
Progress In Electromagnetics Research C, Vol. 84, 147–160, 2018

The Properties of the Electromagnetic Scattering from a Sinusoidal
Water Wave

Yunhua Wang1, 2, Yue Yu1, Yanmin Zhang1, *, and Honglei Zheng1

Abstract—Within the framework of the higher-order Kirchhoff approximation, the properties of the
electromagnetic scattering from sinusoidal water waves are presented, and the theoretical formulas up
to third-order for describing the scattering field and its spectrum are derived. It shows that not only the
spectral peaks which correspond to phase velocity of the water wave but also other discrete harmonic
peaks can be found from the theoretical spectrum model. And the Doppler shifts of the spectral
peaks are all integral multiple of the sinusoidal wave’s frequency. For the backscattering field from a
sinusoidal wave, the higher-order resonant peaks would also be found at different scattering angles, and
the values of these peaks decrease with the scattering angle. On the other hand, the comparisons with
the MoM demonstrate that the contributions of the slope-dependent terms can be generally neglected
if the amplitude of the sinusoidal wave is small. However, if the waves slope is larger, the impact of the
second order scattering becomes obvious and cannot be omitted.

1. INTRODUCTION

The study on electromagnetic scattering from rough surface has been the subject of intensive
investigation over the past decades for its application in land and ocean remote sensing [1–14].
Normalized radar cross section (NRCS), frequency spectrum and polarimetric properties are generally
used to describe scattering fields. Among these parameters, NRCS and frequency spectrum reflect the
intensity of the scattering field and the line-of-sight velocity of the scatterers, respectively. In the area
of ocean remote sensing, NRCS and Doppler behaviors of sea echoes have been widely used to retrieve
wind field [5], sea wave spectrum [6–10] and sea surface current [11–14]. It is well known that the
actual sea surface can be represented by a sum of sine waves based on the linear theory [15]. Thus,
it is necessary to investigate the scattering field from a sinusoidal water wave in order to understand
the properties of electromagnetic scattering from sea surface. Up to now, many analytic and numerical
methods, such as Kirchhoff approximation (KA), small perturbation method (SPM), and method of
moment (MoM), have been developed to evaluate NRCS and Doppler spectrum [1–4, 16–25] of the
electromagnetic scattering from an oceanic surface. Although MoM is an exact numerical method to
calculate electromagnetic scattering from rough surface, and the Doppler spectra of the scattering fields
from water surfaces can be well simulated by it, the theoretical spectral model cannot be derived directly
by MoM. Among analytic methods, KA has been widely used as the method for describing scattering
from sea surface, and higher-order KA can be used to analyze the influence of the surface slope on the
scattering fields [26] conveniently. Thus, in the present work, the scattering fields from a sinusoidal
water wave are simulated using higher-order KA, and the influences of slope-dependent higher order
scattering terms are also discussed.
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In Section 2, the theoretical formulas up to third-order for the NRCS and Doppler spectrum
are derived within the framework of the higher-order Kirchhoff approximation. And the interesting
phenomenon can be well explained by the formulas proposed by us. Section 3 is devoted to the results
and the discussions while the concluding remarks and perspectives are provided in Section 4.

2. THE SCATTERING FIELD AND THE DOPPLER SPECTRUM

If the RMS slope of a water surface is less than 0.25, a scalar approximation of the Kirchhoff method
can be used to evaluate the scattering field of the water surface. And the expression of the scattering
field can be written as [26]

Es
pq = K

∫
Ūpq exp

[
jke

(
k̂s − k̂i

)
· r
]
dr (1)

where K = ike
4πR exp(jkeR), ke is the wavenumber of the incident electromagnetic wave, and R denotes

the range from surface center to radar. The subscripts ‘p’ and ‘q’ denote ‘h’ or ‘v’. The unit
vector wavenumbers k̂i and k̂s can be expressed as k̂i = (x̂ sin θi cosϕi + ŷ sin θi sinϕi − ẑ cos θi) and

k̂s = x̂ sin θs cosϕs + ŷ sin θs sinϕs + ẑ cos θs. θi and θs denote the incident and the scattering angles,
and ϕi and ϕs denote the azimuth angles, respectively.

Based on the periodogram methods, the Doppler spectrum of the scattered field can be expressed
as

S(ω) =
⟨
Es

pq(ω) · Es∗
pq(ω)

⟩
= |K|2

∫∫∫ ⟨
ŪpqŪ

∗
pq exp

[
jke

(
k̂s − k̂i

)
·
(
r− r′

)]⟩
exp

(
jωt− jωt′

)
drdr′dtdt′ (2)

where Es
pq(ω) = K

∫ ∫
ŪpqΨexp(jωt)drdt is the Fourier transform of the scattered field. T denotes

the time length of the series Es
pq(t). For different polarizations, the factor Ūpq is of the form

Ūpq = a0 + a1Zx + a2Zy, then we can write the product ŪpqŪ
∗
pq up to second order in slope as

ŪpqŪ
∗
pq = a0a

∗
0 + a0a

∗
1Z

′
x + a0a

∗
2Z

′
y + a1a

∗
0Zx + a2a

∗
0Zy

+a1a
∗
1ZxZ

′
x + a1a

∗
2ZxZ

′
y + a2a

∗
1ZyZ

′
x + a2a

∗
2ZyZ

′
y (3)

here, a0, a1 and a2 are all polarization-dependent coefficients [26].

2.1. The First-Order Spectrum

In Eq. (2), if we set ŪpqŪ
∗
pq ≈ a0a

∗
0, then the first-order spectrum of the scattering field is obtained as

S1(ω) = 4πR2 |Ka0|2

T 2L2

∫ T

−T

∫ L

−L

∫ L

−L
(L− |u|)(L− |v|)(T − |τ |)

exp
{
jqxu+ jqyv − q2zδ

2(1− ρ)
}
exp(jωτ)dudvdτ (4)

where u = x0−x′0, v = y0−y′0 and τ = t−t′. δ2 and ρ denote the variance and the correlation coefficient
of the water wave.

For a monochromatic water wave, its profile can be expressed as

Z(x, y, t) = a cos(kwxx+ kwyy + ωwt) (5)

where kwx and kwy denote the spatial wavenumber along x̂ and ŷ directions, respectively. ωw =
√
gkw

with kw = (k2wx + k2wy)
1/2. Using Eq. (5), variance δ2 and correlation coefficient ρ for the water wave

can be obtained as

δ2 =
⟨
Z2(x, y, t)

⟩
=
a2

2
(6)

ρ(u, v, τ) =
⟨Z(x+ u, y + v, t+ τ)Z(x, y, t)⟩

⟨Z2(x, y, t)⟩
= cos[kwxu+ kwyv + ωwτ ] (7)
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Suppose that the amplitude of the water wave is small, i.e., q2zδ
2 ≪ 1, and then the exponential term

exp{q2zδ2ρ} in Eq. (4) can be expressed as a Taylor series, i.e.,

exp
(
q2zδ

2ρ
)
=

∞∑
n=0

(
q2zδ

2ρ
)n

n!
(8)

Substituting Eqs. (6)–(8) into Eq. (4), the first-order spectrum S1(ω) is rewritten as

S1(ω) = 4πR2 |Ka0|2

T 2L2
exp

{
−a2q2z

2

}
·

∞∑
n=0

{
q2za

2
}n

2nn!∫ T

−T

∫ L

−L

∫ L

−L
cosn[kwxu+ kwyv − ωwτ ](L− |u|)(L− |v|)(T − |τ |)

exp[jqxu+ jqyv] exp(jωτ)dudvdτ (9)

Using Euler’s Formula, the power of cosine function can be rewritten as

cosn(kwxu+ kwyv + ωwτ) =
1

2n

n∑
r=0

Cr
n exp[j(n− 2r)(kwxu+ kwyv + ωwτ)] (10)

where Cr
n = n!

r!(n−r)! is the binomial coefficient. Substituting Eq. (10) into Eq. (9), after a tedious but

straightforward derivation, the expression of the first-order spectrum is obtained as

S1(ω) = 4πR2|Ka0|2 exp
(
−q2za

2

2

) ∞∑
n=0

∞∑
r=0

(
q2za

2
)2r+n

24r+2n

1

r!(r + n)!{
Sa2

(
qx ± nkwx

2
L

)
Sa2

(
qy ± nkwy

2
L

)
Sa2

(
ω ± nωw

2
T

)}
(11)

where Sa(X) = sin(X)/X is the sampling function.

2.2. The Second- and the Third-Order Spectra

The other contribution to the total spectrum comes from the slope terms in Eq. (3). The second- and
third-order spectra are written as

S2(ω) =
4πR2 |K|2

T 2L2

∫∫ ⟨(
a0a

∗
81Z

′
x + a∗0a1Zx + a0a

∗
2Z

′
y + a2a

∗
0Zy

)
exp

[
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(
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)
·
(
r− r′

)]⟩
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(
jωt− jωt′

)
drdr′dtdt′ (12)

and

S3(ω) =
4πR2 |K|2

T 2L2

∫∫ ⟨(
a1a

∗
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Using the following equations, i.e.,

⟨exp(ja1X1 + ja2X2)X3⟩ = −j
∂ ⟨exp(ja1X1 + ja2X2 + ja3X3)⟩

∂a3

∣∣∣∣
a3=0

(14)

⟨exp (ja1X1 + ja2X2)X3X4⟩ = − ∂2 ⟨exp(ja1X1 + ja2X2 + ja3X3 + ja4X4)⟩
∂a3∂a4

∣∣∣∣
a3=a4=0

(15)

and

⟨exp(ja1X1 + ja2X2 + . . .+ jaNXN )⟩ = exp

{
−1

2

N∑
m=1

N∑
n=1

aman ⟨XmXn⟩

}
, (16)
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the second- and third-order spectra can be rewritten as

S2(ω) = −j
4πR2 |K|2 qza2

T 2L2

∫ T

−T

∫ L

−L
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−L
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[
Re(a0a

∗
81)

∂ρ

∂u
+Re(a0a

∗
82)

∂ρ

∂v

]
exp

[
jqxu+ jqyv − q2zδ

2(1− ρ)
]
exp(jωτ)dudvdτ (17)
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S3(ω) =
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with

∂ρ

∂u
= −kwx sin(kwxu+ kwyv + ωwτ) (19)

∂ρ

∂v
= −kwy sin(kwxu+ kwyv + ωwτ) (20)

Using Euler’s Formula and substituting Eqs. (10), (19) and (20) into Eqs. (17)–(18), after a tedious
but straightforward derivation, the expression of the second- and third-order spectra are both obtained
as

S2(ω) = 2πR2 |K|2 a2qz exp
(
−q2za
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and
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2.3. The NRCS of the Echo from a Sinusoidal Wave

If we integrate the spectra with respect to the angle frequency, the NRCS up to the third order is
obtained as

σ =

+∞∫
−∞

S1(ω)dω +

+∞∫
−∞

S2(ω)dω +

+∞∫
−∞

S3(ω)dω

= σ1 + σ2 + σ3 (26)

where σ1, σ2 and σ3 denote the first-, second- and third-order NRCSs, respectively. And their expressions
are
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and
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3. THE NUMERICAL RESULTS AND DISCUSSIONS

The wave tank experiments were carried out by Wen and Li in [27] to study the characteristics of
electromagnetic backscattering from a sinusoidal water wave. The radar wave length λe is 0.88m. The
transmitting and receiving antennas are both V polarized, and the grazing angle is about 3 degrees.
The other parameters of the water waves are shown in Table 1. Here, λB = λe/(2 sin θi) ≈ λe/2
denotes the first-order Bragg resonant wavelength. fB is the Doppler shift of the first-order Bragg
resonant scattering field. The Doppler spectra of the backscattering fields from sinusoidal water waves
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for different wavelengths are shown in Fig. 1. From Fig. 1, one can find that not only the spectral peaks
correspond to Bragg scattering (i.e., the peaks at fD = fB, fD = 1.41fB, fD = 1.73fB and fD = 2fB in
Figs. 1(a)–(d), respectively) but other harmonic peaks can be found.

Table 1. Parameters of the water wave and calculated Doppler shift.

Water wave length L1 λB 2λB 3λB 4λB

The normalized Doppler shift fD/fB
of the Bragg scattering field

1.00 1.41 1.73 2.00
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Figure 1. Doppler spectra of the backscattering fields from the sinusoidal water waves for different
wavelengths measured by Wen et al. in [27]. (a) fB, (b) 2fB, (c) 3fB, (d) 4fB.
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Figure 2. The bistatic HH-polarized NRCS from sinusoidal waves with different wavelengths.

In order to further reveal the properties of the scattering from sinusoidal water waves, the NRCS
and Doppler spectra simulated by the higher-order Kirchhoff approximation are presented as follows.
MoM is considered as an exact numerical method to calculate electromagnetic scattering from target [28].
Thus, the bistatic NRCS simulated by Eq. (26) is firstly compared with the numerical results by MoM in
Fig. 2 to verify the validity of the theoretical model. In simulations, sinusoidal waves propagate along
x axis, and the wave amplitude is set to 0.05λe. The wavelength of electromagnetic wave λe = 1m
and incident angle θi = 30◦. As shown in Fig. 2, if the scattering angle satisfies the relationship
sin θs = sin θi ± nkwx/ke, the Bragg resonant peaks would be found at this scattering angle. With the
increase of water wavelength, more and more higher-order resonant peaks appear. On the other hand,
the intensity of the resonant peaks decreases with the absolute value of order number n.

The influences of higher-order scattering fields induced by the local slope on the bistatic and
monostatic NRCS are shown in Fig. 3 and Fig. 4, respectively. Here, the sinusoidal waves propagate
along x axis, and the wave amplitude is set to 0.05λe. For bistatic cases, the radar incident angle is
30◦. From Fig. 3, we can find that the influence of the third-order field on the bistatic NRCS is not
significant. When the water wavelength is longer, just as expected, the bistatic and monostatic NRCSs
are both dominated by the first-order field. However, if the water wavelength is shorter, the surface
slope is larger, and the second-order field would have an obviously impact on the Bragg resonant peak
at θs = −30◦ in Fig. 3(a). For monostatic cases, if the water wavelength is shorter, the third-order field
would make a significant impact on the NRCS at larger scattering angles from 70◦ to 90◦. Meanwhile,
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Figure 3. The influence of the higher-order scattering fields on the total power (Bistatic cases).

as shown in Figs. 4(a) and (b), the Bragg resonant peaks are also significantly affected by the higher-
order fields. However, if the wavelength is longer, as shown in Figs. 3(c)–(d) and Figs. 4(c)–(d), the
slope-dependent higher-order fields can be neglected.

The influence of the water wave’s amplitude on the resonant peak is shown in Fig. 5. Here, the
wavelength of the sinusoidal waves is 4λe. The curves in Fig. 5 show that more than one resonant peak
appears, and the intensities of the peaks are proportional to the amplitude of the water wave. If the
amplitude of the water wave is small, the higher order resonant peaks cannot be seen. These phenomena
can be explained by Eq. (27). It is found that if the scattering angle satisfies the following relationship,
i.e.,

2ke sin θi = nkwx with n = 0, 1, 2, . . . , (33)

a resonant peak will emerge at this angle from the sampling function in Eq. (27). Here, Eq. (33) can
be simplified as sinθi = n/8 because the wavelength of the sinusoidal waves is 4λe and kwx = ke/4.
Thus, in theory, eight resonant peaks corresponding to n = 0, 1, 2, . . . , 7 are possibly found. However,
from Fig. 5 we can find that the number of resonant peaks is less than eight because the values of the
resonant peaks are also affected remarkably by the coefficient Γn in Eq. (27), i.e.,

Γn = 4πR2 |Ka0|2 exp
(
−2a2k2z

) ∞∑
r=0

(
a2k2z

)2r+|n|

r!(r + |n|)!
(34)
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Figure 4. The influence of the higher-order scattering fields on the total power (Monostatic cases).

In order to show the influence of this coefficient, the values of Γn for different amplitudes of sinusoidal
wave are shown in Fig. 6. The results in this figure demonstrate that if n ̸= 0 the values of Γn increase
with amplitude a and decrease with order number n. This property helps to explain why the values
of the resonant peaks in Fig. 5 increase with the water wave amplitude a and decrease with incidence
angle θi.

In Fig. 7, the Doppler spectra for the incoherent backscattering fields from sinusoidal wave with
wavelength λw = 3λe are presented. The amplitude of the water wave is set to 0.05λe. In the left
figure of Fig. 7, the resonant peaks and their orders are labeled by the order number n. From Fig. 7
we can find that not only the resonant peaks but also other equally spaced harmonic peaks can be
found. However, comparing the harmonic peaks with the resonant peaks, it is shown that the values of
the harmonic peaks are obviously smaller. In order to explain this phenomenon, we firstly rewrite the
first-order expression of the Doppler spectrum as

S(f) =

∞∑
n=−∞

Γnςnξn (35)

with

ςn = Sa2
(
qx − nkwx

2
L

)
(36)
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Figure 5. The resonant peaks of the monostatic scattering fields from sinusoidal waves with different
amplitudes.

ξn = Sa2[π(f − nfw)T ] (37)

and the coefficient Γn is given by Eq. (34).
The phenomena of the Doppler spectrum shown in Fig. 7 can be well explained by Eq. (35). It

is found that the Doppler spectra of the electromagnetic fields scattered from sinusoidal waves are
determined by three terms, i.e., Γn, ςn and ξn from Eq. (35). The influences of Γn are shown in Fig. 6.
In order to illustrate the effect of the other two terms, their properties are presented in Fig. 8 and Fig. 9,
respectively. Eq. (37) shows that positions of the peaks are decided by ξn in frequency domain. If the
frequency f satisfies the following equation

f − nfw = 0 for n = 0,±1,±2, . . . (38)

just as shown in Fig. 8, a peak would appear. However, we can also find that the peaks of ξn for different
f are all equal to the same value. This means that the function ξn does not determine the values of the
spectral peaks.

Compared with Γn and ξn, ςn is another term which affects the values of the spectral peaks. And
the position of the Bragg resonant peak is also determined by this term. Without loss of generality, the
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Figure 6. The values of Γn for different amplitudes of the water wave.
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Figure 7. (a) The false-color image of the Doppler spectra from sinusoidal wave and (b) the spectra
along the cross section θi = 30◦.
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Figure 9. The value of ςn as a function of n. The green diamonds on the black line denote the positions
of the spectral peaks and the corresponding values of ςn.

spatial wavenumber kwx of the water wave is set to ke/3. From Eq. (36) we can find that the sampling
function ςn has a peak if parameter n satisfies the equation qx − nkwx = 0. For example, a resonant
peak would present at position f = 3fw when the incidence angle θi = 30◦ and integer n = qx/kwx = 3.
However, if n ̸= 3, by contrast, the values of ςn are obviously smaller (see the green diamonds in Fig. 9).
The properties of ςn mentioned above mean that the position and value of the spectral peak are both
affected by ςn. Using these properties of ξn and ςn above, the characteristics shown in Fig. 7 can be
well explained.

4. CONCLUSIONS

In this paper, the scattering field from sinusoidal wave has been investigated by higher order KA. Firstly,
the theoretical models for the NRCS and the Doppler spectrum are proposed, and the comparisons with
the MoM results demonstrate that our theoretical models are reasonable, and the contributions of the
slope-dependent higher order terms can be generally neglected if the slope of the sinusoidal wave is
small. Secondly, it can be found that several resonant peaks would appear with the incidence angle
from the curves of backscattering fields. The values of the resonant peaks increase with the amplitude
of the sinusoidal wave and decrease with the incidence angle. On the other hand, it is shown that not
only the spectral peak corresponding to the Bragg scattering can be seen but also some equally spaced
harmonic peaks can also be found from the figure of the Doppler spectrum. The phenomena mentioned
above can be successfully explained by the models proposed in the present work.
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