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A Novel Asymptotic Solution to the Sommerfeld Radiation Problem:

Analytic Field Expressions and the Emergence of the Surface Waves

Seil Sautbekov1, Sotiris Bourgiotis2, Ariadni Chrysostomou2, and Panayiotis Frangos2, *

Abstract—The well-known “Sommerfeld radiation problem” of a small -Hertzian- vertical dipole above
flat lossy ground is reconsidered. The problem is examined in the spectral domain, through which it is
proved to yield relatively simple integral expressions for the received Electromagnetic (EM) field. Then,
using the Saddle Point method, novel analytical expressions for the scattered EM field are obtained,
including sliding observation angles. As a result, a closed form solution for the subject matter is
provided. Also, the necessary conditions for the emergence of the so-called Surface Wave are discussed
as well. A complete mathematical formulation is presented, with detailed derivations where necessary.

1. INTRODUCTION

The “Sommerfeld radiation problem” is a well-known problem in the area of propagation of
electromagnetic (EM) waves above flat and lossy ground with important applications in the area of
wireless and mobile telecommunications [1–12]. The original Sommerfeld solution to this problem is
provided in the physical space by using the “Hertz potentials” and it does not end up with closed form
analytical solutions. Subsequently, K. A. Norton [13] focused in the engineering application of the above
problem and provided approximate solutions represented by rather long algebraic expressions.

In this paper, the authors advance on previous research work of theirs, concerning the solution of
Sommerfeld’s problem in the spectral domain. Namely, in [14] the complete solution of the problem was
given by means of an integral expression. In [15, 16] the Stationary Phase Method (SPM) [17, 18] was
proposed and as a result closed-form analytic expressions were derived, for use in the high frequency
regime and far way from the air-ground interface. However, that analysis did not consider the relative
position of the stationary point to the integrand’s singularities. The effect of that was that the analytic
results failed to predict the well-known surface waves. Hence, in this paper the saddle point method is
applied in such a manner that the EM field integral expression is transformed to a contour integral of a
special function, that possesses useful properties. The analysis is performed for the practical case of a
conductive interface and ends up to novel formulas, providing clear physical understanding regarding the
nature of the EM field, as well as the conditions under which the so called surface-wave appears. This
resembles a cylindrical EM wave, propagating outwards, with respect to the dipole’s horizontal distance,
ρ and whose magnitude is exponentially decaying with respect to the altitude from the ground level,
x (see Fig. 1 below). It is the asymptotic form that the general solution takes for sliding observation
angles, otherwise (i.e., far away from the ground) converging to the usual form of an outgoing spherical
wave.

The material is divided to six (6) sections, with Section 5 representing the core findings of this
article, whereas Sections 2–4 describe the foundations and mathematical approach already been followed
by this research team, as mentioned above. Important findings are summarized in Section 6. Derivations
for most important statements and arguments are given in the appendices.
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2. PROBLEM DEFINITION

The problem geometry is provided in Fig. 1. A vertical small (Hertzian) dipole, characterized by
dipole moment ṗ = p · êx, p = const, is directed to the positive x axis, at altitude x0 above infinite,
flat and lossy ground. The dipole radiates time-harmonic electromagnetic (EM) waves at angular
frequency ω = 2πf (e−iωt time dependence is assumed). The relative complex permittivity of the
ground is: ε′r = ε′/ε0 = εr + iσ/ωε0, where σ is the ground conductivity, f the carrier frequency
and ε0 = 8.854 × 10−12 F/m is the permittivity in vacuum or air. The goal is to obtain closed form
expressions for the received EM field at an arbitrary observation point above the ground level, namely
at point (x, y, z), shown in Fig. 1.

Figure 1. Hertzian dipole above infinite, planar interface. Point A′ is the image of the source A with
respect to the ground (yz-plane), r1 is the distance between the source and the observation point, r2 is
the distance between the image of the source and the observation point, θ2 is the “angle of incidence”
at the so-called “specular point”, which is the point of intersection of the ground (yz-plane) with the
line connecting the image point and the observation point, and finally, φ = π/2 − θ2 is the so-called
“grazing angle” [19].

3. PROBLEM FORMULATION

In general, the solution to the well-known Maxwell’s equations can be written as [14]:

E = − i

ε0εnω

(∇∇ · +k2
0n

)
ψn ∗ j = − i

ε0εnω
F−1

{[
k2

onJ̃ − (k · J̃)k
]
ψ̃n

}
(1)

H = − (∇× j
) ∗ ψn = −iF−1

[
ψ̃n

(
k × J̃

)]
(2)

where j is the current density; ∗ is the convolution symbol through all coordinates; ψn, ψ̃n are the Green
function and its Fourier transform respectively; k0n, n = {1, 2} stand for the wave numbers of the first
(n = 1) and second (n = 2) medium. Particularly, it holds true that [14]:

ψn = −e
ik0nr

4πr
, ψ̃n = F {Ψn} =

(
k2

0n − k2
)−1

, k0n = ω
√
ε0εnμ0μn (3)

Due to the “x-symmetry” of the problem, the cylindrical coordinate system is most suitable for
the decomposition of the various vector elements above; hence for example the wavevector is written as
k = (kρ, 0, kx).
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4. INTEGRAL REPRESENTATIONS FOR THE EM FIELD

4.1. Direct Field

The Hertzian source at point r0 = (x0, 0, 0), shown in Fig. 1, corresponds to a current density of
je = −iωṗδ(r − r0). Its Fourier transform is obviously:

J̃
e

= F
{
je
}

=
∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞
je · e−ik·rdxdydz = −iωpêxe−ikxx0 (4)

for which the fact that k · r = kxx+kρρ cos(α−kα) and the well-known properties of the Dirac function
are considered.

Then, using Eq. (1) the direct or Line of Sight (LOS) field becomes:

ELOS =
p

ε0ε1
F−1

{(
kxk − k2

01êx
)
e−ikxx0 · ψ̃1

}
=

p

ε0ε1

1
(2π)3

∫ ∞

0

∫ 2π

0

∫ ∞

−∞

(
kxk − k2

01êx
)
e−ikxx0 · ψ̃1kρdkρdkαdkx

=
p

ε0ε1

1
(2π)3

∫ ∞

0

∫ 2π

0

∫ +∞

−∞

[(
k2

x − k2
01

)
êx+kρkxêρ

]
ψ̃1 · eikx(x−x0)eikρρ cos(kα−α)kρdkρdkαdkx(5)

Then in Eq. (5) and for the purposes of integrating over ka, the integral representation for the Bessel
function is used [20], namely J0(kρρ) = 1

2π

∫ 2π
0 eikρρ cos kadka. Moreover, in [1], Sommerfeld showed

that the kρ limits may be changed from (0,∞) to (−∞,∞) by proving that for any function f :∫∞
0 J0(x)f(x)xdx = 1

2

∫∞
−∞ H(1)

0 (x)f(|x|)xdx, H(1)
0 being the Hankel Function of zero order and first

kind.† As a result, and after performing basic algebraic calculations, the following expression is
obtained [16]:

ELOS =
p

8π2ε0ε1

∫ +∞

−∞

∫ +∞

−∞

[(
k2

x − k2
01

)
êx + |kρ|kxêρ

]
ψ̃1 · H(1)

0 (kρρ) kρe
ikx(x−x0)dkρdkx (6)

Integration over kx can be performed through the use of the residue theory. Details, for the problem
considered here, are found in [16]. This results in the following one dimensional integral expression for
the LOS Electric field:

ELOS =
ip

8πε0ε1

∫ +∞

−∞

[
êx
k2

ρ

κ1
− êρ|kρ| · sgn (x− x0)

]
kρH

(1)
0 (kρρ) eiκ1|x−x0|dkρ

= − ip

8πε0ε1
k01

∫ +∞

−∞
êθ1 (kρ)

kρ|kρ|
κ1

H(1)
0 (kρρ) eiκ1|x−x0|dkρ (7)

with êθ1(kρ) = −êx |kρ|
k01

+ êρ
κ1
k01

· sgn(x− x0) representing a unit vector and κ1 =
√
k2

01 − k2
ρ. Similarly,

the LOS Magnetic Field is given by:

HLOS = −êa iωp8π

∫ +∞

−∞
kρ

|kρ|
κ1

H(1)
0 (kρρ) eiκ1|x−x0|dkρ (8)

4.2. Scattered Field

As known from elementary electromagnetic theory, an incident EM field that “hits” an interface enforces
an “ordered movement” of the material’s charge units; in other words, current flows are induced along
the interface‡. These flows, can be modeled by the surface current densities jR and jT , just above and
below the interface level and act as the secondary sources for the reflected (x > 0) and transmitted

† Sommerfeld showed this by using properties of Bessel’s and Hankel’s functions: J0(z) =
H

(1)
0 (z)+H

(2)
0 (z)

2
, H

(1)
0 (zeiπ) = −H

(2)
0 (z).

‡ this current flow is the compound result of the movement of the material’s free charge units as well as the current that corresponds
to the orientation of the material’s dipole structures, commonly known as the “displacement current”.
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fields (x < 0) respectively. For the vertical dipole case, considered hereby, the current densities exhibit
a radial component only, i.e., jR = êρ · jR and jT = êρ · jT .

From this point onward, the same procedure of Section 4.1, used for the LOS field, is followed here
as well. The only difference is that the current sources jR and jT are unknown quantities and will need
to be determined. This will be done by means of solving a boundary value problem at the interface
level, as will be explained below. Hence, switching again to the frequency domain and applying Eqs. (1)
and (2) and after using the techniques described in Section 4.1 (e.g., integrating over kx by means of
the residue theory etc.), the following integral expressions are obtained for the Reflected or Scattered
(index “R”) and Transmitted (index “T”) Electric and Magnetic field respectively [16]:

ER = − k01

8πε0ε1ω

∫ +∞

−∞
êθ2 (kρ) kρJ̃

R · H(1)
0 (kρρ) eiκ1xdkρ (9)

HR = − êa
8π

∫ +∞

−∞
kρJ̃

R · H(1)
0 (kρρ) eiκ1xdkρ (10)

ET = − k02

8πε0ε2ω

∫ +∞

−∞
ê′θ2

(kρ) kρJ̃
T · H(1)

0 (kρρ) e−iκ2xdkρ (11)

HT =
êa
8π

∫ +∞

−∞
kρJ̃

T · H(1)
0 (kρρ) e−iκ2xdkρ, κ2 =

√
k2

02 − k2
ρ (12)

In Eqs. (9) and (11), a notation similar to that of Eq. (7), for the LOS field, is used. Namely, it holds
that êθ2(kρ) = 1/k01 · (κ1êρ − |kρ|êx) and ê′θ2

(kρ) = 1/k02 · (κ2êρ + |kρ|êx), each representing a unit
vector with respect to dummy variable kρ, applicable for the reflected and transmitted electric fields
respectively.

The boundary value problem, mentioned above, dictates that at the planar interface (x = 0), that
is at the ground level, the tangential components of the EM field should be continuous. In other words
it should be both valid:

ELOS
ρ |x=0 + ER

ρ |x=0 = ET
ρ |x=0 HLOS

a |x=0 +HR
a |x=0 = HT

a |x=0 (13)

Substituting Eqs. (9)–(12) to Eq. (13), the following system of algebraic equations and its associated
solution for J̃R and J̃T is obtained:⎧⎨

⎩
iωp|kρ|eiκ1x0 + κ1J̃

R = −κ1J̃
T

−iωp|kρ|eiκ1x0 + κ1J̃
R =

ε1
ε2
κ2J̃

T =⇒

⎧⎪⎨
⎪⎩

J̃R = iωp|kρ|eiκ1x0
ε2κ1 − ε1κ2

κ1 (ε2κ1 + ε1κ2)

J̃T = −iωp|kρ|eiκ1x0
2ε2

ε2κ1 + ε1κ2

(14)

Obviously, by simple substitution of Eq. (14) to Eqs. (9)–(12), the complete formulas for the
reflected and transmitted EM field in their integral form are obtained.

5. ASYMPTOTIC ANALYTIC EXPRESSIONS FOR THE EM FIELD

5.1. Direct Field

Now, refer to Eq. (7) and set: kρ = k01 sin ξ ⇒ dkρ = k01 cos ξdξ, κ1 = k01 cos ξ. Also, the large

argument approximation for the Hankel function is considered [20], namely: H(1)
0 (kρρ) �

√
−2i
πkρρe

ikρρ,

kρρ� 1. These transform Eq. (7) to:§

ELOS = − ip

8πε0ε1

√
−2i
πk01ρ

k3
01

∫
Sz

êθ1(ξ) sin
3
2 ξ · eik01(ρ sin ξ+|x−x0| cos ξ)dξ (15)

§ The transformation of (−∞, +∞) to the Sz contour (see Fig. 2) is explained in Appendix A.
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Referring to Fig. 1, it is obvious that ρ = r1 sin θ1 and |x − x0| = r1| cos θ1|. Then, taking for
example, the case where x > x0 (the same results occur for x < x0), i.e., when the observation point is
higher than the transmitting dipole, it holds that:

ELOS = − ip

8πε0ε1

√
−2i
πk01ρ

k3
01

∫
Sz

êθ1(ξ) sin
3
2 ξ · eik01r1 cos(ξ−θ1)dξ (16)

Note that under the aforementioned transformation, kρ = k01 sin ξ, the unit vector with respect to
kρ, defined in (7), is transformed to êθ1(ξ) = cos ξ · êρ−| sin ξ| · êx. Consequently, êθ1(ξ) may be regarded
as a pseudo unit vector along the complex elevation angle ξ‖. The previous concept is graphically
depicted in Fig. 2, where the extended local spherical coordinate systems for the dipole source and its
associated image are drawn. The term “extended” is used to denote the complex nature of the elevation
angle ξ along the Sz contour of Eqs. (15), (16), above, or of Eqs. (19)–(21), below.

(a) (b)

Figure 2. The “extended” local spherical coordinate system of (a) the dipole source and (b) the dipole
image. Elevation angle ξ is complex in nature, however only the range ξ ∈ [−π, π] may be graphically
depicted (in a normal sperical coordinate system, however, ξ ∈ [0, π]). In the figure, a clockwise rotation
from the positive x-direction yields a positive elevation angle (+), whilst an anticlockwise turn generates
a negative elevation angle (−).

The integral expression of (16) can be easily evaluated with the use of the Saddle Point method [18],
on the precondition that parameter “k01 · r1” of the phase factor of Eq. (16), is sufficiently large.
Actually, since the integrand does not present any singularity, the result is equivalent to that given by
the Stationary Phase Method [17, 18], given in [21, 22]:

ELOS � − pk2
01

4πε0ε1r1
sin θ1eik01r1 (êρ cos θ1 − êx sin θ1) = − pk2

01

4πε0ε1r1
sin θ1eik01r1 êθ1 (17)

Starting from Eq. (2), the analysis for the direct magnetic field is totally similar. The asymptotic
expression for the far field thus becomes:

HLOS = −êa iωp8π

∫ +∞

−∞

kρ|kρ|
κ1

·H(1)
0 (kρρ) eiκ1|x−x0|dkρ � êa

pk2
01 sin θ1eik01r1

4π
√
ε0ε1μ0μ1 · r1 = −êa

∣∣ELOS
∣∣

Z1
·eik01r1 (18)

with Z1 =
√
μ0μ1/ε0ε1, the wave impedance of medium 1 (air)¶. Expressions (17) and (18) reflect

‖ It is called a pseudo unit vector because it is associated with the complex angle ξ and hence has no physical meaning. However, at
ξ = θ1 it becomes equal to the geometric unit vector (since for the spherical coordinate system with O ≡ A: êθ1 = êρ cos θ1−êx sin θ1).
¶ Similarly, the wave impedance of medium 2 (ground) is given by: Z2 =

√
μ0μ2/ε0ε2.
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the well known, in the literature, far field expressions of a Hertzian dipole source [17, 19] and as such
validate the spectral domain approach presented so far.

5.2. Scattered Field

Similarly to Section 5.1, the variable transformation kρ = k01 sin ξ2 is applied to Eq. (9). With the large
argument approximation for the Hankel function, also considered, this results in the following integral
expression for the reflected field:

ER = − ipk3
01

8πε0ε1

√
−2i
πk01ρ

∫
Sz

êθ2(ξ) sin
3
2 ξ ·R‖(ξ)eik01[ρ sin ξ+(x+x0) cos ξ]dξ (19)

with R‖(ξ) being the Fresnel reflection coefficient, given by:

R‖(ξ) =
k01ε2 cos ξ − ε1

√
k2

02 − k2
01 sin2 ξ

k01ε2 cos ξ + ε1

√
k2

02 − k2
01 sin2 ξ

=
k02Z1 cos ξ − Z2

√
k2

02 − k2
01 sin2 ξ

k02Z1 cos ξ + Z2

√
k2

02 − k2
01 sin2 ξ

(20)

Then, with a glance back to the geometry of Fig. 1 it is easy to identify that ρ = r2 sin θ2 and
x+ x0 = r2 cos θ2. Substituting to Eq. (19) the expression for the scattered field becomes:

ER = − ipk3
01

8πε0ε1

√
−2i
πk01ρ

∫
Sz

êθ2(ξ) sin
3
2 ξ ·R‖(ξ)eik01r2 cos(ξ−θ2)dξ (21)

where êθ2(ξ) = (êρ cos ξ − êx| sin ξ|), a pseudo unit vector, along the complex elevation angle ξ, of a
spherical coordinate system, this time with its origin located at the dipole’s image point, A′ of Fig. 2‖.

The presence of R‖(ξ), imposes a pole to the integrand of Eq. (21), found by solving 1/R‖(ξ) = 0:

cos ξp = − ε1
k01

√
k2

02 − k2
01

ε22 − ε21
= −

√
ε1 (ε2μ2 − ε1μ1)
μ1

(
ε22 − ε21

) μ1�μ2= −
√

ε1
ε1 + ε2

(22)

where the rightmost side of Eq. (22) considers the ordinary case where μ1 = μ2. Moreover, for the usual
case of σ � ωε0, the complex (effective) relative permitivity of medium 2, given by ε̇2 = ε2 + i σ

ωε0
, is a

large volume quantity. Note that in Eq. (22) and in the whole analysis, given so far, ε2 actually refers to
this complex relative permitivity, i.e., ε2 ≡ ε̇2

+. As a result Eq. (22) yields a small (complex) number.
Then following the reasoning of Appendix B the pole can be estimated by:

ξp � π

2
+

√
ωε0ε1

2σ

{
1 +

ωε0 (ε1 + ε2)
2σ

− i

[
1 − ωε0 (ε1 + ε2)

2σ

]}
(23)

in which case, of course, ε2 now refers to the usual, real (relative) permitivity part of medium 2 (ground).
The contour of integration, Sz, together with the position of the pole, ξp, is shown in Fig. 3. For

σ � ωε0, ξp is nearby Sz, particularly to the right of the γ3 segment of it. As a result, directly evaluating
Eq. (19) by the method of saddle points is likely to induce significant errors, since the accuracy of the
method depends on the relative position of the pole to the saddle point [17, 18]. This was actually
revealed in [22, 23] in which the evaluation of Eq. (19) resulted in a single term, corresponding to
the space wave component of the field only, thus missing to describe the surface wave behavior of
it. Even, more, at sliding observation angles, the method failed completely to estimate field values, a
consequence of the known fact that the space wave component at such circumstances almost vanishes,
for the reflection coefficient being almost equal to minus one [19].

To increase the accuracy of integration the so called “Etalon Integral”∗ [24–26] given by:

X (k, α) =
1

4πi

∫
S

eik(cos ζ−cos α)

sin
ζ + α

2

dζ (24)

+ see respective definitions and notation used in Section 2 and Section 3.
∗ The term “Etalon Integral” is used here to denote a kind of “standard”, or “reference integral”.
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(a) (b) (c) (d)

Figure 3. The contour of integration: (a) Sz: original contour for ER in the complex ξ-plane (left
plot) and its ζ-plane mapping (right plot), (b) S: “Etalon integral” contour in the ζ-plane (right plot)
and its ξ-plane mapping (left plot), (c) ξp: relative position of the pole in the ξ-plane, (d) ζp: relative
position of the pole in the ζ-plane.

is used, which reduces the problem related to the vicinity of the pole point to the saddle point. The
integration contour for X(k, α), S, is shown in the right hand side of Fig. 3 and passes downwards along
the imaginary axis, deviating slightly from it to ensure convergence.

Special functionX(k, α) has interesting properties, useful for the purposes of the problem considered
here. It is expressed in terms of the Fresnel Integrals or probability integrals, which are well known
special functions with numerous applications (see also Appendix C):

X (k, α) =
e−i π

4√
2π

∫ 2
√

k sin α
2

∞ sin α
2

e
it2

2 dt = −1
2
sgn(α)erfc

[
sgn(α)

√−2ik sin
α

2

]
(25)

Also, asymptotic formulas for large values of the upper limit and small values of the argument α exist:

X (k, α) � −
√

i

2π
e[ik(1−cos α)]

2
√
k sin α

2

,
√
k
∣∣∣sin α

2

∣∣∣ � 1 (26)

X (k, α) � 1
2
−

√
k

2πi
α, α→ 0 (27)

At this point, it is helpful to introduce variable: ζ = ξ − θ2 (see Fig. 3). Substituting to Eq. (21)
and after some lengthy but otherwise basic algebraic manipulations, the integral representation for the
scatered electric field takes the form:

ER =
pk3

01

2ε0ε1

√
−2i
πk01ρ

· eik01r2 cos ζp · 1
4πi

∫
Sz

Q (ζ + θ2) · e
ik01r2(cos ζ−cos ζp)

sin
ζ − ζp

2

dζ (28)

with Sz now being the contour of integration in the ζ-plane (right plot of Fig. 3), resulting from the
above variable change (i.e., left shifted by θ2) and:

Q(ζ) = êθ(ζ) sin
3
2 ζ ·R‖(ζ) sin

ζ − ξp
2

(29)

Then, the Residue Theory [20], together with the Saddle Point Method [17, 18] for Eq. (28), are
utilized. As shown in Appendix D, this approach leads to an expression for ER, in which special function
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X(k, a) plays a crucial role. The result, in which ζp = ξp − θ2 is the equivalent pole to the ζ-plane, is
given by:

ER = −êθ2

pk3
01

2ε0ε1

√
−2i
πk01ρ

· eik01r2 cos ζp · sin
3
2 θ2 sin

ζp
2
R‖ (θ2)X (k01r2,−ζp) (30)

The analysis for the magnetic field is totally analogous and yields the well-known relation between
the E-H constituents of the scattered EM field:

HR = −êa
∣∣ER

∣∣
Z1

· eik01r2 cos ζp (31)

Expression (31) is an essential validation for the mathematical spectral domain approach followed
throughout this paper.

5.2.1. Non-Near Ground Level Asymptotic Expression

As discussed in Appendix D, Eq. (30) is valid only when k01r2 is large, i.e., it describes the far field
behavior (which is what matters for most telecommunications applications). As a result, if it is also true
that | sin ζp

2 | is not very small, then the asymptotic conditions of Eq. (26) are met andX(k01r2,−ζp) may

be approximated by X(k01r2,−ζp) �
√

i
2π

e[ik01r2(1−cos ζp)]

2
√

k01r2 sin
ζp
2

. Since, ξp � π/2, the condition that satisfies

the requirement that sin ζp

2 does not approach zero, is equivalent to π/2 − θ2 > ε, with ε sufficiently
large. For literally large values of k01r2, it is just enough to require that θ2 �= π/2, such that the
condition of Eq. (26), namely

√
k01r2 · | sin

(
θ2
2 − π

4

)
| � 1, is met. The reflected field will then be given

by�:

ER � −êθ2 ·R‖ (θ2)
pk2

01

4πε0ε1r2
· sin θ2 · eik01r2, θ2 <

π

2
(32)

which is essentially the far field formula of a dipole source, located at the specular point A′ of Fig. 1,
multiplied by the Fresnel reflection coefficient, R‖(θ2).

5.2.2. Near Ground Level Asymptotic Expression

Asymptotic expressions (17) and (32) for the direct and scattered field respectively represent outgoing
spherical waves. Now the conditions for the generation of the, well-known in the literature, surface
waves are studied [1–6, 19]. As their names imply, these waves are constrained close to the planar
interface, so a reasonable choice is to examine the field’s behavior at sliding observation angles, i.e., at
θ2 → π/2.

In such case, it can be argued that êθ2 � −êx. Moreover, from Eq. (20), it is also valid to state
that R‖(θ2) � −1 and finally, since ζp → 0, special function X may be approximated by Eq. (27).
Detailed analysis for reaching an asymptotic expression for ER is given in Appendix E, with the final
result being:

ER
s � êxδ

pk3
01

4ε0ε1
· 1√

πk01ρ
· e−δk01(x+x0) · ei(k01ρ+π/2), δ =

√
ωε0ε1

2σ
(33)

with the index “s” in ER
s denoting the surface wave characteristics of the resulting expression (33).

6. CONCLUSIONS AND FUTURE RESEARCH

Under assumption σ � ωε0, described in Section 5, Eq. (30) represents the expression for the scattered
electric field and includes special functionX(k01r2,−ζp), a function which, as mentioned above, is related
to well known Fresnel integrals and possesses useful properties. Therefore, together with Eq. (17), for
� Based on the geometry of Fig. 1, θ2 ∈ [0, π/2]
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the LOS field, they may be considered as the complete analytical solution for the Sommerfeld Radiation
problem, for this particular case.

Further analysis of Eq. (30) revealed useful insights as for the nature of the EM field. Far away from
the ground-air interface, Eq. (32) holds, and the scattered field takes the form of an outgoing spherical
wave (which of course resembles a plane wave at very large distances from the source) and together
with the LOS field of Eq. (17), form what is frequently called in the literature as “space wave” [5, 19].
On the contrary, at sliding observation angles, that is at observation points that are far away from
the source and simultaneously very close to the ground (so as θ2 � π/2), the space wave diminishes.
This would also be a direct outcome of Eqs. (17) and (32), since in this case R‖(θ) � −1, r1 � r2 and
θ1 � θ2. Actually, at sliding observation angles, the scattered field of Eq. (30) takes the asymptotic
form of Eq. (33), which is essentially a cylindrical wave and has clear surface wave characteristics (i.e.,
constrained near the ground), described by the exponentially decaying factor, e−δk01(x+x0). It decays
slower that the direct field (∼ r−1/2vs ∼ r−1 respectively) and hence it is the prevailing field far away
from the source (i.e., in the far field). Moreover, the location of the transmitting source also plays a
major role to the determination of the surface wave. Due to the presence of x0 in the exponentially
decaying factor of Eq. (33), it is expected to diminish (always in an exponential manner) for high-
altitude antenna sources. Finally, Eq. (33) succeeds to describe the field behavior for the extreme case
where σ → ∞. In accordance to the literature and theory, it vanishes due to its dependence on factor
δ =

√
ωε0ε1/2σ.

Future research will focus on further investigation of special function X(k, a) and its properties,
as well as other special functions that could be utilized in the evaluation of the EM field integral
expression, namely Eq. (19). The goal is to provide useful asymptotics for every possible case, instead
of only for the σ � ωε0 one, considered here and also for the transmitted field, propagating below
the ground level, given by Eqs. (11)–(12). Furthermore, comparisons between found asymptotic
formulas against the numerical calculation of the respective integral formulas, Eqs. (9)–(12), will be
examined. These comparisons will eventually orientate the limits of applicability of the proposed
approximations. For this purpose, comparisons with the results of other research groups (including
classical approximations [3, 4, 7–11, 13]), as well as with experimental data, are also in the plans.

APPENDIX A. ON THE TRANSFORMATION OF EM FIELD IMPOPROPER
INTEGRALS TO CONTOUR INTEGRALS IN THE COMPLEX PLANE

Each of the expressions (7)–(8) and (9)–(10), for the direct and scattered EM field respectively, are
improper integrals along the real infinite integration axis, (−∞,+∞). Since kρ is the integration
variable, they take the following general form:

I =
∫ +∞

−∞
f (kρ) dkρ =

∫ −k01

−∞
f (kρ) dkρ︸ ︷︷ ︸
I1

+
∫ +k01

−k01

f (kρ) dkρ︸ ︷︷ ︸
I2

+
∫ +∞

+k01

f (kρ) dkρ︸ ︷︷ ︸
I3

(A1)

For I2, it is easy to set kρ = k01 sin t ⇒ dkρ = k01 cos tdt, with t being a real dummy variable in
the [−π/2, π/2] interval. This transforms the integral to:

I2 =
∫ + π

2

−π
2

f (k01 sin t) k01 cos tdt (A2)

In the complex ξ-plane of Fig. 3, Eq. (A2) simply represents the contour integral of complex function
F (ξ) = f(k01 sin ξ)k01 cos ξ, over the γ2 segment of Sz. Indeed, the parametric expression of segment γ2

of Fig. 2 is simply ξ(t) = t, with t ∈ [−π/2, π/2]. Hence by definition:∫
γ2

F (ξ)dξ =
∫ + π

2

−π
2

F (ξ(t)) ξ′(t)dt =
∫ + π

2

−π
2

f (k01 sin t) k01 cos tdt = I2 (A3)

Now consider integral I3. A sufficient variable transformation that will effectively map to [k01,+∞]
is: kρ = k01 cosh t ⇒ dkρ = k01 sinh tdt. With this variable change, interval [k01,+∞] is mapped to
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[0,+∞] and I3 becomes:

I3 =
∫ ∞

0
f (k01 cosh t) k01 sinh t dt =

∫ ∞

0
f
[
k01 sin

(π
2
− it

)]
k01 cos

(π
2
− it

)
(−i) dt (A4)

for which well known relations of hyperbolic and trigonometric functions have been utilized, namely:
cosh t = cos it = sin(π/2 − it), sinh t = −i sin it = −i cos(π/2 − it). As was the case for I2, Eq. (A4)
expresses the contour integral of F (ξ), this time, over segment γ3 of Sz. To show this, consider the
parametric expression of γ3, which is ξ(t) = (π/2) − it, t ∈ [0,∞]. Hence, the contour integral of F (ξ)
over γ3 is:∫

γ3

F (ξ)dξ =
∫ ∞

0
F (ξ(t)) ξ′(t)dt =

∫ ∞

0
f
[
k01 sin

(π
2
− it

)]
k01 cos

(π
2
− it

)
(−i)dt = I3 (A5)

Similarly, it is easily derived that:

I1 =
∫

γ1

F (ξ)dξ (A6)

Overall, from Eqs. (A3), (A5), (A6) and Fig. 2 (Sz ≡ γ1 + γ2 + γ3), expression (A1) becomes:

I =
∫ +∞

−∞
f (kρ) dkρ =

∫
γ1

F (ξ)dξ +
∫

γ2

F (ξ)dξ +
∫

γ3

F (ξ)dξ =
∫

Sz

F (ξ)dξ (A7)

APPENDIX B. EVALUATING THE POSITION OF THE POLE

For σ � ωε0, Eq. (22) can be written as:

cos ξp = −
√

ε1
ε1 + ε2

= sin
(π

2
− ξp

)
� π

2
− ξp (B1)

where the approximation for the sin( ) is justified by the small magnitude of complex number
√

ε1
ε1+ε2

(again it is assumed here that ε2 ≡ ε̇2 = ε2 + i σ
ωε0

with the latter ε2 being real):√
ε1

ε1 + ε2
≡

√√√√ ε1

ε1 + ε2 + i
σ

ωε0

=
√
ωε0ε1
σ

√√√√ 1

i+
ωε0 (ε1 + ε2)

σ

=
√
ωε0ε1
σ

√
1

i+ x
(B2)

with x = ωε0(ε1+ε2)
σ � 1, for σ � ωε0. Then, taking a MacLaurin series expansion for f(x) =

√
i+ x

and keeping upto first order terms, it holds true that:

f(x) =
√
i+ x = f(0) + f ′(0)x+ o

(
x2

) � √
i+

1
2
√
i
· x =

i+ y√
i

(B3)

with y = x
2 = ωε0(ε1+ε2)

2σ . Substituting to (B2), the following is obtained:√
ε1

ε1 + ε2
=

√
ωε0ε1
σ

√
i

y + i
=

√
ωε0ε1

2σ
· 1 + i

y + i
(B4)

Finally, expressing 1+i
y+i to the ordinary complex form of a+ ib, it is easy to get that:

1 + i

y + i
=

1 + y

1 + y2
+ i

(
y2 + y

1 + y2
− 1

)
y2→0� 1+y+ i (y − 1) = 1+

ωε0 (ε1 + ε2)
2σ

+ i
[
ωε0 (ε1 + ε2)

2σ
− 1

]
(B5)

Substituting Eq. (B5) to Eq. (B4) and using Eq. (B1), we reach Eq. (23).
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APPENDIX C. ASSOCIATING THE ETALON INTEGRAL TO PROBABILITY
INTEGRALS

Special function X(k, α) is given by [24]:

X (k, α) =
e−i π

4√
2π

∫ 2
√

k sin α
2

∞ sin α
2

e
it2

2 dt (C1)

For α ∈ [−π,+π], it is true that sgn(α) = sgn(sin α
2 ). For the case where α > 0, the down limit of

X(k, α) is ∞ · sin α
2 → ∞. Then by setting t =

√
2iy and using the definition for the complementary

error function††, Eq. (C1) becomes:

X (k, α) =
e−i π

4√
2π

∫ √−2ik sin α
2

∞
e−y2 ·

√
2idy =

1
2
erfc

[√−2ik sin
α

2

]
(C2)

Similarly, for α < 0, ∞ · sin α
2 maps to −∞. Setting again t =

√
2iy to Eq. (C1), gives:

X (k, α) =
e−i π

4√
2π

∫ ∞

−√−2ik sin α
2

e−y2 ·
√

2idy = −1
2
erfc

[
−√−2ik sin

α

2

]
(C3)

The combination of Eqs. (C1) and (C3) for both cases α > 0 and α < 0, yields Eq. (25).

APPENDIX D. ON THE CONTOUR INTEGRATION OVER SZ

First, note that the integrand in Eq. (28) includes a phase factor, eik01r2(cos ζ−cos ζp). Then, on the
assumption that k01r2 is a large parameter, several asymptotic methods for evaluating the integral
exist, which all make the meaningful assumption that the main contribution to the integral’s value
comes from a small area, in the vicinity of a “stationary point” [17, 18]. The saddle point method to
be used here is such a method. The conclusion is that for k01r2 � 1, curves Sz and S may well be
considered as part of the closed curve, shown in Fig. 3, in which the contribution of the dashed-line
segments is neglectible, for being away from this stationary, or “saddle point”, to be calculated below.
Then, by means of the Residue Theory and since no pole exists inside the aforementioned closed contour,
it holds true: ∫

Sz

Q (ζ + θ2) · e
ik01r2(cos ζ−cos ζp)

sin
ζ − ζp

2

dζ =
∫

S
Q (ζ + θ2) · e

ik01r2(cos ζ−cos ζp)

sin
ζ − ζp

2

dζ (D1)

As mentioned above, in order to evaluate
∫
S Q(ζ+ θ2) · eik01r2(cos ζ−cos ζp)

sin
ζ−ζp

2

dζ, the saddle point method

is applied, under the precondition that k01r2 is a large parameter. It is easy to find that ζ = 0 is the
saddle point (found by solving ∂

∂ζ (cos ζ − cos ζp) = 0). Hence, the integral may be evaluated as:∫
S
Q (ζ + θ2)

eik01r2(cos ζ−cos ζp)

sin
ζ − ζp

2

dζ = Q (θ2) ·
∫

S

eik01r2(cos ζ−cos ζp)

sin
ζ − ζp

2

dζ = Q (θ2) ·X (k01r2,−ζp) (D2)

Substituting Eq. (D2) to Eq. (28) and also using Eq. (29) for Q(θ2), expression (30) for ER is
obtained.

†† erfc(x) = 2√
π

∫ ∞
x

e−y2
dy.
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APPENDIX E. ASYMPTOTICS OF THE “SURFACE WAVE”

Here, Eq. (33) is asymptotically derived from Eq. (30) in the limit θ2 → π/2. The analysis is facilitated
by defining auxiliary variable θ′2, defined as:

θ′2 = θ2 − δ (E1)

For δ → 0, θ′2 → θ2 and as a result from Fig. 1 the following approximations may be made:

ρ sin θ′2 � ρ, ρ cos θ′2 � (x+ x0) (E2)

It’s useful to set small variable δ equal to the infinitesimal quantity:
√

ωε0ε1
2σ (valid since σ � ωε0).

Then Eq. (23) may be written as:

ξp � π

2
+ δ

[
1 +

ε1 + ε2
ε1

· δ2 − i

(
1 − ε1 + ε2

ε1
· δ2

)]
δ2→0� π

2
+ δ − iδ (E3)

As a result, the equivalent ζ-plane pole and its associated cosine are estimated as:

ζp = ξp − θ2 =
π

2
− θ′2 − iδ

cos ζp = sin
(
θ′2 + iδ

)
= sin θ′2 cos iδ + cos θ′2 sin iδ

δ→0� sin θ′2 + iδ cos θ′2
(E4)

Now consider again Eq. (30): ER = −êθ2

pk3
01

2ε0ε1

√
−2i

πk01ρ ·eik01r2 cos ζp ·sin 3
2 θ2 sin ζp

2 R‖(θ2)X(k01r2,−ζp).
Since factors sin

3
2 θ2 and sin ζp

2 appear only as amplitudes, they may be well estimated by setting
θ2 � π/2. Therefore, this time, adequate values for ζp/2 and its respective sine are:

ζp
2

=
ξp − θ2

2
� π

4
+ δ

1 − i

2
− π

4
=

√
2

2
e−iπ/4δ

sin
(
ζp

2

)
δ�1� ζp

2
=

δ√
2

√−i
(E5)

Finally, Eq. (27) is used for evaluating X(k01r2,−ζp):

X (k01r2,−ζp) � 1
2

+

√
k01r2
2πi

· ζp =
1
2

+

√
k01r2
2πi

· √−2i · δ (E6)

Substituting Eqs. (E2), (E4), (E5) and (E6) to Eq. (30) and after neglecting 2nd order terms with
respect to small parameter δ, we reach Eq. (33).
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