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Identification of Main Factors of Uncertainty in a Microstrip
Line Network
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Abstract—This paper deals with uncertainty propagation applied to the analysis of crosstalk in printed
circuit board microstrip traces. Complex interconnection networks generally are affected by many
uncertain parameters and their point-to-point transfer functions are computationally expensive, thus
making Monte-Carlo analyses rather inefficient. To overcome this situation, a metamodel is highly
desirable. This paper presents a sparse and accelerated polynomial chaos approach, which proves to be
well adapted for high-dimensional uncertainty quantification and well suited for the sensitivity analysis
of crosstalk effects. We highlight the significant advantage of the advocated approach for the design of
microstrip line networks of complex topology. In fact, we demonstrate how a small number of system
simulations can help to quantify the statistics of the output variability and identify a reduced set of
high-impact parameters.

1. INTRODUCTION

In modern electronic circuits, the density of packages and interconnections is so high that the analysis of
signal propagation and power distribution in printed circuit boards is challenging in terms of computer
resources and simulation time. Additional crucial requirements are introduced if we intend to assess
the impact of tolerances or parameters variability on the system performance, since we need to run
a large number of deterministic simulations either to optimize the design or to determine the risk
of non-compliance with specifications. Parameters uncertainties arise from temperature variations,
intrinsic characteristics of materials, geometrical and electrical tolerances, etc., that may generate a
large variability of output signals.

To address the problem of uncertainty quantification (UQ) of high-speed information and
communication systems, several approaches based on the so-called polynomial chaos (PC) technique
have been successfully developed [1–3]. This technique represents the random response of a model in
terms of a linear combination of orthonormal polynomial basis involving the input random variables.
Intrusive [3–5] or non-intrusive [2, 6, 7] approaches exist for the computation of the basis coefficients, thus
reproducing an analytic representation called metamodel (or surrogate model) of the system response.
The metamodel can be profitably used to estimate statistical quantities of the system output, like
moments and probability density functions (PDF). Although this technique has been satisfactorily
employed in many examples, it suffers when the input dimensionality of the problem significantly
increases, since the computational cost of the numerical model rapidly grows. To face this problem,
referred to as the curse of dimensionality, few approaches have been lately introduced in the context of
high-speed circuits [8, 9]. In the field of probabilistic engineering mechanics, another approach named
the sparse PC and based on the Least Angle Regression (LARS) algorithm [10] has been successfully
used in order to quantify uncertainties in high-dimensional problems. This paper proposes to evaluate
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this method in order to deal with uncertainties in an electronic circuit [11]. First, the method is
introduced in Section 2. The approach is then applied to the analysis of the crosstalk transfer function
in Section 3. This application evaluates the variability of the model response in low and high frequency
domain. Moreover, the impact of uncertain input parameters on the crosstalk response is quantified via
a sensitivity analysis. We evidence that, despite an important number of uncertain parameters, only
a few of them have a significant impact on the point-to-point transfer function under analysis. The
metamodel provides a powerful tool to reduce the dimensionality of the initial problem.

2. POLYNOMIAL CHAOS EXPANSION

2.1. Introduction

Let X be a random vector of joint PDF fX(x), including M random variables (X1, . . . ,XM ) assumed
to be independent and representing the uncertain input parameters of the problem. Let Y = M(X)
be the random scalar response of a numerical model M describing the physical system. Assuming that
the random response Y has a finite variance, we can write [12]:

Y =
∑

λ∈NM

aλΦλ(X), (1)

where aλ are the unknown deterministic coefficients, and Φλ represent a basis of multivariate
polynomials, which are orthonormal with respect to the joint PDF fX(x), i.e., E[Φλ(X)Φβ(X)] = δλβ ,
with δλβ = 1 if λ = β and 0 otherwise. In practice, families of orthonormal polynomials are associated
in terms of probability distributions of input random variables.

Let X = {x(1), . . . ,x(n)} be a set of realizations of X, denoted as an experimental design (ED),
and Y = {M(x(1)), . . . ,M(x(n))} be the associated set of model response quantities. Using this set of
model evaluations, the coefficients of the PC representation may be estimated by using non-intrusive
techniques. Among these techniques, the ordinary least square regression [13] may be employed.

2.2. From Classical Truncation Scheme to Sparse Chaos Representation

In order to calculate the polynomial expansion, the infinite series in Eq. (1) has to be truncated. The
usual truncation rule consists in choosing a maximum polynomial degree l, which means preserving all
polynomials associated to the set AM,l = {λ ∈ N

M : ‖λ‖1 =
∑M

i=1 λi ≤ l}. Thus, the cardinal of the set

AM,l denoted L =
(M + l)!

M ! l!
increases quickly with the number of input random variables M and the

degree l of the polynomials; For example, M = 10 and l = 5 lead to L = 3003. For M typically larger
than 10, advanced truncation schemes are required.

An improved truncation scheme [10] based on a parameter k (0 < k ≤ 1) is given by:

AM,l,k =

⎧⎨
⎩λ ∈ N

M : ‖λ‖k =

(
M∑
i=1

λk
i

)1/k

≤ l

⎫⎬
⎭ . (2)

This hyperbolic truncation strategy favors the most relevant effects and low-order interactions,
which mainly impact the response according to the sparsity-of-effects principle [14]. The lower is k,
the more high-rank interactions will be discarded. Moreover, when k = 1, this scheme is equivalent to
the classical PC approximation defined by the truncation set AM,l. When k < 1, the remaining terms
of the polynomial basis can be significantly reduced compared to L [10]. This hyperbolic truncation
scheme for two input random variables (M = 2) is illustrated in Figs. 1(a) and 1(b), where the circles
represent all terms of the polynomial basis of degree less than or equal to l = 5, included in the set (2)
for k = 1 (blue circles) and k = 0.5 (pink circles). From Fig. 1, it is evident that k = 0.5 selects a
number of polynomials (pink circles) much smaller than those generated by the standard truncation set
AM,l (blue circles).

The hyperbolic truncation strategy is a first step towards a sparse PC expansion of the response,
represented by a truncation set AM,l,k of cardinal K, potentially much lower than L. However, the
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Figure 1. Polynomial basis terms of degree less than or equal to l = 5 retained by the hyperbolic
truncation strategy when (a) k = 1 (blue circles) and (b) k = 0.5 (pink circles). (c) Numbered
pink circles are the polynomial basis terms selected by the LARS algorithm at the ith iteration
(i = 1, . . . , 7) [10].

retained number of terms of the polynomial basis may be further reduced by using the LARS [15]
selection algorithm.

A brief summary of LARS follows, whereas the reader is referred to [10] for additional details.
LARS consists in an iterative process, producing a sparse representation containing from 1 to K terms
of the polynomial basis (from one to all the pink circles in Fig. 1(b)), according to their decreasing
impact. The algorithm begins by selecting the basis Φλ1, which best correlates with the response Y . In
practice, the correlation is computed from a set of random realizations of the response Y. Once the first
polynomial Φλ1 is obtained, its weighting coefficient is estimated so that the residual Y − a

(1)
λ1

Φλ1(X)
becomes as much correlated with another basis, identified as Φλ2 . The first two elements so selected
will help incorporate a third one by moving along the direction (Φλ1 + Φλ2), until the new residual
becomes equi-correlated with a third polynomial basis Φλ3 , and so on. An illustration of the outcome of
the LARS algorithm is given in Fig. 1(c), where the retained bases after seven iterations are identified
by pink circles.

The selection process of appropriate polynomials by LARS algorithm is carried out for each degree
l = 1, 2, . . . , lmax. The quality of each metamodel of order l is computed from the following criterion
error.

Let denote by MPC
−i the metamodel built up from the ED X \ x(i), i.e., considering all realizations

except the ith. The residual of this metamodel is then estimated by the difference between the
model response at the realization x(i) and its prediction given by the metamodel MPC

−i , i.e., δ(i) =
M(x(i)) −MPC

−i (x(i)). Finally, the leave-one-out error of the metamodel is estimated by:

εLOO =
N∑

i=1

(
δ(i)
)2

. (3)

The selected degree l (and its associated sparse polynomial basis) is the one minimizing the leave-one-out
error εLOO.

In the following, the quality of the metamodel will be computed via the Q2 coefficient defined by
Q2 = 1 − εLOO, 0 ≤ Q2 ≤ 1. Note that the larger is Q2, the better is the prediction of the generated
metamodel.

2.3. Quantities of Interest Obtained by Post-processing

The generated PC expansion provides, at a negligible computational cost, statistical quantities of the
response. In particular, the orthonormality property of the basis, allows us to obtain the expectation
and the variance of the output Y as follows:

E [Y ] = a0 (4)
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V [Y ] =
∑

λ∈A\{0}
a2

λ (5)

In addition, sensitivity analysis can be obtained by means of Sobol indices [16], in order to quantify
the impact of uncertain input variables on the response Y . Thus, the PC-based Sobol indices of first-
order Si and the total indices ST,i of the response Y with respect to the input random variable Xi are
computed, according to [17]:

Si =

∑
λ∈Ai

a2
λ

V [Y ]
(6)

where Ai = {λ ∈ A : λi > 0, λj = 0 ∀j �= i}, and

ST,i =

∑
λ∈AT,i

a2
λ

V [Y ]
(7)

where AT,i = {λ ∈ A : λi �= 0}, respectively.

3. UNCERTAINTY QUANTIFICATION OF THE CROSSTALK EFFECT IN A
TRANSMISSION LINE NETWORK

3.1. Presentation of the Crosstalk Configuration

This section considers the lossless transmission line network represented in Fig. 2. This test case is
inspired from [18], but the size has been increased. The voltage source V1 of the network is a sine wave
sweeping the frequency band [100 MHz–3 GHz]. The pieces of coupled microstrip lines have a nominal
length of 3 cm. The variability of the network is introduced via all lumped elements and all cross section
parameters. Note that the copper trace width wi, trace thickness ti, trace-to-trace separation di are
related to each piece of line #i, while the substrate dielectric relative permittivity εr and the substrate
thickness h are associated to all lines. This example deals with 48 uncertain parameters, which are
considered as uniform random variables having an uncertainty of 20% around their nominal values
given in Fig. 2.

The impact of these uncertain parameters will be analyzed on the transfer function magnitude
|H1| = 20 × log |Vout

V1
| dB, defined as the ratio between the far-end crosstalk voltage magnitude and the
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Figure 2. Transmission line network with coupled microstrip traces and corresponding line cross
section.
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source excitation magnitude. The reference evaluation of |H1| in the frequency domain, denoted by
M in the following, is numerically calculated via a MATLAB implementation of the standard modified
nodal analysis (MNA).

The goal of the study is to build up a sparse PC metamodel of |H1| over the frequency band
[100 MHz–3 GHz] in order to reduce the computational cost of the numerical model M. Further, we
would like to quantify the impact of uncertain parameters on the variability of |H1|.

3.2. Numerical Results and Discussion

The results presented in this section are obtained from the UQLAB toolbox (Uncertainty Quantification
toolbox in MATLAB) [19].

3.2.1. Sparse PC Metamodel

This section aims at analyzing the impact of uncertain input parameters on the transfer function |H1|
in the frequency band [100 MHz–3 GHz]. For this, a sparse PC approximation is built up via 200
realizations from Latin Hypercube Sampling (LHS) [20] and an adaptive degree l comprised between 1
and 5. The latter choice is motivated by the behavior of |H1|, which is smooth at low frequency and
irregular at higher frequencies. Since the number of input variables is large (i.e., 48), the size of the
polynomial basis is reduced by means of the hyperbolic truncation scheme (2), for which we have chosen
k = 0.6. Note that no rigorous method is available on how to choose it, only empirical guidelines are
known [10].

After having carried out a sparse PC approximation for 301 logarithmically spaced frequencies, we
are interested in evaluating the quality of the metamodel. Fig. 3(a) represents the Q2 coefficient over the
entire frequency band [100 MHz–3 GHz]. We observe that the Q2 coefficient ranges between 0.95 and 1
in the [100 MHz–1.5 GHz] frequency band, and is reduced between 0.87 and 0.97 in the [1.5 GHz–3 GHz]
frequency interval. Consequently, the quality level of the sparse PC approximation is very good in the
frequency band [100 MHz–1.5 GHz], but the technique may be less efficient over the frequency band

(a)

(b)

(c)

Figure 3. (a) Behavior of the Q2 coefficient of the sparse PC metamodel over the frequency band
[100 MHz–3 GHz]. (b) and (c) Calculation of the transfer function |H1| by the sparse PC metamodel
MPC (dotted-line) and by the numerical model M (solid line) from two MC realizations.
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[1.5 GHz–3 GHz]. This is clearly correlated with the variability of the transfer function |H1| which is
stronger in the resonance area. We thus illustrate in Figs. 3(b) and (c), the evolution of |H1| computed
by the sparse PC metamodel MPC(x(i)) (dotted-line) and by the numerical model M(x(i)) (solid line)
from two Monte Carlo (MC) realizations: the result is, that the sparse PC fits very well the evolution of
|H1| over the entire frequency band [100 MHz–3 GHz], in spite of small differences around the resonance
peaks, between 1 GHz and 3GHz.

We intend now to discuss the efficiency of the sparse PC at two different frequencies: we have
chosen 202 MHz as a representative example of the smooth behavior of |H1|, where Q2

202 MHz = 99.80%,
and 2.23 GHz as an illustrative example of the irregular behavior, where Q2

2.23GHz = 96.62%. Fig. 4
shows the PDF of |H1| computed from 10000 MC realizations; the dashed line represents the result
of the sparse PC metamodel and the solid line refers to the reference model MC simulations, for the
frequencies of 202 MHz and of 2.23 GHz. At 202 MHz, we observe a perfect agreement between the
blue and red curves, meaning a high level of accuracy of the sparse PC metamodel. For instance, the
expectation and the standard deviation of the response |H1| given by sparse PC metamodel and by MC
simulation are very close, i.e., μPC = −46.51 dB, σPC = 2.36 dB and μMC = −46.52 dB, σMC = 2.37 dB,
respectively.

Figure 4. PDF of the transfer function |H1| obtained by sparse PC (dashed-lines) and by MC simulation
(solid lines) at the frequencies of 202 MHz and of 2.23 GHz.

For the frequency of 2.23 GHz, Fig. 4 shows that the sparse PC (magenta dashed-line) fits reasonably
well with the PDF estimated from MC simulation (cyan solid line), even though small discrepancies
appear at the level of the main tendency and of the tails of the probability distribution. In such a
case, there is a small difference between the estimation of the expectation and the standard deviation
obtained by sparse PC and MC simulation: μPC = −41.60 dB, σPC = 2.82 dB and μMC = −41.58 dB,
σMC = 2.93 dB, respectively.

It is worth adding some comments to the above analysis of the sparse PC results for the two
frequencies. Even if, for both frequencies, the optimal degree needed by the sparse PC is 4, and 49
polynomial bases were required out of the 1321 elements of the full basis (corresponding to a sparsity
index SI = 49

1321 = 3.71%), we notice that the method is less efficient for the higher frequency. This may
be explained in part by the variability of the transfer function |H1|, which is higher in the resonance
region. As regards the computational time used for the calculation of |H1| over the frequency band
[100 MHz–3 GHz], the sparse PC required 3.30 s whereas 10000 MC realizations took 2 h 50 min, with
a speed up of about 3096× for the sparse PC metamodel over the MC simulation. Note that this
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computational cost does not take into account the training time which has taken about 12 min, whose
9min are required by the LARS algorithm and 3 min are needed for the 200 LHS simulations.

3.2.2. Sensitivity Analysis

In addition to the estimation of the variability of |H1|, the sparse PC metamodel allows for a sensitivity
analysis of the response (see Section 2.3). In Fig. 5, a histogram presents the maximum values of the
total Sobol indices of |H1|, obtained according to (7), in the frequency band [100 MHz–3 GHz]. From
Fig. 5, it is evident that 23 random variables out of the 48 initial input variables have a non negligible
contribution, defined as the maximum of total Sobol indices higher than or equal to 2% (red dashed line),
on the variability of |H1|. The variables having the largest impact on the variations of the response
|H1| in the entire frequency band are the following parameters: the relative permittivity εr and the
thickness h of the substrate, along with the trace-to-trace separation d6 of the coupled line #6. Besides,
we remark that several lumped elements, among which C7b, L7b, CL3, RS1, RL6b, RS1b, have the
largest influence. Lastly, the trace widths w6, w2 and w5 of lines #6, #2 and #5, respectively, have
less effect on the variability of response |H1|.

Figure 5. Maximum values, over the frequency band [100 MHz–3 GHz], of total Sobol indices of the
transfer function |H1|. The red dashed-line represents the selected 2% threshold for the impact of
uncertain input parameters.

To quantify more accurately the impact of the 23 input variables depicted in Fig. 5, we show in
Fig. 6 the total Sobol indices of these parameters in the frequency band [100 MHz–3 GHz]. Looking at
Fig. 6, we observe that, from 100 MHz to around 1 GHz, the variability of |H1| is mainly associated
with the substrate thickness h, the trace-to-trace separation d6 of the coupled line #6 and, to a lesser
extent, various components as, e.g., RS1, RS3, RS1b, RS6b, RL6b etc.. Next we observe that, from
1GHz to 3GHz, the variations of |H1| are sensitive to a larger number of uncertain variables such as the
substrate relative permittivity εr (with the largest impact between 2GHz and 2.5 GHz), the substrate
thickness h, and the terminal components L7b and C7b of the network. Other variables, such as the
trace width w6 and the trace-to-trace separation d6 of line #6, and some lumped elements as, e.g., RS1,
CL3, L7, C7, RS1b, have a smaller effect on the variability of the response |H1|. It is worth mentioning
that the sensitivity analysis presents a larger number of components in the resonance region.

From the physical point of view, the hierarchy of the input uncertainties is coherent. Indeed, we
retrieve an important impact of the trace-to-trace separation d6 and the components L7b and C7b,
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Figure 6. Total Sobol indices of the transfer function |H1| over the frequency band [100 MHz–3 GHz].

which are the variables related to the coupled line #6, where the crosstalk transfer function |H1| is
computed. Moreover, the observation of a very large contribution of the dielectric relative permittivity
εr of the substrate is also consistent, since dielectric properties strongly impact the position in frequency
of the resonance peak of the coupled line of fixed length.

3.2.3. Reduction of the Number of Uncertain Variables

As mentioned above, the sensitivity analysis given in Fig. 5 shows that, among the 48 input random
variables, 25 variables have a minimal impact over the entire frequency band [100 MHz–3 GHz], where
their total Sobol indices are always less than 2%. Since these variables have a negligible effect on the
variability of the response |H1|, we decided to set them to their nominal values given in Fig. 2. We
illustrate now the behavior of |H1| evaluated by the model M on the remaining 23 impacting variables.
In Fig. 7, we represent the evolution of the response |H1| in the frequency band [100 MHz–3 GHz]
calculated by the numerical model M from three MC realizations of the complete set x(i) of 48 random
variables and of the reduced set x̃(i) of 23 random variables (i.e., same realizations for the complete
and reduced sets of random variables, and nominal values for the other 25 variables of this latter).
Fig. 7 shows a very good agreement between |H1| evaluated by M(x(i)) (solid line) and by M(x̃(i))
(squares). This confirms that the 25 random variables, fixed at their nominal value, do not produce
a significant contribution to the variations of the response |H1|. Therefore, the number of uncertain
variables can be reduced by about 50% without degrading the variations of |H1| over the frequency
band [100 MHz–3 GHz].

3.2.4. Analysis of Extreme Values

As discussed in Section 3.2.1, the sparse PC metamodel has a very good quality over almost all the
frequency band [100 MHz–3 GHz]. For instance, from Fig. 4, we observe that the PDFs of the response
|H1| computed by the sparse PC metamodel and by MC simulation (adopted as the reference) are in
excellent agreement at 202 MHz, and reasonably compare at 2.23 GHz. Observing the curves of Fig. 4,
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Figure 7. Illustration of the transfer magnitude function |H1| over the frequency band [100 MHz–
3GHz]. The transfer function |H1| is computed from the numerical model M, evaluated for three
different sets of input random parameters: solid lines reproduce the results of the full set x(i) of 48
random variables; squares refer to the use of the reduced set x̃(i) of 23 random variables.

(a)

(b)

(c)

Figure 8. Extreme crosstalk levels of |H1| (a) obtained by the sparse PC metamodel, at 202 MHz.
The distributions of values of the substrate thickness h and of the trace-to-trace separation d6 of the
coupled line #6 contributing to (a) the top histogram are represented in (b) and (c), respectively.

we notice that the sparse PC metamodel produces a very good fitting at the level of the right tails
of the PDFs of |H1|, related to the largest extreme values. Thus, from the sparse PC metamodel, we
propose to identify extreme values of |H1|, e.g., larger than the 99% quantile. The histogram of Fig. 8(a)
represents the extreme values (highest 0.99-quantile) of |H1|, at 202 MHz. The extreme values range
from −41.5 dB to −39.8 dB. Since extreme values are very important from the design point of view, it
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might be interesting to check if they are obtained for specific configurations of input parameters. In
fact, the sensitivity analysis at 202 MHz given in Fig. 6 points out to the substrate thickness h and the
trace-to-trace separation d6 of the coupled line #6 as the most impacting parameters on the variability
of |H1| (h accounts for approximately 50% of the total impact, while d6 for about 30%). Figs. 8(b)
and (c) represent histograms of the input realizations of the random variables h and d6 producing the
extreme values of |H1| at 202 MHz. We notice that the extreme levels of |H1| are obtained for large
values of the substrate thickness h, i.e., between 62.9 µm and 72.0 µm (the nominal value being 60 µm),
and small values of the trace-to-trace separation d6 of the line #6, i.e., between 64.0 µm and 77.7 µm
(the nominal value being 80 µm). This observation is physically consistent, since the crosstalk coupling
is usually higher when the traces are closer (tighter coupling) and are far from the ground plane (field
lines spread out and are more likely to interfere with an adjacent circuit). This analysis of extreme
values seems therefore be in line with the sensitivity analysis outcomes depicted in Fig. 6.

The same analysis of extreme values of the transfer function |H1| carried out at 2.23 GHz reveals
different properties of the propagation structure. The upper panel of Fig. 9 represents the extreme
values (highest 0.99-quantile) of |H1|, ranging from −35.9 dB to −33.9 dB. The sensitivity analysis of
Fig. 6 highlights that, at 2.23 GHz, the dielectric relative permittivity εr is the predominant variable,
with an impact on the order of 60% of the total variability of the response |H1|. The lower panel of Fig. 9
represents the distribution of values of the dielectric relative permittivity εr contributing to extreme
crosstalk levels of |H1|. We notice that the extreme levels of |H1| are obtained for large values of the
substrate relative permittivity, i.e., between 3.96 and 4.44 (the nominal value being 3.7). Once again,
this particular input range of the dielectric relative permittivity εr seems to be in agreement with the
sensitivity analysis outcomes of Fig. 6 at 2.23 GHz.

(a)

(b)

Figure 9. (a) Extreme crosstalk levels of |H1| obtained by the sparse PC metamodel, at 2.23 GHz.
The distribution of values of the substrate relative permittivity εr contributing to (a) the top histogram
is represented in (b).

4. CONCLUSION

This paper presents the application of the sparse PC metamodel to the design of a microstrip
transmission line network with many uncertain parameters. The crosstalk response of the system
is expanded on a multivariate polynomial basis of input random variables in order to reduce the
computational cost compared to MC simulation. The efficiency of this PC representation consists in
providing a very good approximation of the output by means of a small number of simulations, despite
a large number of uncertain input parameters. The usefulness of this method resides in the estimation
of statistical quantities such as the PDF of the system response. It may also provide a quantification
of uncertain input parameters according to their influence on the variability of the output.

As illustrated above for the microstrip line network, the variability of the crosstalk response
is mainly explained by a small group of input variables, which are the thickness and the relative
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permittivity of the substrate, as well as the trace-to-trace separation of the coupled line on which
the output is observed. This information, derived from the sparse PC metamodel, may be very useful
in the design phase of a system since it points out to the sensitivity issues of the system response.
For example, the identification of parameters causing important variations of the response can allow to
anticipate potential failures of the system and to properly size margins for the design.
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