetic field, from
Eq. (7), the spinning angular momentum current density (tensor) of the electromagnetic field should be
the form

sμλν = F λμAν − F νμAλ. (8)

The electromagnetic spin current density tensor sμλν has the following properties: i) sμλν is
antisymmetric in its indices λ, ν, i.e., sμλν = −sμνλ; ii) sμλν has 24 independent components in a four-
dimensional spacetime (since it is antisymmetric in indices λ, ν, there are 6 independent components
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{λν}, and the index μ corresponds to 4 independent components. Thus, there are 4 × 6 independent
components in sμλν); iii) the electromagnetic spin current density (tensor) agrees with the relation
sμλν + sνμλ + sλνμ = 2(FμνAλ + F λμAν + F νλAμ).

We shall consider some of the components that have explicit physical meanings. When the
superscript index μ = 0, s0λν = F λ0Aν − F ν0Aλ, which can be identified as the electromagnetic spin
density, if λ and ν range over the spatial indices x, y, z. Since F λ0 = Eλ and F ν0 = Eν , the spin
density vector s0λν can be rearranged as

s = E × A, (9)
where A is a three-dimensional magnetic vector potential. Note that expression (9) is a quantity in
natural units [19]. In the international system of units (SI), the electromagnetic spin density turns out
to be

s = ε0εr · Re(E) × Re(A), (10)
where the electric field and magnetic vector potential are taken to be the real parts. When we derive the
spin current density by using the concept of canonical energy-momentum tensor and the law of angular
momentum conservation, i.e., Eq. (4) to Eq. (8), the electric field and magnetic vector potential are
real vectors. However, in obtaining the explicit expressions for the electric field and magnetic vector
potential of SPPs, i.e., Eq. (1) to Eq. (3), we use the complex field formalism. Therefore, in order to
derive the instantaneous spin current density of SPPs, we should take the real parts of the electric field
and magnetic vector potential of SPPs, as performed in Eq. (10).

In order to indicate the physical meaning of the spin density in Eqs. (9) and (10), as an illustrative
example, we shall consider two polarization modes of a simple plane wave (i.e., left- and right-handed
circularly polarized fields) in vacuum. The electric field vectors of the left- and right-handed polarized
fields are given by

EL
x = E0 cos(ωt − kz), EL

y = E0 sin(ωt − kz),

ER
x = E0 cos(ωt − kz), ER

y = −E0 sin(ωt − kz),
(11)

and the magnetic vector potentials, which can be defined as E = −∂A
∂t under the condition of Coulomb

gauge, are of the form

AL
x = −E0

ω
sin(ωt − kz), AL

y =
E0

ω
cos(ωt − kz),

AR
x = −E0

ω
sin(ωt − kz), AR

y = −E0

ω
cos(ωt − kz),

(12)

where the superscripts L,R represent the left- and right-handed circularly polarized fields, respectively.
We shall calculate the electromagnetic spin vector S = ε0

∫
E × AdV for both left- and right-handed

circularly polarized fields. The nonzero spin density of the left-handed circularly polarized field is
given by sL

z = ε0(EL
x AL

y − EL
y AL

x ) = ε0E2
0

ω , and its volume integral is SL
z =

∫
sL
z dV =

∫ ε0E2
0

ω dV . It
should be pointed out that for a quantized electromagnetic field (photon field), where the electric
field E0 is a second-quantized operator, the volume integral of the field energy density ε0E

2
0 is∫

ε0E
2
0dV =

(
nL + 1

2

)
�ω, where � denotes the reduced Planck constant; the integer nL is a total

number of photons; 1
2�ω stands for a quantum-vacuum zero-point fluctuation energy [18]. Therefore, the

spin of the left-handed circular polarization is SL
z =

(
nL + 1

2

)
�, i.e., a left-handed circularly polarized

photon has a spin with the magnitude of � and a vacuum mode has a spin of 1
2�. For the right-handed

circularly polarized photon field, the spin density is given by sR
z = ε0(ER

x AR
y −ER

y AR
x ) = − ε0E2

0
ω , and the

volume integral is SR
z =

∫
sR
z dV = − ∫ ε0E2

0
ω dV . Then the spin of the right-handed circularly polarized

quantized electromagnetic field is SR
z = − (

nR + 1
2

)
�, where nR is a total number of right-handed

circularly polarized photons. Then the total spin is given by Stot
z = SL

z + SR
z = (nL − nR)�. If, for

example, nL = nR (i.e., for a linearly polarized mode), the total spin vanishes. Here, the spins of left-
and right-handed polarized modes at quantum vacuum level are also exactly cancelled.

In the above, we have pointed out that s0λν is a spin density, and the other components sμλν are
spin current densities, which are necessary in spin transfer dynamics in the future topics of plasmonic
spinphotonics.
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3. THE SPIN CURRENT DENSITY OF SURFACE PLASMON POLARITONS

In this section, we shall study all the nonzero components of the spin current density tensor of the
SPPs. From Eq. (2) or Eq. (3), the magnetic vector potential of the surface plasmon polaritons on both
sides of the interface can be obtained by using B = ∇× A or E = −∂A

∂t :⎧⎪⎪⎨
⎪⎪⎩

A1 =
1
iω

(
iβ

α1
E

(0)
1z , E

(0)
1y , E

(0)
1z

)
exp (−α1x) exp [i (βz − ωt)] , x > 0

A2 =
1
iω

(
− iβ

α2
E

(0)
2z , E

(0)
2y , E

(0)
2z

)
exp (α2x) exp [i (βz − ωt)] . x < 0

(13)

Substituting Eq. (2) and Eq. (13) into Eq. (8), one can obtain the spin current density tensor of SPPs
(in SI units). The tensor sμλν has 64 (i.e., 43) components, and among them 24 are independent. It can
be found that only seven of them are nonzero components for the present SPPs. We will list all these
nonzero components: In medium 1, the spin current density can be expressed as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

s0zx = ε1ε0 (E1zA1x − E1xA1z) = ε1ε0
β

ωα1

(
E

(0)
1z

)2
exp (−2α1x) ,

sxxz = ε1ε0B1yA1x = −ε1ε0
βk2

0ε1

ω2α2
1

(
E

(0)
1z

)2
exp (−2α1x) sin(βz − ωt) cos(βz − ωt),

szzx = −ε1ε0B1yA1z = ε1ε0
k2

0ε1

ω2α1

(
E

(0)
1z

)2
exp (−2α1x) sin2(βz − ωt),

sx0x = −ε1ε0E1xA1x = ε1ε0
β2

ωα2
1

(
E

(0)
1z

)2
exp (−2α1x) sin(βz − ωt) cos(βz − ωt),

sx0z = −ε1ε0E1xA1z = ε1ε0
β

ωα1

(
E

(0)
1z

)2
exp (−2α1x) sin2(βz − ωt),

sz0x = −ε1ε0E1zA1x = −ε1ε0
β

ωα1

(
E

(0)
1z

)2
exp (−2α1x) cos2(βz − ωt),

sz0z = −ε1ε0E1zA1z = −ε1ε0
1
ω

(
E

(0)
1z

)2
exp (−2α1x) sin(βz − ωt) cos(βz − ωt),

(14)

and in medium 2, the spin current density can be written explicitly as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

s0zx = ε2ε0 (E2zA2x − E2xA2z) = −ε2ε0
β

ωα2

(
E

(0)
1z

)2
exp (2α2x) ,

sxxz = ε2ε0B2yA2x = −ε2ε0
βk2

0ε2

ω2α2
2

(
E

(0)
1z

)2
exp (2α2x) sin(βz − ωt) cos(βz − ωt),

szzx = −ε2ε0B2yA2z = −ε2ε0
k2

0ε2

ω2α2

(
E

(0)
1z

)2
exp (2α2x) sin2(βz − ωt),

sx0x = −ε2ε0E2xA2x = ε2ε0
β2

ωα2
2

(
E

(0)
1z

)2
exp (2α2x) sin(βz − ωt) cos(βz − ωt),

sx0z = −ε2ε0E2xA2z = −ε2ε0
β

ωα2

(
E

(0)
1z

)2
exp (2α2x) sin2(βz − ωt),

sz0x = −ε2ε0E2zA2x = ε2ε0
β

ωα2

(
E

(0)
1z

)2
exp (2α2x) cos2(βz − ωt),

sz0z = −ε2ε0E2zA2z = −ε2ε0
1
ω

(
E

(0)
1z

)2
exp (2α2x) sin(βz − ωt) cos(βz − ωt).

(15)

Here, s0zx is the nonzero component of the spin density s that has been mentioned in Eqs. (9) and (10).
Its volume integral S =

∫
ε0εr · Re(E) × Re(A)dV is the spin vector (spinning angular momentum) of

the SPPs. By using the second quantization procedure for S [18], such a spinning angular momentum
operator of a quantized electromagnetic field, which has discrete eigenvalues, can be obtained. Now as
a tentative study, we shall be primarily concerned with the first-quantization characteristics of the spin
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current, i.e., the intensity profile of all the nonzero components of the spin current density of SPPs.
The distribution of the spin density component s0zx is shown in Figure 2, where the magnitude of s0zx

has been normalized, and the unit of the space coordinates is c/ω0 with ω0 the angular frequency of
the SPPs. In subgraph (a) of Figure 2 there is a cross-sectional diagram of s0zx component in medium
1, and in subgraph (b) there is its distribution on both sides of the interface. In both media of the
interface, the magnitude of s0zx decays exponentially in the x-direction. While in the z-direction, it is
uniform (i.e., independent of the coordinate z). The distributions of the other 6 nonzero components
of the spin current density in the x-z plane are plotted in Figures 3–5. It can be found that all these
spin current density components (sxxz, szzx, sx0x, sz0x, sx0z and sz0z) oscillate in the z-direction, and
they diminish exponentially in the x-direction. In Figures 2–5 for the plasmonic spin current density
distribution, the parameter ωt in Eq. (15) is zero, and the phase constant β and attenuation coefficients
α1, α2 of the SPPs are chosen as

√
6ω0/c and

√
3ω0/c, 3ω0/c, respectively.

(a) (b)

Figure 2. The spatial distribution of the spin current density component s0zx. The profiles of s0zx in
medium 1 (x > 0) and in both medium 1 (x > 0) and medium 2 (x < 0) are plotted in subgraph (a)
and subgraph (b), respectively. This spin current density component s0zx is uniform in the z-direction
and it decays exponentially in the x-direction.

In the present paper, we will suggest the plasmonic nanomechanical effect of SPPs based on the
analysis of S. All the other nonzero components given in Eqs. (14) and (15) can in principle be used to
investigate the plasmonic spin current transfer in nanomechanical device design.

4. THE SPINNING ANGULAR MOMENTUM AND MECHANICAL EFFECT OF
SPPS

In order to suggest a plasmonic nanomechanical effect caused by SPPs spin transfer, first we shall
evaluate the nonzero y-component of the vector of SPPs

Sy = S0zx =
∫ +∞

−∞
s0zxdxdydz. (16)

Since s0zx is independent of the spatial coordinates y and z, we can assume
∫

dydz = A with A an area
on the y-z plane. By substituting the explicit expression s0zx given in Eqs. (14) and (15) into Eq. (16),
Sy has the form

Sy = ε0

(
E

(0)
1z

)2
A

(∫ 0

−∞
ε1

β

ωα1
exp (−2α1x) dx +

∫ +∞

0
−ε2

β

ωα2
exp (2α2x)dx

)

= ε0

(
E

(0)
1z

)2
A

(
ε1

β

ωα1

1
2α1

− ε2
β

ωα2

1
2α2

)
. (17)

By using the relation ε1
α1

= − ε2
α2

for the SPPs, the y-component Sy of the plasmonic spin can be
rearranged as

Sy = ε0

(
E

(0)
1z

)2 A ε1β

ωα1

(
1
α1

+
1
α2

)
. (18)
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(a) (b)

(c) (d)

Figure 3. The spatial distribution of the spin current density components sxxz and szzx. The
distribution of sxxz in medium 1 (x > 0) and in both medium 1 (x > 0) and medium 2 (x < 0) is
plotted in subgraph (a) and subgraph (b), respectively; The distribution of szzx in medium 1 (x > 0)
and in both medium 1 (x > 0) and medium 2 (x < 0) is plotted in subgraph (c) and subgraph (d),
respectively. These two spin current density components (sxxz and szzx) are oscillating in the z-direction
and they diminish exponentially in the x-direction.

If medium 1 is vacuum or air and medium 2 a metal, then the attenuation coefficients α1 and α2 are
given by ⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩
α1 =

√
− ε2

1

ε1 + ε2

ω

c
=

√
− 1

1 + ε2

ω

c
,

α2 =

√
− ε2

2

ε1 + ε2

ω

c
=

√
− ε2

2

1 + ε2

ω

c
.

(19)

Then we have
1
α1

+
1
α2

=
√

−(1 + ε2)
c

ω

(
1 − 1

ε2

)
. (20)

By substituting the result in Eq. (20) into Sy given in Eq. (18), we can obtain

Sy =
1
2
ε0

(
E

(0)
1z

)2 A c

ω2

√
ε2(1 + ε2)

(
1 − 1

ε2

)
. (21)

This is the plasmonic spin in the y-direction (also in the direction of the magnetic field H of the
TM-mode SPPs).

Now we shall suggest our scenario of nanomechanical effect via plasmonic spin current transfer
between surface plasmon modes and a thin metallic film belt. We assume that a metal ring (formed
by the thin metallic film) is suspended in air, which is shown in Figure 6. Here, the suspension wire is
along the Y axis. We assume that the surface plasmon modes have been excited on the metal ring. One
can use Otto or Kretchmann prism to excite SPPs on the metallic ring, but some special customized
clamping mechanisms and optical systems are surely required. Besides Otto or Kretchmann technique,
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(a)

(c) (d)

(b)

Figure 4. The spatial distribution of the spin current density components sx0x and sz0x. The
distribution of sx0x in medium 1 (x > 0) and in both medium 1 (x > 0) and medium 2 (x < 0) is
plotted in subgraph (a) and subgraph (b), respectively; The distribution of sz0x in medium 1 (x > 0)
and in both medium 1 (x > 0) and medium 2 (x < 0) is plotted in subgraph (c) and subgraph (d),
respectively. These two spin current density components (sx0x and sz0x) are oscillating in the z-direction
and they diminish exponentially in the x-direction.

one can also fabricate a grating structure on the metallic ring surface. Such a grating structure can
provide extra momentum in the direction of propagation, so that SPPs can be excited. The grating
structure only occupies a small part of the metallic ring, so it does not dramatically affect the standing
wave state of SPPs. In the present scenario, we choose the relative dielectric constant of the metal
ε2 = −10, the wavelength of incident light (for exciting the SPPs) λ = 200π nm, and then the angular
frequency of the light ω = 2πc

λ = 3 × 1015 rad · s−1. We shall evaluate the field strength of the excited
SPPs on the metal ring. It should be noted that the brightness of current state-of-the-art fiber-coupled
broad-area diodes can be in the range of 1.8 ∼ 6.0 MW/cm2 [20]. If, for example, we choose a power
density of 6.0 MW/cm2, the electric field of the applied laser field corresponds to 4.8 × 106 V/m. In
general, because of the effect of strong confinement, the field strength of the SPPs excited by such a
laser field can be a few times as strong as the laser field. Then we can assume that the SPPs field
strength E

(0)
1z has the order of magnitude of 1.0 × 107 V/m. The length, width and thickness of the

metal ring can be chosen as 10λz , 0.5 µm and 50 nm, respectively, with λz = 2π
β . Under this condition,

the penetration depth of SPPs into the metal is 30 nm, so SPPs only exist on one of the interfaces.
Now by substituting these parameters into Eq. (21), we can obtain the spinning angular momentum
Sy = 4.6 × 10−32 kg · m2/s for the SPPs sustained on the metal ring.

It should be pointed out that the Ohmic loss of the metal can give rise to Joule heat. Such a strong
SPPs field (E(0)

1z � 1.0 × 107 V/m) will fuse or burn the metal ring at a thin spot, and the ring will
immediately become a straight metal belt, as shown in Figure 7. Now the SPPs, which are supported
on the straight metal belt, will change its original standing state (on the ring) to a new state (on the
planar interface). If the following momentum-match condition holds

k0 < β = k0

√
ε1ε2

ε1 + ε2
< k0nback, (22)
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(a)

(c) (d)

(b)

Figure 5. The spatial distribution of the spin current density components sx0z and sz0z. These two
spin current density components (sx0z and sz0z) are oscillating in the z-direction and they diminish
exponentially in the x-direction. The density of sx0z in medium 1 (x > 0) is shown in subgraph (a) and
its density in both medium 1 (x > 0) and medium 2 (x < 0) is in subgraph (b); The distribution of sz0z

in medium 1 (x > 0) is plotted in subgraph (c) and its density in both medium 1 (x > 0) and medium
2 (x < 0) is in subgraph (d).

Y

Z

X

SPPs

Sy

R Thin spot

Figure 6. A metal ring, on which SPPs can be sustained. Such surface plasmon modes form standing
wave, which satisfies a relation: 2πR = mλz with λz = 2π

β . Here, m is an integer. The SPPs mode has
a nonzero spin Sy, which is perpendicular to the circular torus.
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Figure 7. A straight thin metal belt, on which the SPPs can be sustained. Since the Ohmic loss of
metal can give rise to the Joule heat, a strong SPPs field (e.g., E

(0)
1z � 1.0 × 107 V/m) would fuse or

burn the metal ring (Figure 6) at a thin spot, and the ring will immediately become a straight metal
belt. Since the SPPs mode will form a new standing wave on the present straight metal surface, it has
a zero spin Sy, namely, the nonzero spin Sy of the SPPs on the metal ring has been transferred to the
straight metal belt itself.

where nback is the refractive index of surrounding medium, SPPs can radiate out. But under our
condition, the surrounding of metal ring is vacuum or air, i.e., Eq. (22) is unsatisfied, and hence SPPs
will be reflected backwards at the ends of the straight metal belt. As a result, SPPs will be reflected
between two ends of the metal belt, and finally it will evolve into a new stationary state, which is a
standing wave mode. Note that on the metal ring (in Figure 6), the standing-wave SPPs modes and
ring scale should obey the following relation: the ring circumference 2πR is integer multiple of the
wavelength of the SPPs, i.e., 2πR = mλz. So when m = 10, both 2πR = mλz and λz = 2π/β will be
satisfied: specifically, from these two relations, we can obtain 2πR = m ·2π/β, i.e., R = m/β. If a metal
ring with a radius fulfilling R = m/β could be fabricated, the excited SPPs standing wave modes would
possibly form on the metal ring. On the straight metal belt (in Figure 7), however, the metal belt length
is integer multiple of the half wavelength of the SPPs, i.e., lz = nλz

2 . Here, lz = 2πR. Thus, the mode
indices n and m on the straight metal belt and the metal ring, respectively, agree with the relation
n = 2m. Clearly, the spin density s′0zx of such a new standing SPPs wave on the planar interface
vanishes. This, therefore, means that the spinning angular momentum Sy = 4.6× 10−32 kg ·m2/s of the
original SPPs on the metal ring has been transferred to the thin metal belt, and such a thin metal belt
can rotate because of its angular momentum L = Sy acquired from the SPPs. Suppose that the density
of metal is ρ = 8.0 × 103 kg/m3, and then the mass of metal is 1.2 × 10−16 kg. The moment of inertia
(rotational inertia) about the suspension wire (axis of rotation) is J = 1

12ml2 = 3.9 × 10−30 kg · m2,
where l denotes the length of the straight metal belt. By using the definition of angular momentum
L = JΩ, one can arrive at the angular velocity of the metal belt Ω = 1.2 × 10−2 rad/s. Due to change
of geometric configuration of metal belt, such a rotational frequency of the metal belt is caused by the
plasmonic spin current transfer from the SPPs to the straight metal belt.

In the literature, there have been some designs of nanomechanical photonic devices [21–25] by taking
advantage of transfer of energy, momentum or angular momentum from electromagnetic fields (at both
classical and quantum levels) to electromagnetic media, including time crystals [23,24], quantum wheels
and “perpetuum mobile” of the third and fourth kinds [25]. All such new possible devices will exhibit
motion (e.g., rotation, precession and nutation) of the electromagnetic materials. In this paper, we
have suggested an alternative nanomechanical effect, which can be utilized to design sensitive, accurate
techniques of measurement (e.g., nanoscale-sensitivity sensors).

5. CONCLUDING REMARKS

In this paper, we have considered the distribution profile of electromagnetic spin current density tensor
of SPPs bound to a metal-dielectric interface. The spin current density of an electromagnetic field
can be derived from the conservation law of total angular momentum (electromagnetic orbital angular
momentum plus spinning angular momentum). The electromagnetic spin current density tensor has 24
independent components. As far as the SPPs sustained on a metal-dielectric interface is concerned, there
are only 7 nonzero ones in the spin current density tensor. Since SPPs on the metal ring carry a spinning
angular momentum, it can be expected that the nonzero spin density of such SPPs will exhibit some
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novel mechanical effects, namely, an effect of spin current transfer at nanomechanical level is suggested
in this paper. Before the metal ring has been fused due to Joule heat production, SPPs, which are
sustained on the metal ring, form a standing wave, which has nonzero spin. If, however, the metal
ring becomes a straight belt, the new standing wave mode of SPPs has no spin, i.e., the lost angular
momentum of SPPs has been transmitted to the thin metal belt and will cause its rotation around
the suspension wire. The plasmonic spin density has been taken into account in order to evaluate the
relevant observational physical quantities such as angular momentum and rotational angular frequency
acquired by the nanoscale thin metal belt during this process of plasmonic spin transfer. The spatial
distribution of the other nonzero spin current density components of SPPs, which can be used to study
the problems of spinphotonic dynamics (such as how the spin density of SPPs is transferred to the
nanoscale metal belt and how long it takes SPPs to transfer its spin to the metal belt), have also been
demonstrated in this paper. Such a nanomechanical effect resulting from plasmonic spinning angular
momentum transfer will find potential applications in the design of new nano-photonic devices such as
accurate sensors (nanoscale-sensitivity rotational motion sensor).
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