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A Novel Binary Butterfly Mating Optimization Algorithm with
Subarray Strategy for Thinning of Large Antenna Array

Hua-Ning Wu, Chao Liu, Bin Li*, and Xu Xie

Abstract—This paper presents a novel binary algorithm named as binary butterfly mating algorithm
(BBMO) combined with subarray strategy for thinning of antenna array. The proposed algorithm has
been adapted from a recently developed nature inspired optimization, butterfly mating optimization
(BMO). The subarray strategy is dividing the linear array into two parts, one part with a fixed number
of element turned on in the middle of array and the rest elements on the edge of array composing
another subarray. In order to reduce the complexity of the thinning process, BBMO algorithm is used
to optimize the element on the edge of an array. The proposed BBMO with subarray strategy is used to
synthesize a linear sparse antenna array in order to reduce maximum sidelobe level and at the same time
keeping the percentage of thinning equal to or more than the desired level. To evaluate the performance
of the proposed thinning method, a linear array with 100 elements is optimized by BBMO algorithm
without and with subarray strategy. And we discuss the impact of number of fixed elements on thinning
results. The novel method BBMO with subarray strategy gives reduced SLL as compared to the results
available in literature of ant colony algorithm, genetic algorithm, binary differential evolution algorithm,
chaotic binary particle swarm optimization, and improved binary invasive weed optimization algorithm.
Moreover, the convergence rate of BBMO with subarray strategy is faster than BBMO without subarray
strategy and the other methods.

1. INTRODUCTION

Thinning of antenna arrays involves the removal (turning off) of some elements in the antenna array
so as to maintain radiation properties similar to that of the fully populated array, but using a lower
number of elements. An element connected to the feed network is ‘turned on’, and an element connected
to a matched load is ‘turned off’ [1, 2]. The main motivation to use thinning is the reduction in cost,
weight and power consumption. And thinned arrays present the advantage of ease of realization, as
different elements usually lie on a regular grid, operate with equal amplitude, and are directly connected
to the amplifiers [3]. Hence, the synthesis of arrays using thinning is under active research by many
groups. Many stochastic, probabilistic or evolutionary optimization approaches, such as the simulated
annealing, genetic algorithm [1], ant colony optimization [4], different evolutions [5], particle swarm
optimization algorithm [6] and invasive weed optimization [7] have been used and shown to be effective
for the synthesis of thinned arrays. Some other approaches [8–10] have also been proposed.

Although these methods have achieved good results, when the array size becomes very large, the
search process is also very time-consuming to get good results. How to reduce the reaction time of a
large-scale sparse array system and at the same time get better side lobe level is a question. To solve
this problem can start from two ways. One way is to find a fast new algorithm with good optimization
characteristic, or improve the optimization speed of some already existing algorithms and does not
deteriorate the accuracy of optimization. The other way is to adopt some strategies to simplify the
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optimization problems. In this paper, a new fast optimization method named binary Butterfly Mating
Optimization combined with a subarray strategy is proposed to synthesize a large linear antenna array.

Butterfly Mating Optimization (BMO) is a novel swarm intelligent algorithm, based on the mating
phenomena occurring in butterflies [11]. The butterflies use UV (Ultraviolet, one kind of iridescence)
reflectance and absorbance mechanism for mating. In BMO, each butterfly can choose its mate anywhere
in the search space adaptively in each iteration, and this mate is defined as a local mate (l-mate). This
adaptive selection process of l-mate plays a key role in the BMO algorithm. The BMO algorithm starts
with well randomly dispersive butterflies in the search space. Then each butterfly updates its UV,
distributes to and accesses UV from all the others, chooses l-mate and moves towards that. For a
binary solution, the basic BMO algorithm working in the continuous domain must be modified. Hence,
a new binary BMO (BBMO) is proposed which provides the solution in binary search space with 0 or 1
values. In BBMO, the hamming distance is proposed to represent the distance between two butterflies,
and the position of each butterfly is updated in the form of probability.

Subarrays are made by dividing a whole antenna array into two or more smaller arrays. In this
paper, we divide the linear array into two parts, one part with a fixed number of element turned on
and the rest elements on the edge of the array composing another subarray. In order to reduce the
complexity of the thinning process, BBMO algorithm is used to optimize the element on the edge of
the array.

The rest of the paper is organized as follows. A formulation of the thinned array pattern synthesis
as an optimization task is discussed in Section 2. Section 3 gives a comprehensive overview of the
proposed BBMO algorithm. Section 4 presents the simulation results, and in Section 5 conclusions are
presented.

2. THINNED ARRAY

According to the structure shown in Figure 1, where there are 2N isotropic elements placed
symmetrically along the x-axis, and the array factor AF at an θ angle in XZ plane for a linear antenna
array can be expressed as [4, 6]:

AF =
n=N∑

n=−N

An exp
(

j ∗
(

2π
λ

xn ∗ sin θ + ϕn

))
(1)

where xn, In and ϕn are the position, excitation amplitude and phase of the nth element, respectively.
In the thinned array, Im is 0 if the status of the mth element is ‘off’, and Im is 1 if it is ‘on’. In our case,
the distance between elements is 0.5λ. There is no element located at the axis origin, and all elements
have the uniform excitation phase (ϕn = 0). Thus, formula (1) can be rewritten as [4, 6]

AF = 2
N∑

n=1

In cos(π ∗ (n − 0.5) sin θ) (2)
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Figure 1. Geometry of a symmetric linear array with 2N element.
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In order to control the array pattern as desired, different parameters of the far-field pattern must be
considered in the fitness function. The first and most important parameter is the normalized maximum
side-lobe level (MSL) that is desired to be as low as possible. The normalized MSL of the antenna array
can be given by formula (3).

FMSL(I) = max
∀θ∈R

{
20 log

∣∣∣∣AF (I, θ)
AFmax

∣∣∣∣
}

(3)

where R represents the side-lobe region excluding the main beam. In this paper, Equation (4) is used
as the objective function to suppress MSL.

f(I) = FMSL(I) (4)

We need to find which array elements should be enabled or disabled (In = 1 or In = 0) to get
the desired radiation pattern characteristics. Hence, the problem of thinned array synthesis can be
formulated as the following 0–1 integer optimization problem.

3. BUTTERFLY MATING OPTIMIZATION ALGORITHM

Butterfly Mating Optimization (BMO) [11] is a recently developed meta-heuristic algorithm that mimics
the mating behavior of butterflies. BMO algorithm utilizes the principle of bionics, simulating the
butterfly which confirms the position of a local mate butterfly in the mating process by using ultraviolet
intensity reflected and absorbed by itself [11]. Male butterflies use color and scent during mating to
hunt for mates. Specifically speaking, the eye spot on the forewings of the male butterflies can reflect
UV. When the receiver of female butterfly perceives the high frequency color from male butterfly, if
the female butterfly absorbs the UV, it means to accept mating; if the female butterfly reflects UV, it
means refusal in mating, and the male butterfly will leave.

3.1. Basic Principle of BMO Algorithm

In the iterative process, BMO algorithm assumes that there is no individual difference between the male
and female butterflies, and both can absorb and reflect UV. Therefore, the kind of butterfly is defined
as an element butterfly in this algorithm. The element butterfly is randomly distributed in the search
domain, and in each iteration the element butterfly changes its UV value according to its adaptability
and assign its UV value according to its distance from other element butterflies.

BMO algorithm is divided into four stages: UV value update stage, UV value allocation stage, local
mate positioning stage and movement stage.

3.1.1. UV Value Update

The UV value of each element butterfly is updated on a certain scale based on the existing position

UVi(t) = max{0, b1 × UVi(t − 1) + b2 × f(t)} (5)

UVi(t) stands for the UV value of the ith butterfly when the number of iterations is t. b1 and b2 stand
for the weight factor. If the update of UV value depends on the UV value UVi(t − 1) of the t − 1th
generation, then b1 ≥ 1, 0 ≤ b2 < 1; on the contrary, if the update of UV value depends on the adaptive
value f(t) of the current generation of element butterfly, then b2 ≥ 1, 0 ≤ b1 < 1.

3.1.2. UV Value Allocation Stage

In the UV value allocation stage, each element butterfly will assign its UV value according to its distance
from other butterflies, and the assigned UV value in close distance is large, while the assigned UV value
in far distance is small.

UVi→j = UVi ×
d−1

ij∑
k

d−1
ik

(6)
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Among them, UVi→j stands for UV value assigned by the ith butterfly to the jth butterfly; dij denotes
the Euclidean distance between the ith butterfly and jth butterfly; dik denotes the Euclidean distance
between the butterfly and any other kth butterfly.

3.1.3. Local Mate Selection Stage

The local mate selection stage is divided into two steps. The first step is to arrange all the other
butterflies in descending order according to the UV value assigned by the ith butterfly to the other
butterflies. The second step is to compare UVi with the UVj which is from the UV value of the jth
butterfly one by one according to the order in the first step. If it is necessary to choose the maximum
value of fitness function, the maximum UVj greater than UVi should be selected; if it is necessary to
choose the minimum value of fitness function, then the corresponding jth butterfly is the local mate.

3.1.4. Movement Stage

Based on the position of its local mate, each element butterfly will move toward it according to
formula (7)

xi (t + 1) = xi(t) + step × xl-mate(t) − xi(t)
‖xl-mate(t) − xi(t)‖ (7)

wherein xi(t) indicates the position of the butterfly in the tth generation, and xl-mate stands for the
l-mate position of the ith butterfly in the tth generation. Step represents the iteration step, which is a
fixed constant.

3.2. Binary BMO Algorithm

The BMO algorithm is used to solve the problems of continuous variables. When it comes to the thinned
array, the variables representing the on/off status of the units are binary. Inspired by the basic BMO
algorithm, binary BMO is proposed for binary optimization problems. The modification of BMO is
shown as follows.

3.2.1. Distance Compute

Instead of the Euclidean distance adopted in the movement stage of BMO, Hamming distance is proposed
to compute the distance between the ith and jth butterflies. The Hamming distance between the two
butterflies is the number of locations where one has a ‘0’, and the other has a ‘1’. It can be expressed
by:

hm dij(t) =
∑

(mod(xi(t) + xj(t), 2)) (8)

3.2.2. Location Update

The location of every butterfly is composed of N binary variables. In the location update process, the
moving step is ignored, and the position of ith butterfly is updated based upon the probability defined
by the Hamming distance between xi(t) and xl-mate(t).

pr = 0.9 ×
∑

(mod(xi(t) + xl-mate(t), 2))∑
j

(∑
(mod(xj(t) + xl-mate(t), 2))

) + 0.1 (9)

xi,k(t) =
{

mod(xi,k(t − 1) + 1, 2) pr ≤ ξ(k)
xi,k(t − 1) pr > ξ(k)

(10)

where xi,k(t) is the location of dimension k of the ith butterfly at iteration t; ξ(k) is the parameter
generated randomly ξ(k) ∈ [0, 1] (1 ≤ k ≤ m).
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4. SIMULATION RESULTS

In this section, we use two thinned array cases to evaluate the search ability of the proposed method.
All simulations are conducted in a Windows 7 Professional OS environment using 2-core processors with
Intel Xeon (R), 2.13 GHz, 1.99 GB RAM, and the codes are implemented in Matlab 7.10.

4.1. Case One

The first case discussed here is to thin a linear array with 100 elements symmetrically spaced 0.5λ apart
along the x-axis with its center at the origin in order to generate a broadside symmetric pattern [1, 4, 6].
In [1], Haupt designs the same array using GA. In [4], Quevedo-Teruel and Rajo-Iglesias utilize the
ACO algorithm to the pattern synthesis of linear thinned array. Wang et al. use chaotic binary PSO
algorithm in the linear thinned array design and obtain a better result than the other algorithms [6].
Liu and Wu proposed an improved binary invasive weed optimization (IBIWO) and utilize it to design
the thinned array with lower MSL [7].

In this work, BBMO is utilized to design the thinned array with lower MSL. Because of the
randomness nature, all the experiments have been run 100 times with 300 iterations independently.
The stopping criterion of each run is to complete the number of iterations. The number of butterflies
is 50. The best and average results are presented in this section.

According to the symmetrical structure shown in Figure 1, only 50 elements are optimized. Figure 2
shows the best pattern obtained by the BBMO, and the result is compared with the fully populated
array in which all elements are turned on. From Figure 2, we notice that the MSL with the full 100-
element linear array (all elements are turned on) is −13.73 dB, and the MSL is lowered to −21.18 dB
after thinning by BBMO. Figure 3 gives the element status of the best thinned array with minimum
MSL obtained by BBMO algorithm. As shown in Figure 3, the number of turn-off elements is 24.

Figure 2. Radiation pattern compared with the initial value.

Figure 3. The elements status obtained by BBMO.



106 Wu et al.

0 10 20 30 40 50 60 70 80 90
-40

-35

-30

-25

-20

-15

-10

-5

0

N
or

m
al

iz
ed

 A
F

 (
dB

)

 

 
ACO

BBMO

θ (deg)

Figure 4. Comparisons of 100-elements thinned linear array pattern obtained by BBMO and ACO
algorithm.

 

 

(a) (b)

Figure 5. Comparisons of best results obtained by BBMO and other algorithms. (a) Percentage of
thinning (%). (b) Absolute value of MSL (dB).

To further verify the performance of the BBMO, it is compared with the GA [1], ACO [4], BDE [5],
BPSO [6], CBPSO [6] and IBIWO [7]. The obtained array patterns using ACO and BBMO are presented
in Figure 4. Figure 5 represents the comparisons of the results obtained by the BBMO algorithm and
the other six algorithms. The results used for comparison are given by [4, 6]. From Figure 5(a) we
can clearly know that the percentage of thinning obtained by the BBMO is 24%, which is more than
that of 20% in [4, 6] and 22% in [1, 5, 7], except that of 24% obtained by CBPSO in [6]. As shown in
Figure 5(b), the absolution value of MSL obtained by BBMO is larger than that of other algorithms,
except for CBPSO and IBIWO.

Figure 6 shows the convergence curve of BBMO to obtain the best results. From Figure 6, we can
clearly see that the speed of BBMO is very fast, and the convergence iterations up to the best fitness are
76. To evaluate the efficiency and reliability of the proposed algorithms, the BBMO algorithm is further
compared with these before mentioned algorithms in terms of average convergence speed and average
maximum SLL. The average values are calculated from the 100 times optimization of each algorithm.

As shown in Table 1, the BBMO obtains the best average absolution of MSL, and the value is
19.8 dB, which is better than GA, ACO, BDE, BPSO, except for CBPSO and IBIWO. The average
convergence iterations up to the best average MSL are 62, which is smaller than all other algorithms.
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Figure 6. Convergence curve of BBMO to achieve the best results.

Table 1. Comparisons of the simulation results.

Simulation results Average maximum |MSL| Average convergence iterations
GA 19.2 164

ACO 19.1 203
BDE 18.5 193
BPSO 14.6 236

CBPSO 20 181
IBIWO 22.04 200
BBMO 19.8 62

4.2. Case Two

In case one, BBMO algorithm is utilized to thin a linear array with 100 elements and obtains good
results. The best element status obtained by ACO, CBPSO, IBIWO and BBMO are shown in Figure 7.
From Figure 7 we can know that the status of 25 elements in the front of the thinned linear array
optimized by ACO and BBMO are ‘on’. The numbers of turn-off elements in the front of the thinned
linear array obtained by CBPSO and IBIWO are 3 and 1. The difference of the percentage of thinning
achieved by these algorithms is small, and the thinned elements are almost located on the back 25
elements of the linear array. The values of MSL obtained by these algorithms are very different. The
best MSL is −22.12 dB obtained by IBIWO algorithm, which is 1.6 dB lower than ACO algorithm. From
the above discussion we may draw a conclusion that the states of elements in front of the array have a
litter impact on the optimization results, and the MSL and percentage of thinning of the whole array
may be determined by the status of the elements in the back of the array. So we divide the right side
of the linear array into two subarrays in Figure 1. The M elements in the front of the linear array
compose one subarray named FLA, and the N -M elements in the edge of the linear array compose
another subarray named BLA.

In order to verify our hypothesis, we utilize BBMO to optimize the linear antenna array with 100
elements again. In this time, the states of 25 elements in FLA are fixed at ‘on’ in the optimization
process, and the states of element in BLA are searched by BBMO algorithm. The parameter values of
BBMO are the same as those in case one. Figure 8 shows the element status of the best thinned array
obtained by BBMO algorithm under a fixed number of turned on elements. The percentage of thinning
is 20%, which is smaller than BBMO without subarray strategy in case one. The radiation pattern of



108 Wu et al.

BBMO optimized antenna array is shown in Figure 9. The maximum SLL achieved by BBMO with
subarray strategy is −22.60 dB, which is 1.42 dB lower than case one and also lower than all other
algorithms.

The convergence characteristics of BBMO with and without fixed element are shown in Figure 10.
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Figure 7. The elements status obtained by ACO, CBPSO, IBIWO, BBMO.

Figure 8. The elements status obtained by BBMO with fixed 25 elements turned on.
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Figure 9. Radiation pattern of fully populated
array, BBMO with and without sub-strategy.
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Figure 11. (a) The best patterns obtained by BBMO under M = 0, 15, 35. (b) Results obtained by
BBMO with sub-strategy under different numbers of elements in FLA at M = 0, 5, 10, 15, 20, 25, 30, 35.

Table 2. Comparisons of the simulation results by BBMO with sub-strategy under number of elements
in FLA.

M
Thinning

percentage (%)
MSL
(dB)

Convergence
iterations

Average
convergence iterations

average
MSL (dB)

0 24 −21.19 69 62 −19.8
5 18 −21.93 64 49 −20.59
10 20 −21.58 42 41 −20.85
15 18 −23.03 25 36 −21.25
20 18 −22.54 38 30 −21.65
25 20 −22.6 38 27 −20.73
30 18 −22.75 17 10 −21.92
35 18 −22.84 6 6 −22.12

From Figure 10 we can see that the convergence iterations of BBMO with fixed element are 38, and the
convergence speed is faster than BBMO without sub-strategy.

As discussed above, we use BBMO algorithm which gets better results with sub-strategy when
the number of elements in FLA is 25. Then, we will study how the M elements in FLA impact the
optimization results. In the view of percentage of thinning, the value of M should be smaller than 35
and chosen in the set R, R = {0, 5, 10, 15, 20, 25, 30, 35}. BBMO is run 100 times, each time with 300
iterations.

Figure 11(a) shows the best pattern optimized by BBMO algorithm under different M . From
Figure 11(a) we can know that the widths of main beams are nearly the same under different M , and
the values of maximum SLL are different. In order to further understand how the value of M impact
the optimization results, Figure 11(b) gives the curves of the maximum SLL, percentage of thinning,
convergence iterations versus the values of M which varies from 0 to 35. The values of maximum SLL of
the best thinned array obtained by BBMO are −21.18 dB, −21.93 dB, −21.58 dB, −23.03 dB, −22.54 dB,
−22.6 dB, −22.75 dB, and −22.84 dB, respectively, when M = 0, 5, 10, 15, 20, 25, 30, 35. Compared with
M = 0, the BBMO algorithm achieves lower maximum SLL when M > 0, and the lowest maximum
SLL is −23.03 dB, which is lower by nearly 2 dB. The percentages of thinning of the best thinned
array obtained by BBMO are 24%, 18%, 20%, 18%, 18%, 20%, 18%, and 18%, respectively, when
M = 0, 5, 10, 15, 20, 25, 30, 35. When M > 0, the percentage of thinning is lower than M = 0, and the
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largest difference is 6%. The largest difference of percentage of thinning between different M(M > 0)
is 2%. Table 2 shows the comparisons of the simulation results by BBMO with sub-strategy under
different numbers of elements in FLA.

From the above analysis, we can know that the subarray strategy can not only improve the
convergence speed of the algorithm, but also get lower SLL. For a large array system, it not only
can reduce the complexity of the system and improve the response time of the system, but also is able
to better reduce the effects of noise on the system.

5. CONCLUSIONS

A novel binary algorithm named as binary butterfly mating algorithm combined with subarray strategy
is proposed for thinning of an antenna array, in order to reduce maximum SLL and at the same time
keeping the percentage of thinning equal to or more than the desired level. To evaluate the performance
of the proposed thinning method, a linear array with 100 elements is optimized by BBMO algorithm
without and with subarray strategy. The simulation results show that the proposed method is very
effective for linear array thinning. Future work includes adapting BBMO for solving planar or circular
antenna array.
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