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The Direction-of-Arrival and Polarization Estimation Using Coprime
Array: A Reconstructed Covariance Matrix Approach

Wen Dong*, Ming Diao, and Lipeng Gao

Abstract—In this paper, we propose a novel direction of arrival (DOA) and polarization estimation
method to address the problem of a coprime polarization-sensitive array (PSA). For a PSA, there may
be a zero element in the covariance matrix when the polarized signal comes from a specific direction.
To overcome this problem, we utilize the reconstructed received data to obtain a new covariance matrix
whose elements are all non-zero. Then, the coprime MUSIC and sparse signal reconstruction algorithms
are used for DOA estimation. In addition, the power of noise can be estimated in this polarization
model, which improves upon the sparse signal reconstruction algorithm. Compared with the normalized
algorithm, the proposed method offers favorable performance in terms of accuracy. Furthermore, our
method can identify the peaks of the true DOAs at a low signal-to-noise ratio (SNR). The simulation
results demonstrate the effectiveness of the proposed method.

1. INTRODUCTION

Direction of arrival (DOA) estimation using a polarization-sensitive array (PSA) has received consid-
erable attention in many practical applications involving radar, navigation, and communication [1, 2].
PSAs, which can receive three directions of the electric field, has many advantages, such as high ac-
curacy, strong resolution, and good anti-jamming capability. Thus, the PSA has played an important
role in signal processing in recent decades [3–8]. Many DOA and polarization estimation using dipole
triads algorithms have been proposed [9–19]. Polarized multiple signal classification (MUSIC) [20, 21]
and the polarized signal parameters via rotational invariance technique (ESPRIT) [22, 23] are two major
approaches. However, conventional source estimation algorithms are limited by the degrees of freedom
(DOFs). In a uniform linear array, M physical sensors can identify up to M − 1 sources, and much of
the information in the covariance matrix is lost. Many sparse arrays have been proposed to identify
more sources with the same number of physical sensors [24–27].

Recently, the coprime array has received substantial attention due to its high DOFs [28–31]. When
M and N are coprime, a coprime array can achieve O(MN) DOFs with (M + N) elements. To
obtain a contiguous virtual array, we need to calculate the difference coarray to obtain the steering
vector of the virtual array. However, this technique employs only a portions of the difference coarray
because there are several elements in the virtual array called holes. To overcome this problem, two
important approaches have been proposed. In [32], multiple frequencies are utilized to fill in the holes
of the coprime array. In [33], a new approach to super-resolution spectrum estimation using a coprime
pair of samplers is proposed. These two technologies can exploit all the DOFs for DOA estimation.
Then, the received data can be regarded as an equivalent received signal of the virtual array. In this
model, the reconstructed received data behave as a single point. However, the rank of the covariance
matrix of the reconstructed received data is one. Therefore, the MUSIC algorithm based on spatial
smoothing [34] and the sparse reconstruction algorithm [35] are proposed for cases of multiple incident
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sources. Moreover, the literature [36] introduces a sparse recovery method to detect multiple sources.
In [37], DOA estimation is performed via coprime array; however, the performance of these algorithms
is poor because they use the PSA directly.

In this paper, we propose a reconstructed covariance matrix method to improve DOA and
polarization estimation. In this way, all the elements in the covariance matrix are non-zero, and the
performance of the two DOA estimation algorithms is improved. Specifically, the power of noise, which
is difficult to estimate, is obtained to improve the sparse reconstruction algorithm using the PSA. Then,
this improved method is compared with the conventional coprime algorithm.

The remainder of this paper is organized as follows. In Section 2, we introduce the signal model
and coprime array configuration. Section 3 presents the proposed method based on the reconstructed
covariance matrix. In Section 4, we compare the performance of the proposed method with that of two
normalized methods.

The mathematical notation used throughout this paper is denoted as follows. (·)∗, (·)T , (·)H , E{·},
and ⊗ denote the conjugate, transpose, conjugate transpose, statistical expectation, and Kronecker
product, respectively. Additionally, ‖·‖ denotes the modulus of the internal entity. ‖·‖0 denotes the l0
norm, and ‖·‖1 and ‖·‖2, respectively, denote the l1 and l2 norms.

2. SYSTEM MODEL

As illustrated in Figure 1, a coprime array consists of two uniform linear subarrays, which are located in
the same line and share the same element in the original point. All elements contain a pair of orthogonal
cross dipoles parallel to the x-, y- and z-axes. The first subarray has 2M equal-spaced sensors, and
the other subarray has N equal-spaced sensors, where M and N are coprime numbers. The unit inter-
element d is λ/2, where λ denotes the signal wavelength. The element spaces of the two subarrays are
N units and M units. Here, we assume M < N and double M to overcome the problem of missing holes
discussed in [33]. Hence, the 2M +N − 1 element positions from the original point can be obtained by

S = {Nmd, 0 ≤ m ≤ 2M − 1} ∪ {Mnd, 0 ≤ n ≤ N − 1}, (1)

and the difference coarray can be calculated as

S0 = {±(Nmd−Mnd)}. (2)

Because M and N are coprime, contiguous elements can be obtained from −(MN + M − 1)d to
(MN +M − 1)d.

Figure 1. The system model of two subarrays.

ConsiderK uncorrelated narrowband signals impinging upon a PSA with elevation angles θk, where
k = 1, . . . ,K. Since each sensor can receive three electric field components, as shown in [4], the data
vector received at time t is expressed as

x(t) =

⎡⎣ x1(t)

x2(t)

x3(t)

⎤⎦ =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

K∑
k=1

a(θk)ex,ksk(t) + n1(t)

K∑
k=1

a(θk)ey,ksk(t) + n2(t)

K∑
k=1

a(θk)ez,ksk(t) + n3(t)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎣ AExs(t) + n1(t)

AEys(t) + n2(t)

AEzs(t) + n3(t),

⎤⎦ (3)
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where ⎡⎣ ex,k
ey,k
ez,k

⎤⎦ =

⎡⎣ 0 cos θk
1 0

0 − sin θk

⎤⎦
︸ ︷︷ ︸

Ξ(θk)

[
cos γk

sin γke
jηk

]
︸ ︷︷ ︸

hγk,ηk

(4)

and

a(θk) =

[
1, ej

2πp1
λ

sin(θk), . . . , ej
2πp2M+N−1

λ
sin(θk)

]T
. (5)

In Eq. (3), sk(t) is the kth source signal vector, and n(t) is the corresponding noise vector. In
Eq. (4), −π/2 ≤ θ < π/2 denotes the signal’s elevation angle; 0 ≤ γ < π/2 represents the auxiliary
polarization angle; 0 ≤ η < 2π is the polarization phase difference. In Eq. (5), pi is the positions of the
array sensors, where pi ∈ S, as shown in Figure 2.

x

y

z

p0 p
2 2M + N - 1

Figure 2. Structure of a triple-polarization coprime array.

The covariance matrix is obtained as

Rxx = E[x(t)xH (t)] =

⎡⎣ E[x1(t)x
H
1 (t)] E[x1(t)x

H
2 (t)] E[x1(t)x

H
3 (t)]

E[x2(t)x
H
1 (t)] E[x2(t)x

H
2 (t)] E[x2(t)x

H
3 (t)]

E[x3(t)x
H
1 (t)] E[x3(t)x

H
2 (t)] E[x3(t)x

H
3 (t)]

⎤⎦ , (6)

where Rxx ∈ C
3(2M+N−1)×3(2M+N−1). Note that the entries of the covariance matrix correspond to

different lags. Unfortunately, some covariance matrix elements are zero in special cases. For example,
ey,k = ez,k = 0 when γ = 0◦. To avoid this problem, we reconstruct the covariance matrix as follows

Rxx = E
[
x1x

H
1 + x2x

H
2 + x3x

H
3

]
= AE

{
Exs(t)s

H(t)EH
x

}
AH +AE

{
Eys(t)s

H(t)EH
y

}
AH +AE

{
Ezs(t)s

H (t)EH
z

}
AH

= A

⎡⎢⎢⎢⎣
(
‖ex,1‖2 + ‖ey,1‖2 + ‖ez,1‖2

)
ρ21

. . . (
‖ex,K‖2 + ‖ey,K‖2 + ‖ez,K‖2

)
ρ2K

⎤⎥⎥⎥⎦AH

+
(
σ2
1 + σ2

2 + σ2
3

)
I, (7)

where ρ2k is the power of the kth source, σ2 the noise power, and I ∈ C
(2M+N−1)×(2M+N−1) the unit

matrix. Now, R′
xx ∈ C

(2M+N−1), and all the elements in the reconstructed covariance matrix are
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non-zero. According to Eq. (4), ‖ex,k‖2 + ‖ey,k‖2 + ‖ez,k‖2 = 1. Then, the covariance matrix becomes

R′
xx = A

⎡⎢⎣ ρ21
. . .

ρ2K

⎤⎥⎦AH + σ̃2I. (8)

We make the following basic assumptions:

(1). All the sources are completely polarized waves that are uncorrelated with each other.

(2). n(t) is a Gaussian random processes that is uncorrelated with s(t). The power of noise is constant,
which means σ2

1 = σ2
2 = σ2

3 = σ2 and σ̃2 = 3σ2.

(3). The array is calibrated, and the mutual coupling among the antenna array elements is neglected.

3. COPRIME ALGORITHM

In this section, we use the MUSIC and sparse reconstruction algorithms based on the reconstructed
covariance matrix to estimate the DOA. To obtain the contiguous steering vector, we vectorize R′

xx,
which yields

z = vec(R′
xx) = Ãb+ σ̃2i, (9)

where Ã = [a∗(θ1)⊗ a(θ1), . . . ,a
∗(θK) ⊗ a(θK)] ∈ C

(2M+N−1)2×K , b = [ρ21, . . . , ρ
2
K ]T , and i = vec(I) ∈

C
(2M+N−1)2 . The vector z is the received signal vector from a virtual array with corresponding steering

matrix Ã′. However, many repeated rows in matrix Ã must be removed, and the remaining rows should
be sorted. The constructed Ã′ ∈ C

(2MN+2M−1)×K acts as a consecutive ULA with (2MN + 2M − 1)
sensors located from −(MN +M − 1) to (MN +M − 1). The constructed vector z′ can be expressed
as

z′ = Ã′b+ σ̃2i′, (10)

where the (MN +M)th element of vector i′ is one and the other elements are zero.

3.1. MUSIC Approach

Note that z′ represents a single snapshot, and the rank of the covariance matrix is one. Spatial smoothing
technique is used to overcome the problem of multiple incident sources. With Equation (10), the
consecutive virtual ULA can be divided into (MN +M) overlapping subarrays with (MN +M) sensors
for each subarray, and the initial points of these subarrays are located from −(MN + M − 1) to 0.
Then, the data received data by the ith subarray can be written as

z′i = z′(i : MN +M − 1 + i, 1), (11)

where i = 1, 2, . . . , (MN +M). The covariance matrix of the ith subarray can be calculated as follows

R′
i = z′iz

′H
i . (12)

To obtain the full rank covariance matrix, we reconstruct the data with spatial smoothing as

Rs =
1

MN +M

MN+M∑
i=1

R′
i. (13)

The size of the spatially smoothed covariance matrix is (MN +M)× (MN +M), which has a rank
of (MN +M). Hence, MN +M sources can be estimated by using only 2M +N − 1 physical sensors,
and the DOAs can be obtained by using the conventional MUSIC algorithm [21]. Assume that L is the
number of snapshots; the main steps of the proposed method are summarized in Algorithm 1.
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Algorithm 1 Steps in the Proposed Method.

Input: x(1),x(2), · · · ,x(L)
1. Obtain x according to Equation (3)
DOA Estimation:
2. Reconstruct the covariance matrix via Equation (7)
3. Vectorize R′

xx according to Equation (9)
4. Obtain z′ according to Equation (10)
5. Calculate the covariance matrix of the ith virtual subarray using
Equation (12)
6. Average all the covariance matrices of the subarrays from Equation (13)
7. Estimate the DOAs through Rs using the MUSIC algorithm

3.2. Sparse Reconstruction Approach

In this subsection, we solve Eq. (10) in terms of the sparse signal recovery through compressive sensing.
The sparse representation can be written as

z′ = Asbs + σ̃2i′, (14)

where As = [b(θ̃1),b(θ̃2), . . . ,b(θ̃Q)] ∈ C
(2MN+2M−1)×Q is an over-complete basis (Q � K), and

bs = [ρ̄21, ρ̄
2
2, . . . , ρ̄

2
Q]

T is K-sparse, which can be expressed as

ρ̄i =

{
ρk, θ̃i ∈ [θ1, θ2, . . . , θK ]

0, θ̃i /∈ [θ1, θ2, . . . , θK ]
, i = 1, 2, . . . , Q. (15)

Then, the optimal solution of Equation (14) can be represented as the following constrained
minimization problem

b̂s = argmin
bs

‖bs‖0
s.t. z′ = Asbs + σ̃2i′

.

(16)

Unfortunately, the minimization problem of the l0-norm is NP hard. By using the l1-norm to
replace the l0-norm, Equation (16) can be reformulated as

b̂s = argmin
bs

‖bs‖1
s.t. z′ = Asbs + σ̃2i′.

(17)

Equation (17) is then convex, and the above optimization problem can be defined as

b̂s = argmin
bs

[
1

2

∥∥z′ −Asbs − σ̃2i′
∥∥
2
+ c‖bs‖1

]
, (18)

where c is a penalty parameter that balances the tradeoff between the error of the reconstructed
covariance matrix and the sparsity of the spatial spectrum. Note that we add the noise vector σ̃2i′,
which is hard to estimate in other models because the number of sources is greater than the number of
physical sensors. However, we can obtain a covariance matrix of size 3(2M +N − 1)× 3(2M +N − 1)
from Equation (6). Then, we can obtain 3(2M + N − 1) − K smaller eigenvalues through the eigen-
decomposition of Rxx.

Rxx = UΛUH , (19)

where Λ = diag{κ1, . . . , κ3(2M+N−1)−K , . . . , κ3(2M+N−1)}. The power of noise σ̂2 can be obtained by

averaging these smaller eigenvalues; then, σ̃2 = 3σ̂2.

σ̂2 =
1

3(2M +N − 1)−K

3(2M+N−1)−K∑
i=1

κi (20)
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The DOA estimation θ̂ = {θ̂1, θ̂2, . . . , θ̂K} can be obtained according to the positions of non-zeros in b̂s;
the main steps of the proposed method are summarized in Algorithm 2.

Algorithm 2 Steps in the Proposed Method.

Input: x(1),x(2), · · · ,x(L)
1. Obtain x according to Equation (3)
DOA Estimation:
2. Reconstruct the covariance matrix via Equation (7)
3. Vectorize R′

xx according to Equation (9)
4. Obtain z′ according to Equation (10)
5. Obtain the dictionary matrix As

6. Calculate the noise power via Equations (19) and (20).

7. Compute b̂s via Equation (18)

8. Estimate the DOAs according to the positions of non-zeros in b̂s

3.3. Polarization Parameter Estimation

In this section, we estimate the polarization parameters using the generalized eigenvalue method [38].
From the MUSIC algorithm, we can know

hH
γ,ηD

H
θ ŨNŨH

NDθhγ,η = 0 (21)

where Dθ̂ = A(θ̂) ⊗ Ξ(θ̂) which can be obtained from Equations (3) and (4) based on the estimate θ̂.

H(θ̂) = DH
θ̂
UH

NUNDθ̂, andUN = U(:, 1 : 3(2M+N−1)−K) is the noise subspace. Then Equation (21)

can be written as follow

{γ̂, η̂} = argmin
γ,η

⎧⎨⎩
(

Dθ̂hγ,η∥∥Dθ̂hγ,η

∥∥
)H

ŨNŨH
N

(
Dθ̂hγ,η∥∥Dθ̂hγ,η

∥∥
)⎫⎬⎭ = argmin

γ,η

{
hH
γ,ηH(θ̂)hγ,η

hH
γ,ηD

H
θ̂
Dθ̂hγ,η

}

= arg min
hγ,η �=0

{
hH
γ,ηH(θ̂)hγ,η

hH
γ,ηD

H
θ̂
Dθ̂hγ,η

}
= arg min

hH
γ,ηD

H
θ̂
D

θ̂
hγ,η=1

{
hH
γ,ηH(θ̂)hγ,η

hH
γ,ηD

H
θ̂
Dθ̂hγ,η

}
(22)

Now the the minimization problem turn into a optimization problem.

min
hγ,η

hH
γ,η

H(θk)hγ,η

s.t. hH
γ,η

DH
θ Dθhγ,η = 1

(23)

Then the polarization angle γ and the polarization phase difference η can be estimated as

cĥγ,η = �min

{
H(θ̂),DH

θ̂
Dθ̂

}
γ̂ = arctan

{∣∣∣ĥγ,η(2)/ĥγ,η(1)
∣∣∣}

η̂ = arg
{
ĥγ,η(2)/ĥγ,η(1)

} (24)

where c is a non-zero value.

4. SIMULATION

In this section, several simulations are presented to illustrate the feasibility of the proposed method based
on a coprime array consisting of a pair of sparse ULAs, as shown in Figure 2. We set 2M = 2×3 = 6 and
N = 5. Hence, 2M +N − 1 = 10 physical sensors are located at [0, 3, 5, 6, 9, 10, 12, 15, 20, 25]d. Assume



Progress In Electromagnetics Research C, Vol. 84, 2018 29

that there areK = 14 far-field narrowband completely polarized electromagnetic wave sources impinging
upon the array. These source signals are uniformly distributed from −52◦ to 52◦, auxiliary polarization
28◦ to 80◦, and polarization phase difference 40◦ to 170◦. In the MUSIC and sparse reconstruction
algorithms, the spatial grid is uniform with a 0.1◦ sampling interval within [−60◦, 60◦]. The penalty
parameter c = 0.25 is chosen for the optimization problem in Eq. (18). Two hundred independent
Monte Carlo runs are conducted for the following simulations. The root-mean-square error (RMSE) is
chosen as the performance metric with different SNRs and is defined as

RMSE =

√√√√ 1

200K

200∑
i=1

K∑
k=1

(θ̂k−θk)2 (25)

SNR = 10log10
ρ2

σ2
. (26)

In the first simulation, we plot the normalized spectrum of the proposed method based on the
reconstructed covariance matrix and the conventional coprime algorithm. The simulation parameters
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Figure 3. Spatial spectrum comparison with a fixed SNR of −5 dB and 1000 snapshots. (a) Proposed
MUSIC algorithm based on the matrix reconstruction. (b) Coprime MUSIC algorithm in [33]. (c)
Proposed sparse signal algorithm based on the matrix reconstruction. (d) Sparse signal algorithm
in [39].
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are set to SNR = −5 dB and number of snapshots L = 1000. The proposed method can plot all the
peaks of the 14 sources, as shown in Figure 3(a), and the peaks are deficient, as shown in Figure 3(b).
By contrast, Figure 3(d) shows a spurious peak, whereas no spurious peak is present in Figure 3(c).
Hence, the proposed method correctly identifies the true source spectra when the input SNR is low.

In the second simulation, the RMSE of the proposed method versus the SNR is investigated. The
results from Figures 4–6 demonstrate that the proposed method yields more accurate results than
those of the conventional method because there are no irregular spurious peaks around the signal
response peaks for the spatial spectrum when using the reconstructed covariance matrix. By contrast,
the conventional coprime MUSIC algorithm and sparse signal reconstruction algorithm have irregular
spurious peaks or missing spectrum peaks when some of the covariance matrix elements are zero, as
discussed in Section 2.

In the third simulation, the RMSEs of the proposed method and the normalized method are
compared and displayed in Figure 7. We set SNR = 0dB. The proposed methods clearly outperform the
normalized method, and the coprime MUSIC approach outperforms the sparse reconstruction method
for all numbers of snapshots.
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5. CONCLUSIONS

In this paper, a reconstructed covariance matrix method is proposed for a coprime PSA. The proposed
method first reconstructs the received data and then obtains a covariance matrix that has no zero
elements. Then, we can use the coprime MUSIC and sparse signal reconstruction algorithm for the
DOA estimation. Finally, we can estimate the polarization parameters by using generalized eigenvalue
methods. Hence, the coprime PSA can increase the number of DOFs to O(MN +M) with 2M +N − 1
sensors while maintaining high accuracy. The simulation results show that the proposed method
improves upon the traditional algorithms.
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