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Abstract—The spatial resolution of an imaging system is a key factor, which steers its performance
for complex target detection, characterization and recognition. Active electromagnetic imaging systems
with limited frequency bandwidth and synthetic aperture may fail to discriminate important details
during the imaging process, due to their insufficient resolution properties. Spectral estimation methods
may be used to overcome such limitations through dedicated signal processing techniques. This
study proposes a new signal processing chain, which is able to cope with near-field and wide-band
configurations, to significantly improve 2-D resolution, using classical spectral estimation methods.
This work is based on the efficient handling and compensation of critical signal properties, such as
near-field and large bandwidths, which make the proposed technique able to deal with very general
imaging configurations, such as near/far-range, narrow/wide-beamwidths and -bandwidths, very short
aperture... Experimental results obtained at millimeter-wave are shown to demonstrate the performance
and versatility of the proposed approach.

1. INTRODUCTION

Synthetic Aperture Radar (SAR) combines 1-D or 2-D spatial diversity with spectral diversity to produce
2-D or 3-D maps of the electromagnetic reflectivity of environments. Exact focusing methods in time
or frequency domain such as the Back-Projection [1, 2] or the Range migration (ω-k) inversion [3–
5] algorithms may be used to transform the coherent acquired raw data into images. The achieved
spatial resolution is inherently limited by the processed frequency band and by the synthetic aperture
dimensions. To overcome this limitation, imaging techniques based on inverse scattering methodology [6]
or spectral estimation methods are used to improve spatial resolution, that is a key factor for target
detection and recognition. Spectral estimation methods consider the problem of determining the
spectral content of a finite noisy set of measurements, by means of either parametric or nonparametric
techniques [7, 8]. The spectral estimation methods considered here are covariance matrix-based
algorithms, which have been originally adapted to array processing, according to a data model based
on several assumptions, corresponding to the plane-wave (far-field region) and the narrow-frequency
bandwidth configurations [9, 10]. The data model considers that the region of interest is located
relatively far from the radar system so that the spherical wave-front arriving upon the synthetic aperture
is considered as a plane wave. It also assumes that the transmitted signals have a narrow frequency
bandwidth. In such cases, the signal history of a point-scatterer is considered as a 2D-sinusoid where
the phase variation is considered as a linear function of the scatterer’s position.

Received 24 August 2017, Accepted 7 October 2017, Scheduled 23 October 2017
* Corresponding author: Antoine Jouadé (antoine.jouade@univ-rennes1.fr).
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However, when the model is compromised, compensations are required to give full capability to
spectral estimation methods. In the literature, specific spectral estimation methods are modified to
consider the wide-band or near-field configurations as in [11–15]. Firstly, for a wide-band far-field
configuration, the distance variation between one target and the full aperture may exceed the range
resolution of the system. The target response is going to spread over multiple range cells leading to a
reduction of the capability of spectral estimation methods. Because the spectral estimation methods
considered uses the covariance matrix from one particular range of the SAR data, the selected vector
provides only a portion of the phase history of the target response. This therefore reduces the capability
of spectral estimation methods to discriminate closely spaced targets. The wide-band compensation
algorithm in [16, 17] has the ability to cancel out the range cell migrations that occur by means of
a spatial re-sampling of the SAR data. Then the spectral estimation methods are applied on the
compensated SAR data.

Secondly, for a narrow-band near-field configuration, the wave phase-front cannot be considered as
a plane phase-front without producing severe errors and distortions, since phase history is no longer a
linear function. Near-field compensation algorithms [18–20] locally compensate for the spherical phase-
front over the aperture. The estimation problem consists in solving a set of two non-linear functions
(the range and the Direction of Arrival (DoA)). The compensation is done using the exact geometry
of the problem. Once the compensation is performed, spectral estimation methods are applied on the
resulting SAR data.

However, where the SAR data acquired in a wide-band and near-field configuration, the spherical
wave-front curvature generates nonlinear range cell migrations, whose imperfect compensation, using
the plane wave assumption, generates residual range shifts whose magnitude might be comparable to the
range resolution, and whose distribution over the aperture highly depends on the location of a scatterer
and on the acquisition geometry. This variability prevents a generic correction procedure. Similarly,
near-field phase patterns cannot be written under a convenient and generic formalism, i.e., the phase
distribution over the aperture not only depends on a target azimuth, but on its range position too.

To avoid this, a solution is to perform spectral estimation methods from SAR images focused using
an exact technique as in [21–24]. The near-field and wide-band compensations that were previously
needed are no longer necessary. Then spectral estimation methods are directly applied on the resulting
compensated complex SAR image.

Most of the SAR configurations encountered in the litterature [25] are data processed at zero
doppler, i.e., all the scatterers are seen by the radar over a symmetric angular domain with a similar
range of the observation angles and focused SAR image are then well represented over a Cartesian
(range-azimuth) grid.

However, in a fan-beam configuration [26], where the dimension of the synthetic aperture is smaller
than the area that is imaged, multiple targets may be measured over different ranges of observation
angles, i.e., each scatterer is seen over a non-symmetric angular domain, where the median value depends
on the acquisition geometry. As a result, such an information is much better represented using polar
coordinates, rather than a Cartesian coordinates. This effect can be well observed on focused images
where sidelobe target responses spread along a quasi-circular trajectory.

This property whose validity is based on the fact that the synthetic aperture is lower than the
scene is used in this paper to significantly improve high-resolution focusing results thanks to spectral
estimation methods.

First, the SAR geometry configuration and theory to build SAR raw data are presented in
Section 2.1. The undesired effects of four configurations (Far-field and narrow-band/Far-field and wide-
band/near-field and narrow-band/near-field and wide-band) on a particular point-like target located at
a squint angle from broadside are demonstrated, by simulation, in Section 2.2. The authors exhibit the
undesired effects before and after applying the near-field, wide-band or both compensation methods from
the literature on the four configurations. It is revealed that in the near-field wide-band configuration,
working directly on the raw data is not suitable to give full capability to spectral estimation methods.
Then in Section 2.3, a SAR focusing technique (the back-projection algorithm), to reconstruct a focusing
SAR image and to be able to use spectral estimation methods even for squint angle configuration, is
applied. The projection over a Cartesian and a Polar grid is shown, and spectral estimation methods
are applied and compared for the two projections. The remainder of this paper is organized as follows.
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Section 3 presents the data model, some spectral estimation methods and a flowchart of the proposed
processing algorithm. Finally, these spectral estimation methods are applied on measured SAR data at
millimeter wave with a wide frequency bandwidth and a large aperture in Section 4.

2. NEAR-FIELD/WIDE-BAND COMPENSATION

2.1. Geometry Configuration

Consider the case where a transmitting antenna is located at a fixed position in a 3-dimensional spatial
space in a Cartesian coordinate system (see Fig. 1). The location of its phase center is (xt, yt, zt). A
receiving synthetic array is located over an aperture of length L and aligned with the x-axis. The
location of each phase center is (xa, ya, za) with xa ∈ [−L/2, L/2]. The radiation pattern of each
element is considered as isotropic. Ns point scatterers are considered and identified by their Cartesian
coordinates (xi, yi, zi). The index i is for the ith point scatterer Pi. The equivalent distance from the
radar to the ith point scatterer is given by:

di(xa) = (dTxi + dRxi)/2

=
(√

(xt − xi)2 + (yt − yi)2 + (zt − zi)2 +
√

(xa − xi)2 + (ya − yi)2 + (za − zi)2
)

/2 (1)

A transmitted baseband signal u(τ) in the time domain with its counterpart in the frequency
domain U(f) is used, with a frequency diversity over a frequency bandwidth Bf . The signal has been
transposed around the carrier frequency fc before being sent through the medium. The received signals
along the aperture Sr(xa, f) in Eq. (2) are modeled as a sum of transmitted signals, which are weighted
and delayed. The complex weighting si represents all the attenuations that occur during the round-
trip propagation and the reflectivity of the ith point-like target. The delays arise from the round-trip
distance determined in Eq. (1).

Sr(xa, f) =
Ns∑
i=1

siU(f)e−j4π(f+fc)di(xa)/c + n(xa, f) (2)

with c being the speed of light and n(xa, f) ∼ NC(0, σ2) being a Gaussian white noise with zero mean
and variance σ2. The focused received signals (S(xa, f)) by adapted filtering [1] along the aperture is
expressed as:

S(xa, f) = Sr(xa, f)U∗(f) =
Ns∑
i=1

siH(f)e−j4π(f+fc)di(xa)/c + nf (xa, f) (3)

Figure 1. Geometry of the imaging RADAR configuration.
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where H(f) is the resulting transfer function which defines the properties of the focused signal and
nf (xa, f) the filtered white noise by adapted filtering. (·)∗, (·)t and (·)H are the conjugate, transpose
and conjugate transpose operator, respectively.

Its counterpart in the wavenumber domain is expressed as:

S(xa, k) =
Ns∑
i=1

siH(k)e−j(k+kc)di(xa) + nf (xa, k) (4)

The round-trip carrier wavenumber is described as kc = 4πfc/c, whereas the baseband wavenumber
domain is covered by the signal spectrum such as k = 4πf/c.

The range focused received signals in the spatial domain s(xa, d) after an inverse Fourier transform
along the wavenumber domain, is expressed as:

s(xa, d) =
Ns∑
i=1

sih(d − di(xa))e−jϕx(xa) + nf (xa, d) (5)

h(d) is the range ambiguity function in the spatial domain. Where the transmitted signal has a flat
spectrum over the frequency band Bf and zero elsewhere, the range ambiguity function corresponds to
a sinc function characterized by its range resolution (δr) that is inversely proportional to the frequency
band used such as δr = c

2Bf
.

ϕx(xa) = kcdi(xa) corresponds to the phase variation along the aperture.

2.2. Near-Field and Wide-Band Configurations

The range focused received signals s(xa, d) have exact phase history information about the area of
interest. Nonetheless, approximations may be used in various cases.

A particular target is considered to be in a far-field region if it is located far enough from the
radar so that the backscattered spherical wave arriving upon the aperture can be considered as a plane
wave. It is highly dependent on the range between the target and the aperture length. A simple rule
of thumbs is that a backscattered spherical wave from a broadside target is considered as a plane wave
if di(xa = 0) > (2L2)/(λc) with xa = 0 the center of the receiving array. It corresponds to a phase
variation along the aperture lower than π/8 with λc the wavelength at the carrier frequency.

Four different configurations are studied and simulated with the corresponding simulated
parameters of each configuration detailed in Table 1. In the case of a far-field and narrow-band
configuration (see Fig. 2(a)), the range and cross-range focusing are linked to a Fourier transform
thanks to the linear phase variations that occur.

Table 1. Simulation parameters for the different configurations (FF: Far-field, NF: Near-field, NB:
Narrow-band and WB: Wide-band).

Parameter [unit] FF/NB NF/NB FF/WB NF/WB

fc/Bf [GHz] 50/0.5 50/0.5 50/20 50/20
L [m] 0.2 0.2 0.2 0.6

d(xa = 0) [m] 50 1.5 50 1.5
Farfield criterion:

2l2/λc [m]
13.3 13.3 13.3 120

Narrowband criterion:
c/(2L sin θM) [GHz]

2.2 2.2 2.2 0.73

Nonlinear range migration condition:
(L − 4δ2

r )/(8δr) [m]
if δr < L/2

δr > L/2 δr > L/2 0.66 6
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(a) (b) (c) (d)

Figure 2. Sketch of the propagation of the range resolution front for a point-like target in (a)
far-field narrow-band configuration, (b) far-field wide-band configuration, (c) near-field narrow-band
configuration, (d) near-field wide-band configuration. The blue dots represent the extreme sides of the
aperture represented by the dashed line. The arrow gives the angle of incidence of the wave.

(a) (b) (c)

Figure 3. Simulation results of the matrix S for a point-like target in a far-field narrow-band
configuration after (a) the range focusing and (c) the range and the cross-range focusing (Fourier SAR
image without compensations). (b) shows the phase variation along the aperture.

Figure 3 shows a simulated raw data matrix for a far-field narrow-band configuration. It has been
simulated using only one point-like target located at an angle θi = 20◦ from broadside with θ defining the
cross-range look-angle. The intensity of each image is normalized, expressed in decibels, to peak at 0 dB
and clipped at −40 dB. It has to be noticed that the final images are centered on the 2D point-spread
function of the point-like target.

Figure 3(a) shows the raw data after range focusing in Eq. (5). It permits to show that no range
migration occurs.

The spatial frequency domain kx = [(kc + k) sin θ]/2 corresponds to the projection of the
wavenumber (kc + k) on the aperture plane. It is also referred as the slow-time frequency. Because the
point-like target is located relatively far from the aperture (di(xa) � L), the phase variation along the
aperture is considered linear (see Fig. 3(b)). By taking the center of the synthetic array (xa = 0) as a
reference and by means of the first order Taylor expansion, the phase variation can be approximated by

ϕx(xa) = kcdi(xa) ≈ kc (di(0) − xa sin θi/2) (6)

Figure 3(c) shows the raw data matrix after range and cross-range focusing using a 2-D Discrete Fourier
Transform (DFT). The point-like target response is then properly focused. Using Eq. (6) in Eq. (5) and
omitting the noise yields:

s(xa, d) =
Ns∑
i=1

αcih(d − di(xa))e−jkcxa sin θi/2 (7)

with αci = sie
−jkcdi(0).

For a given angular sector that is illuminated (i.e., |θi| ≤ θM), a Radar is considered in a narrow-
band condition if the variation of the range Radar ambiguity function (h(d−di(xa))) along the receiving
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aperture is lower than the range resolution (δr), avoiding any range cell migration. In other words, the
phase shift generated by the back-scattered plane wave from a point-like target located at an angle θM

from broadside must be lower than δr. It yields the following criterion: Bf < c/(2L sin θM ).
In the narrow-band case, k+kc ≈ kc, that allows for removing the frequency dependency in Eq. (4).
Contrarily, in a wide-band configuration (see Fig. 2(b)), the exponential term depends on both the

wavenumber frequency k+kc and the receiving antenna location xa. Using the wide-band compensation
algorithm in [16, 17], the wavenumber frequency dependency can be eliminated using spatial re-sampling,
such as:

xa =
kc − 2πBf/c

k + kc
x̃a (8)

Substituting the expression of x̃a into Eq. (4) and according to the approximation in Eq. (6) gives:

S̃(x̃a, k) =
Ns∑
i=1

αciH(k)e−jkdi(0)ej(kc−2πBf /c)x̃a sin θi/2 (9)

This removes the frequency dependency of the signal, and by means of interpolation, it permits the
rearrangement of the raw data in such a way that one particular target response is seen in the same range
cell along the aperture. Fig. 4 corresponds to the far-field wide-band configuration. In this particular
configuration, range migrations occur (see Fig. 4(a)). Hence, the point-like target response is shared
among multiple range cells. The selection of one particular range row, where the target is present, gives
partial information about the target response. The target response is not properly focused as shown in
Fig. 4(c). Red dashed lines are added in Fig. 4(b) to show the location where a range migration occurs.
It can also be used for the others configurations.

After applying the wide-band compensation using Eq. (9), the range migration is removed (see
Fig. 4(d)) that allows for properly focusing the point-like target response (see Fig. 4(f)).

(a) (b) (c)

(d) (e) (f)

Figure 4. Simulation results of the raw data matrix S in the far-field wide-band configuration (a),
(b), (c) without the wide-band compensation and (d), (e), (f) with the wide-band compensation. The
results in (a) and (d) are shown after the range focusing and (c), (f) after the range and the cross-range
focusing (Fourier SAR image). (b) and (e) show the phase variation along the aperture after the range
focusing.
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(a) (b) (c)

(d) (e) (f)

Figure 5. Simulation results of the raw data matrix S in the near-field narrow-band configuration (a),
(b), (c) without the near-field compensation and (d), (e), (f) with the near-field compensation. The
results in (a) and (d) are shown after the range focusing and (c), (f) after the range and the cross-range
focusing (Fourier SAR image). (b) and (d) show the phase variation along the aperture after the range
focusing.

As regards the near-field narrow-band configuration (see Fig. 2(c)), the linear phase variation
approximation in Eq. (6) is not valid anymore. In Figs. 5(a) & 5(d), no range migration occurs, but the
nonlinear phase shift generated by the spherical wave-front shown in Fig. 5(b) does not allow to properly
focus the point-like target response (see Fig. 5(c)). Removing the spherical component, by only keeping
the linear phase shift variation from the plane wave assumption, is desired. However, the near-field
compensation has to be determined for each SAR measurement cell. In fact, each target location has its
own wave-front that is dependent on the pair of a range and a cross-range location. At one particular
location P̂i (x̂i, ŷi, ẑi), the distance variation along the aperture d̂i(xa) is determined using Eq. (1). The
phase shift generated by the distance variation is then removed from the received raw data in Eq. (5)
and replaced by a linear phase variation from the plane-wave assumption determined by the angular
location of P̂i from broadside (i.e., θ̂i).

ŝ(xa, d) = s(xa, d)ejkcd̂i(xa)e−jkcxa sin θ̂i/2 (10)

Figure 5(e) shows the linear phase variation after near-field compensation. After being focused in range
and cross-range, the point-like target is properly focused (see Fig. 5(f)).

Finally, Figs. 2(d) & 6 correspond to the near-field wide-band case. The range migration in
Fig. 6(a) is a combination of the linear range migration due to the wide-band signal used and a
nonlinear range migration due to the near-field location of the target. According to Fig. 6(c), it is
apparent that the target response is not properly focused. Figs. 6(c) & 6(f) & 6(i) show the point-
like target responses without compensations, with the wide-band compensation and with wide-band
and near-field compensations, respectively. Exploiting the two previous algorithms together does not
properly focus the point-like target due to the nonlinear range migration generated by targets in a
near-field environment. The nonlinear range migration from a broadside target in near-field occurs if
di(xa = 0) < (L2 − 4δ2

r )/(8δr) and δr < L/2.
In the following section, focusing SAR techniques, such as the back-projection algorithm, is used to

consider the exact geometry of the problem and to combine coherently the received signals to properly
focus the point-like targets.



52 Jouadé, Ferro-Famil, Méric, Lafond, and Le Coq

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 6. Simulation results of the raw data matrix S in the near-field wide-band configuration after
(a), (d), (g) the range focusing and after (c), (f), (i) the range and the cross-range focusing (Fourier
SAR image). (b), (e) and (h) show the phase variation along the aperture after the range focusing. In
(a), (b), (c), no compensation occurs. In (d), (e), (f), only the wide-band compensation is applied, and
finally in (g), (h), (i), the near-field and wide-band compensations are applied.

2.3. Compensation Using Focusing Techniques

To compensate for the near-field and wide-band behaviors on the raw-data, a focusing technique is
employed to project the received signals over a 2D Cartesian grid to have an estimate of the complex
2D reflectivity field. The 2D plane, which is regularly sampled, usually follows a Cartesian grid having
the origin located at the center of the synthetic receiving array. Each pixel corresponds to a 2D spatial
area of size δy and δx with δy and δx perpendicular and parallel to the array aperture respectively. The
ith pixel pi has a spatial coordinate (xi = αδx, yi = βδy) with α and β real numbers. The regular grid
is shown in Fig. 7(a).

The back-projection algorithm is used for generation of the focused SAR image f(x, y; z = z0) with
z0 a constant. In what follows, the projection is performed over a 2D-plane at one particular height
from the synthetic aperture. For one particular range cell, it takes the received signal from a given
position along the aperture xa in Eq. (5) and back-projects it over a spherical arc corresponding to
all the possible contributing image pixels. Once the back-projection is performed on the remainder
received signals from the other ranges and the others positions along the aperture, then accumulated,
the focused SAR image is obtained. One particular pixel pi of the focused SAR image spanning the
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(a) (b)

Figure 7. Imaging geometry of the synthetic aperture RADAR with the received raw data focused
over (a) a 2D Cartesian grid, (b) a 2D polar grid.

Cartesian grid is constructed by:

f̂(xi, yi; zi = z0) =
∫ L/2

xa=−L/2
s(xa, di(xa))ejkcdi(xa)dxa (11)

Spectral Estimation Methods may be applied to the focused SAR image to improve the spatial
resolution. However, because the two point-like scatterers are in a near-field wide-band configuration,
the 2D ambiguity function of each point scatterer spreads on multiple rows and multiple columns (see
Fig. 7(a)). Extracting the phase history of each point scatterer by the selection of one row or one column
is not valid anymore as only partial information is selected.

To overcome this issue, a better solution, in the authors’ opinion, is to project the received
signals over a polar grid that follows the 2D ambiguity function of point-like scatterers anywhere in
the considered area from the radar system perspective. The polar coordinates are considered with
nonuniform sampling of the range projected over a 2D plane and a nonuniform sampling of the angle
taking into account the decrease of cross-range resolution at squint angles. Such sampling can be
transformed to Cartesian coordinates that are dense near the array and sparse away from the array.
Hence, the ith pixel pi covers a 2D spatial area of size δr the range resolution and δθ the angular
resolution with spatial coordinates over the Cartesian coordinates (xi = ri cos θi, yi = ri sin θi), as
shown in Fig. 7(b). By doing so, the selection of one particular row or column gives full information
about the target behavior. Because the 2D SAR image resolution is inherently limited by the frequency
band used and the synthetic aperture dimensions, the polar grid is then critically sampled to match the
SAR system resolution, reducing the size of the 2D SAR image to avoid long time calculation during
the spectral estimation method process.

Figure 8(a) shows the projection of the range resolution δr over the 2D-plane. As it is the projection
of the range resolution over the ground in SAR configuration, it is named as ground-range resolution. As
regards a synthetic aperture located at a height z0 = H from the 2D plane, the ground range resolution
(δrg) at the ith pixel location is defined as:

δrg(φi) =
δr

cos φi
(12)

with φi being the elevation angle. In the same manner, Fig. 8(b) shows the azimuth angular resolution.
When the beam of the synthetic aperture is digitally steered at a broadside angle (θi = 0), the angular
resolution is defined as δθ = λc/L with λc the carrier wavelength. When the beam of the synthetic



54 Jouadé, Ferro-Famil, Méric, Lafond, and Le Coq

(a) (b)

Figure 8. Cutting views of the imaging geometry showing the variation of (a) the range resolution
along the plane considered (b) the azimuth angular resolution along the range of observation angles.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 9. Simulation results of the raw data matrix S after applying the focusing technique in the
near-field wide-band configuration. The raw data are projected over (a), (b), (c), (d), a Cartesian grid
(see Fig. 7(a)), and over (e), (f), (g), (h), a polar grid (see Fig. 7(b)), after (a), (e) the range focusing,
after (d), (h) the range and the cross-range focusing (Fourier SAR image). (b) and (f) show the phase
variation after the range focusing, and (c), (g) show the 2D spectrum of the reconstructed image.

aperture is digitally scanned, the length of the synthetic aperture seen from a θi angular point of view
is reduced, given an aperture length of L cos θi. The azimuth angular resolution is then:

δθ(θi) =
λc

L cos θi
(13)

Considering the variation of the spatial resolution over the 2D-plane, the polar grid is critically
sampled at the system resolution. Hence, each pixel has its own set of range and cross-range angular
resolution. The ith pixel covers a spatial area of size (δrg(φi), δθ(θi)di(0)) that corresponds to the area
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covered by the synthetic aperture beam at this particular location. As for the regular grid, the received
raw data are then projected using focusing algorithms over the irregular sampled polar grid as shown in
Eq. (11), given the critically sampled 2D complex SAR matrix Y = f(x, y; z = z0). Hence, the data are
refocused so that the phase of the Radar ambiguity function is linear. This allows image formation via
DFTs. The near-field and wide-band behaviors are compensated over the entire area of interest. Fig. 9
shows the simulated results in the same near-field wide-band configuration used in Fig. 6 where the raw
data are projected over a Cartesian and a polar grid. Thanks to the focusing technique, the projection
over both the Cartesian and polar coordinates permits to have a linear phase variation; however, the
2D spectrum of reconstructed images after using a focusing technique show that the projection over
a polar coordinate permits to have a convenient spectrum to apply 2-D spectral estimation methods
unlike the projection over a Cartesian grid. If large amount of data is to be processed, it may be of
interest to apply spectrum analysis algorithms only on overlapping sub-images and then reconstruct the
final results [21].

To be digitally processed, the continuous received signals s(xa, d) are sampled to give the 2-D
data sequence Y ∈ C

Na×Nf . Nf corresponds to the number of frequency components taken after the
sampling process in the frequency (wavenumber) domain to be adapted to the analysis of the observed
scene (avoiding any range ambiguity). The continuous aperture xa is sampled in a group of Na receiving
elements with element spacing Δx. It gives xa(m) = (m−Na+1

2 )Δx with {xa(m)}Na−1
m=0 . The range vector

{d(n)}Nf−1
n=0 is sampled at the range resolution with damb = Nfδr, the ambiguous distance. Since the

range vector d is a discrete vector, obtaining di(xa) from d for applying the back-projection algorithm
in Eq. (11) requires an interpolation.

3. SPECTRAL ANALYSIS ALGORITHMS

Once the near-field and wide-band signal features have been accounted for, spectral estimation methods
can be used to improve resolution and contrast with reduced speckle effects if the appropriate data
model is used. In practice, the construction of an adequate data model based on a finite number of
observations cannot be perfectly achieved. The data model remains an estimated data model that
attempts to match as far as possible the reality.

3.1. Signal Model

Spectral estimation methods may be used along both the range and the cross-range direction. Along
the range direction, the spectral diversity is achieved from multiple frequency components in a finite
frequency band. Once spectral estimation methods are applied, this gives improved range location
estimates. Along the cross-range direction, the spectral diversity is achieved from a sampled aperture
in the spatial domain. Applying spectral estimations methods on the spatial frequency domain gives
improved Direction of Arrival (DoA) estimates. An established signal model of SAR data [21, 22] along
the cross-range direction consists of Ns waves arriving from distinct directions θi, each corresponding
to a specific scatterer. The complex amplitude of the ith signal is si, and an array of Na elements is
considered. The additive white Gaussian noise vector n ∼ NC(0, σ2

n) has zero mean and variance σ2.
The array output vector y ∈ C

Na is given by:

y =
Ns∑
i=1

a(θi)si + n = As + n (14)

where
A = [a(θ1),a(θ2), . . . ,a(θNs)] ∈ C

Na×Ns (15)

is the received signal steering matrix, which contains the steering vectors. It corresponds to the
compensations applied to the synthetic array for a range of observation angles (DoAs). The signal
vector, which represents the complex reflectivities of the scatterers, is given by:

s = [s1, s2, . . . , sNs ]
T ∈ C

Ns (16)
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In the narrow-band plane-wave case (far-field zone), the steering vector of the ith signal using
Eq. (6) is:

a(θi) = e−jξ[1, e−jkcΔ′
x sin(θi), . . . , e−j(Na−1)kcΔ′

x sin(θi)]T (17)

where ξ is an arbitrary phase, and Δ′
x = Δx/2 represents the half of the array inter-element spacing

and accounts for the radar definition of the round-trip wavenumber given earlier.
The data covariance matrix R ∈ C

Na×Na is expressed as:

R = E
{
y yH

} ∈ C
Na×Na = ARssAH + σ2I (18)

with E{·} being the expectation operator, Rss the source covariance matrix, and σ2I the noise covariance
matrix.

The covariance matrix may be decomposed onto its signal and noise subspaces such as [27]:

R = UΛU = Us Λs UH
s + Un Λn UH

n (19)

with Λ = diag(λ1, . . . , λNa) being the eigen-value matrix with λi � λi+1. Considering uncorrelated
source and signal terms, Λs = diag(λ1, . . . , λNs) is the source eigen-value matrix, and Λn =
diag(λNs+1, . . . , λNa) is the noise eigen-value matrix. U is the eigen-vector matrix with Us and Un, the
corresponding signal-space and noise-space eigen-vector matrices.

The non-singularity of the covariance matrix estimate requires a pre-processing scheme, named
spatial smoothing, which is, in practice, widely employed [28] to guarantee this property. It is based
on a diversity of the ξ phase in Eq. (17) and consists in extracting the array covariance matrix as the
average of a group of smaller overlapping subarray covariance matrix. The number of subarrays is
K = Na − Nu of length Nu. It corresponds to a spatial smoothing ratio η = Nu/Na. Using y ∈ C

Na ,
the estimated covariance matrix after spatial smoothing R̂ ∈ C

Nu×Nu is then determined as:

R̂ =
1
K

K∑
k=1

ykyH
k (20)

with yk = [yk, . . . , yk+Nu−1]T . yk being the received signal from the kth element of y. The objective is
to estimate the DoAs (θi) and the reflectivities (si).

Various spectral analysis algorithms exist in the literature [7, 8, 10, 14]. The capability of separation
of two or more closely spaced scatterers is, in practice, mainly affected by the Signal-To-Noise ratio
(SNR), the number of receiving elements (Na), and the kind of observed target responses (stochastic
or deterministic/correlated or uncorrelated...) [29, 30]. In this section, two non-parametric and one
parametric spectral analysis algorithms are summarized that are the conventional beamforming, the
CAPON and the MUSIC methods. The authors do not wish to compare the performance of these
algorithms, but rather to show that the proposed method may be applied to any existing spectral
analysis approach. The results are then demonstrated using the three algorithms mentioned above.

3.2. Spectral Estimation Methods

All the methods considered belong to the filter bank category [8]. Given, h(ω) a spatial filter and Q a
square matrix, the methods follow the generic equation:

P̂ (ω) =
(
hH(ω)Qh(ω)

)α
(21)

The DoA estimation, on a finite range of observation angles, is applied with θ ∈ [θmin, θmax] with Nθ

scanning angles. In the plane wave assumption, the phase shift generated by a backscattered plane-wave
arriving at an angle θ from broadside between two receiving antennas is ω = kcΔ′

x sin θ. h(ω) is built
from the steering matrix defined in Eq. (15). The methods are summarized in Table 2.

The coordinates of the local maxima of P̂ (ω) are linked to the angular positions of the observed
scatterers. As regards the Beamforming and CAPON algorithms, P̂ (ωi) provides an estimate of E{|si|2}
whereas MUSIC does not provide amplitude information. E{|si|2} may be estimated using a least-square
approach [8]. The maximum outputs of the beamforming algorithm provide an estimate of the signal
power si, and the signal parameter estimate is given by the value of ω that achieves this maximum
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Table 2. Spectral estimation methods.

Methods Spectrum estimation
Beamforming [7] Q = R̂, α = 1, h(ω) = a(ω)/P̂bf (ω) = aH(ω)R̂a(ω)

CAPON [31] Q = R̂, α = 1, h(ω) = a(ω)R̂−1

a(ω)H R̂−1a(ω)/P̂CAPON(ω)= 1

aH(ω)R̂−1a(ω)

MUSIC [27] Q = ÛnÛH
n , α = −1, h(ω) = a(ω)/P̂MUSIC(ω) = 1

aH(ω)ÛnÛH
n a(ω)

(ωi = kcΔ′
x sin(θi)). It produces coherent complex image that represents the output of banks of narrow-

band filters where each filter output is tuned to a given DoA. The beamforming does not require
any spatial smoothing pre-processing. Nevertheless, smoothing is useful for reducing speckle effects.
CAPON uses selective adaptive filters around the current frequency (ω) and minimizes the total power
subject to the constraint that the filter passes the frequency ω undistorted. It permits to improve the
spatial resolution while maintaining high image contrast.

MUSIC uses the sub-space decomposition in Eq. (19) to indicate the presence of sinusoidal
components in the studied signal. The main sinusoidal components are selected (model selection)
by estimating the size of the noise sub-space. The Akaike Information Criterion [32] provides a means
for model selection (to estimate Ns). This implies that Ns < Na. Further, MUSIC only extracts the
main components with the strongest responses. An extension of Table 2 for the 2-Dimensional case is
shown in [33, 34].

3.3. Near-Field Wide-Band Configuration

In a near-field configuration with wide-band signals, it has been explained in Section 2.2 that the
phase variation depends on the range and the DoA. This implies that the steering vectors have to be
modified for each pair of locations θ and r. To overcome this important limitation, we propose here
to apply the spectral analysis algorithms on the complex 2D focused SAR image where the near-field
and wide-band effects have been compensated. A discrete 2-D SAR image is built from Eq. (11) as
[Y]i,j = f̂(xi, yj ; z = z0) with Y ∈ C

Nn×Nm . Then 1-D or 2-D spectral estimation techniques may be
applied to improve the focusing over the ground-range (y), azimuth (x) or both domains.

The 1-D spatial smoothing in Eq. (20) is then applied to the DFT of one particular column y = Ci

as shown in Fig. 10(a).
In the same manner as the 1-D spectral analysis case, 2-D spectral estimation methods can be

(a) (b)

Figure 10. (a) 1D, (b) 2D spatial smoothing applied on the irregular grid.
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used on the focused SAR image as in [21–24]. Unlike the approach proposed in [21], which consists in
applying spectral estimation methods from a SAR image sampled in Cartesian coordinates, we propose
to deal with SAR images projected in a polar format (r, θ) as depicted in Fig. 7. This permits to avoid
limitations encountered by Cartesian sampling for the particular fan-beam configuration.

From the Nn×Nm matrix Y, 2-D spectral estimation methods are applied. Given Z the 2D Fourier
transform of the matrix Y and given a (Nn Nm) × 1 vector as

z=̂vec(Z) (22)
with vec(·) being the operation of stacking the columns of a matrix on top of each other, the covariance
matrix is:

R = E
{
zzH

}
(23)

The spatial smoothing stated in Eq. (20) is also used for the 2D case (see Fig. 10(b)). The estimated
covariance matrix is:

R̂ =
1

KL

K∑
k=1

L∑
l=1

zk,lzH
k,l (24)

with

zk,l = vec

⎛
⎜⎝

⎡
⎢⎣

[Z]k,l . . . [Z]k,l+Nu−1
...

. . .
...

[Z]k+Nu−1,l . . . [Z]k+Nu−1,l+Nu−1

⎤
⎥⎦
⎞
⎟⎠ . (25)

Figure 11. Flow chart of applying the spectral analysis algorithms in a near-field environment with
wide-band signals using a Cartesian grid ([21] → left part) and a polar grid (proposed method → right
part).
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Hence, zk,l is a (Nu · Nu) × 1 vector.
The elements of the 2-D steering vector aω1,ω2 = aω1 ⊗aω2 constitute the Kronecker product of the

two 1-D steering vectors associated with the exponential coefficients of the discrete Fourier transform
applied on Y to obtain Z with ω1&ω2 ∈ [0, 2π[. The filter h(ω) in the Table 2 is replaced by aω1,ω2 ,
and the estimated covariance matrix in Eq. (24) is used to apply 2D spectral estimation methods. The
corresponding spectral estimation results may be represented using a re-sampling of the reflectivity
maps P̂ (ω1, ω2) → P̂ (x, y) with x = r cos θ and y = r sin θ.

Considering an aperture length L = 0.1 m and one point-like target located at an angle θi = 20◦
from broadside at a range di(xa = 0) = 1.5 m from the radar, the steps for applying spectral analysis
algorithms in a near-field wide-band configuration are outlined in Fig. 11 in the general 2D case and
listed as follows:

• From simulation or measurement, the received signals are used to build the complex raw data
matrix (S(xa, f)).

• The complex raw data matrix is projected onto an over-sampled Cartesian or polar grid (complex
2D focused SAR image) by applying focusing techniques such as the back-projection algorithm
(f̂(x,y; z = z0)).

• the complex 2D focused SAR image is transformed to the spectral domain using a 2D DFT.

• The useful spectrum is selected (Z). Its limits are defined as the spectral region with a sufficiently
high signal to noise ratio.

• 2D spatial smoothing is applied on the useful spectrum.

• 2D spectral estimation methods are applied on the spatially smoothed spectrum to give the final
result (P̂ (ω1, ω2)).

The projection over a polar grid permits to have a symmetric and centred 2D spectrum unlike the
projection over a Cartesian grid. Then it provides full capability to spectral estimation methods as
shown in Fig. 12 in which the spectral estimation methods are applied on both projection methods
to validate the principle. The final complex image results correspond to projections over a polar grid
(x = r cos θ, y = r sin θ). To have a physical interpretation of the final images, interpolations and
denormalizations have to be applied to project the final results over a regular grid, which matches the
Cartesian coordinates (P̂ (x, y)).

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 12. Simulated results of 2D spectral estimation methods using (a), (b), (c), (d) a Cartesian
grid and (e), (f), (g), (h) a polar grid with (a), (e) the beamforming method, (b), (f) spatial smoothed
beamforming, (c), (g) the CAPON method and (d), (h) the MUSIC method.
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4. MEASUREMENTS

The measurements were performed in the IETR (Institute of Electronics and Telecommunication of
Rennes) facility DIADEM (DIagnostic, Analysis and Dosimetry of EM fields). This facility dedicated to
Electro-magnetic imaging is based on a 600×600×600 mm3 xyz scanner located in an anechoic chamber.
The RF measurement system uses a classical architecture with a VNA (Vector Network Analyzer) and
external VDI (Virginia Diodes, Inc) transmitter and receiver frequency extenders. In this configuration,
the emission part is fixed to illuminate the scene to be imaged with an incident elevation angle of
30◦. The 300 elements reception array is synthesized moving the RF reception module to 2mm spaced
discrete positions thanks to the scanner (see Fig. 13). The objects, to be imaged, are settled at 1 m
distance on a 1.5 m height foam support. Thanks to this support whose relative electrical permittivity
is close to one, the sources of diffraction are minimized and mainly limited to the backscattering of the
anechoic chamber. A 20 GHz bandwidth signal with a 50 GHz central frequency has been used for all
the tests. To speed up the acquisition of the 1001 frequency points obtained for each reception position,

Figure 13. Measurement setup.

(a) (b) (c)

Figure 14. Picture of the three scene configurations with (a) 50 bolts of 5 mm diameter configured to
spell IETR, (b) a screw clamp, and (c) a knife hidden inside a thick book.
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an IF (intermediate frequency) Filter bandwidth of 100 kHz was applied. It has to be noticed that even
if the IF filter is broadband, the dynamic range provided by the VDI modules is high enough for the
purposes of these tests. In such a configuration, a maximal range resolution of 7.5 mm can be obtained,
with an azimuth angular resolution of 0.57◦ corresponding to a 1 cm cross-range resolution at 1 m range
distance. Moreover, the 7.5 m ambiguous distance, longer than the anechoic chamber length, enables
the compensation for the chamber backscattering in an efficient way. Considering the 30◦ elevation
orientation of the emission part, the ground range resolution is limited to 8.7 mm.

Three complex examples of targets that have been imaged are reported in Fig. 14: a canonical point

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (i)

Figure 15. 2D spectral estimation methods applied on the (a), (d), (g), (j) bolts configured to spell
IETR; (b), (e), (h), (k) the screw clamp and (c), (f), (i), (j) the knife hidden in a book. (a), (b), (c)
show the beamforming method and (d), (e), (f) show the beamforming method after spatial smoothing,
while (g), (h), (i) show the CAPON method and (j), (k), (l) show the MUSIC methods.
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scatterers scene made of dozen of 5 mm diameter bolts positioned with a 10 mm spacing to write the
word IETR; a realistic scene with a screw clamp; a realistic scene with a 1mm blade stainless steel knife
hidden inside a book. The estimation results of these three scenes applying the imaging techniques are
reported in Fig. 15. The twelve images correspond to the results of four spectral estimation methods
that are applied on the three complex targets. From top to bottom, the spectral estimation methods are:
the beamforming, the spatially smoothed beamforming, CAPON and MUSIC. A spatial smoothing ratio
η = 50% is used. Since the spatial smoothing pre-processing reduces the size of the covariance matrix,
the spatial resolution of the spatially smoothed beamforming method is reduced by twice as compared
to the beamforming method. Nonetheless, the spatial smoothing pre-processing becomes useful for
CAPON and MUSIC algorithms. Further, since MUSIC does not provide an amplitude estimate, the
amplitude is estimated using a least-square approach [8], and the Akaike Information Criterion [32] is
used to provide a means for model selection. The bolt scene images show that the methods give good
results as the word is readable, and the bolts can be discriminated from each other. The other test
cases are more challenging as the point scatterers hypothesis is not fulfilled in such a straight way as
the bolts scene, and considering the complexity of the surrounding of the target of interest. The results
obtained with the beamforming method show that the screw clamp and the knife can be detected, but
the image contrast, including ripples effects, is not sufficient to apply an easy recognition of the target.
The CAPON method gives a better result, even if the contrast remains poor. The best result is obtained
by applying the MUSIC algorithm: the knife is well localized, and the contrast is very high. However,
it only extracts the main components with the strongest responses.

5. CONCLUSION

This study discusses the use of spectral estimation methods rather than the Fourier transforms to form
SAR image with an improved spatial resolution in a near-field region with wide-band signals. Because
the spectral estimation methods have been developed considering plane-wave narrow-band assumptions,
the complex data need to be compensated from near-field region with wide-band signals in order not
to change the core of the algorithms. The authors have proposed a solution to perfectly compensate
these effects with the aim of giving full capability to the spectral estimation methods. It has been used
in measurements to image three scenes at millimeter-wave and at a range of 1m. After the validation
exploiting 2-D spectral estimation methods using a linear array for 2-D imaging, the authors work on
a 2-D array to exploit 3-D spectral estimation methods for 3-D imaging.
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