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Modeling of Optical Pulse Propagation in Kerr and Raman
Nonlinear Dispersive Media Using JE-TLM Method
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Abstract—In this paper, we propose a simulation model of electromagnetic wave’s propagation in
media with different kinds of dispersions. This model exploits the dependence of the polarization
current density and the voltage electric in the context of the Transmission Line Matrix method with
the Symmetrical Condensed Node (SCN-TLM) and novel voltage sources. By solving Maxwell’s and
polarization current density equations, the proposed model, named JE-TLM, gives a full solution of
Maxwell’s equations and polarization terms which describe the Lorentz linear dispersion, nonlinear
instantaneous Kerr and retarded Raman effects. The scattering matrix characterizing the SCN with
the new voltage sources is provided, and the numerical results are compared with those of the literature
or with the theoretical ones.

1. INTRODUCTION

After the observation of second harmonic generation in 1961 [1], the study of nonlinear phenomena
have been interesting research topics for both physicists and chemists. In general, the generation of
light using laser sources with very high optical intensities through nonlinear optical media leads to the
appearance of a number of nonlinear optical effects, and the most important ones are related to the
third-order susceptibility χ(3), including the Kerr effect and Raman effect [2].

On the one hand, the Kerr effect is a nonlinear optical effect resulting from instantaneous electronic
response of such media to laser excitation. The interaction of electromagnetic waves with the media
leads to modifying the refractive index which itself modifies the polarization of incident pulses.

On the other hand, the Raman effect is a nonlinear optical effect originated from the vibrations of
the molecular of the medium to the laser excitation, which leads to the increase of temperature. This
effect is named Raman scattering when these vibrations are associated with optical phonons. Both
the effects, Raman and Kerr, are generated most of the time simultaneously. Numerous papers have
been published, after the discovery of solitons in optical fibers in 1973 [3], which are related to the
studies of nonlinearities that are exhibited by photonic crystal [4], microresonators [5], microfluidics [6],
glass [7] and other media reported in [8]. In particular, in optical fiber technology, the Kerr and Raman
nonlinearities present an active area of research with high interest. These nonlinearities can become
strong effects and can be observed even at low power levels [1].

In nonlinear media, various time-domain numerical methods implementing different algorithms to
solve the problems of the propagation of electromagnetic waves and their interaction with dispersive
materials have already been proposed in literature. One of those methods is the finite-difference time-
domain (FDTD) [9, 10], but Transmission Line Matrix is considered the most powerful and efficient
method that gives a more precise results. This method was proposed by Johns [11], based on the
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Principe of Huygens, and makes the analogy between the components of the electromagnetic field and
circuit parameters. One of these algorithms that have been incorporated with the TLM method is the
Z-transform technique [12], and another is CRC-TLM recursive convolution (CRC) combined to voltage
and current sources [13] and the Auxiliary Differential Equation ADE-TLM [14]. However in our case,
we use the JE-TLM that exploits the current density and the electric field that has been used to model
isotropic cold plasma [15, 16] and used to simulate the propagation of optical pulses in two-level atomic
systems [17]. In this paper, we increase a novel algorithm based on the JE-TLM method with condensed
symmetrical node (SCN) and new voltage sources.

This approach allows implementation of optical pulse propagation in linear Lorentz and nonlinear
Kerr and Raman media together. As the ADE-FDTD, the JE-TLM is more efficient to treat nonlinear
effects because no assumption of the linearity of the medium is made [18].

The simulation results of our algorithm are compared with those of the literature or with the
theoretical ones.

2. FORMULATIONS AND EQUATIONS

The Maxwell’s equations for wave propagation in dispersive media using polarization current density
are given by [19]

∇× E = −μ0
∂H
∂t

(1)

∇×H = ε0ε∞
∂E
∂t

+ J (2)

where E and H are the electric and magnetic field vectors; μ0 is the free space permeability; ε0 is the
free space permittivity; ε∞ is the relative dielectric constant in the limit of infinite frequency and

J =
∂P
∂t

= JL + JKerr + JRaman (3)

is the polarization current density that is the sum of linear Lorentz polarization current, instantaneous
Kerr nonlinear polarization current and Raman nonlinear polarization current.

2.1. Linear Lorentz Polarization Current

The relative permittivity of the Lorentz medium in the frequency domain can be expressed by [18]

ε (ω) = ε∞ +
ΔεLw2

L

w2
L + 2jwδL − w2

(4)

where ΔεL = εs − ε∞ is the change in relative permittivity, wL the Lorentz characteristic resonant
frequency, and δL the damping factor. A polarization current in the frequency domain is as follows

J̃ = ΔεLw2
Lε0

(
jw

w2
L + 2jwδL − w2

)
Ẽ (5)

Multiplying both sides of Equation (5) by (w2
L + +2jwδL − w2) and transforming to the time domain

jw → ∂/∂t and w2 → −∂2/∂t2 yields

w2
LJL + 2δL

∂JL

∂t
+

∂2JL

∂t2
= ΔεLw2

Lε0
∂E
∂t

(6)

Applying the finite-difference-time to Equation (6), the linear polarization current density centered at
n + 1 can be expressed as:

Jn+1
L = αLJn

L + ξLJn−1
L + γL

En+1 − En−1

2Δt
(7)

where

αL =
2 − w2

L(Δt)2

1 + δLΔt
, ξL =

δLΔt − 1
1 + δLΔt

, γL =
ε0βLw2

L(Δt)2

1 + δLΔt
(8)
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2.2. Nonlinear Kerr Polarization Current

The polarization is caused by the instantaneous Kerr nonlinearity as follows [19]:

PKerr (t) = ε0χ
(3)
0 E

∫ t

−∞
αδ

(
t − t′

)
E2

(
t′
)
dt′ = αε0χ

(3)
0 E3 (t) (9)

where χ
(3)
0 denotes the nonlinear coefficient, and α parameterizes the relative strengths of the Kerr and

Raman interactions. Applying the finite-difference-time to Equation (9), the nonlinear Kerr polarization
current density centered at n + 1 can be expressed as:

Jn+1
Kerr =

αε0χ
(3)
0

2Δt

{(∣∣En+1
∣∣)2En+1 − (∣∣En−1

∣∣)2En−1
}

(10)

2.3. Nonlinear Raman Polarization Current

The polarization is caused by the Raman effect as follows [10]:

PRaman (t) = ε0E (t)
∫ t

0
χ

(3)
Raman

(
t − t′

) ∗E
(
t′
)
dt′ = ε0E (t)

[
χ

(3)
Raman (t) ∗ E2 (t)

]
(11)

To solve Equation (11), we need to introduce an auxiliary variable for the convolution

S (t) = χ
(3)
Raman (t) ∗ |E (t)|2 (12)

Using the Fourier transform, Equation (12) becomes:

S (ω) = χ
(3)
Raman (ω) · F|E (t)|2 (13)

where

χ
(3)
Raman (ω) =

(1 − α) χ
(3)
0 ω2

Raman

ω2
Raman + 2jωδRaman − ω2

(14)

ωRaman =

√
τ2
1 + τ2

2

τ2
1 τ2

2

, δRaman =
1
τ2

(15)

By the use of Equation (14), Equation (13) can be rewritten as:

S (ω) =
(1 − α) χ

(3)
0 ω2

Raman

ω2
Raman + 2jωδRaman − ω2

F|E (t)|2 (16)

Multiplying Equation (16) by ω2
Raman + 2jωδRaman −ω2 followed by the inverse Fourier transformation

leads to:

ω2
RamanS + 2δRaman

∂S

∂t
+

∂2S

∂t2
= (1 − α)χ

(3)
0 ω2

Raman|E|2 (17)

By discretizing Equation (17), the difference equation for S can be expressed as:

Sn+1 = aRamanSn + bRamanSn−1 + cRaman(|En|)2 (18)

with

aRaman =
2 − ω2

Raman(Δt)2

δRamanΔt + 1
(19)

bRaman =
δRamanΔt − 1
δRamanΔt + 1

(20)

cRaman =
(1 − α)χ

(3)
0 ω2

Raman(Δt)2

δRamanΔt + 1
(21)
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we can reformulate the expression of the polarization for the Raman effect described by Equation (11):

PRaman (t) = ε0E (t)S (t) (22)

By the use of Equation (22), the polarization current density of Raman is as follows:

JRaman (t) =
∂PRaman

∂t
=

∂

∂t
ε0E (t) S (t) (23)

Applying the finite-difference-time to Equation (23), the nonlinear Raman polarization current density
centered at n + 1 can be expressed as:

Jn+1
Raman =

ε0

2Δt

(
En+1Sn+1 − En−1Sn−1

)
(24)

2.4. JE-TLM Approach

For the regular mesh, the TLM method makes the analogy between the electric field and voltage using
this equation

En =
V n

Δl
(25)

implementing Equation (25) into Equations (7), (10) and (24), the linear Lorentz polarization current,
nonlinear Kerr polarizaton current and nonlinear Raman polarization current become respectively as
follows:

Jn+1
L = αLJn

L + ξLJn−1
L + γL

V n+1 − V n−1

2ΔtΔl
(26)

Jn+1
Kerr =

αε0χ
(3)
0

2ΔtΔl

{(∣∣V n+1
∣∣)2

V n+1 − (∣∣V n−1
∣∣)2

V n−1
}

(27)

Jn+1
Raman =

ε0

2ΔtΔl

(
V n+1Sn+1 − V n−1Sn−1

)
(28)

Apply the model (SCN-TLM) to Equation (1) we obtain:⎛⎜⎜⎝ ∇× H
n+ 1

2
x

∇× H
n+ 1

2
y

∇× H
n+ 1

2
z

⎞⎟⎟⎠ =

⎛⎜⎜⎜⎜⎝
ε0

2ΔtΔl

[(
V i

1 + V i
2 + V i

9 + V i
12

)n+1 − (V r
1 + V r

2 + V r
9 + V r

12)
n
]

ε0

2ΔtΔl

[(
V i

3 + V i
4 + V i

8 + V i
11

)n+1 − (V r
3 + V r

4 + V r
8 + V r

11)
n
]

ε0

2ΔtΔl

[(
V i

5 + V i
6 + V i

7 + V i
10

)n+1 − (V r
5 + V r

6 + V r
7 + V r

10)
n
]

⎞⎟⎟⎟⎟⎠ (29)

where

(V r
1 + V r

2 + V r
9 + V r

12)
n =

(
V i

1 + V i
2 + V i

9 + V i
12

)n + Vsx
n (30)

(V r
3 + V r

4 + V r
8 + V r

11)
n =

(
V i

3 + V i
4 + V i

8 + V i
11

)n + Vsy
n (31)

(V r
5 + V r

6 + V r
7 + V r

10)
n =

(
V i

5 + V i
6 + V i

7 + V i
10

)n + Vsz
n (32)

By discretizing Equation (2), integrating Equations (30), (31), (32) and (29), making the analogy
between the electric field and voltage by the use of Equation (25), and using the symmetrical condensed
node (SCN-TLM), the total electric can be expressed as:⎛⎜⎝ V n+1

x

V n+1
y

V n+1
z

⎞⎟⎠ +
A2

A1

⎛⎜⎜⎝
∣∣V n+1

x

∣∣2∣∣V n+1
y

∣∣2∣∣V n+1
z

∣∣2
⎞⎟⎟⎠

⎛⎜⎝ V n+1
x

V n+1
y

V n+1
z

⎞⎟⎠ =
2

4 + Yox

⎛⎜⎜⎝
[
V i

1 + V i
2 + V i

9 + V i
12 + 0.5 Vsx

]n+1[
V i

3 + V i
4 + V i

8 + V i
11 + 0.5 Vsy

]n+1[
V i

5 + V i
6 + V i

7 + V i
10 + 0.5 Vsz

]n+1

⎞⎟⎟⎠ (33)

where

A1 = ε∞ +
Sn+1

2
, A2 =

αχ
(3)
0

2Δl2
(34)
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The voltage sources (V sx, V sy, V sz), by using the same procedure presented in [15, 20], can be expressed
as: ⎛⎝ V sx

V sy

V sz

⎞⎠n+1

= −
⎛⎝ V sx

V sy

V sz

⎞⎠n

+ 4

⎡⎢⎣(ε∞ − A1)

⎛⎝ V n
x

V n
y

V n
z

⎞⎠ + 2A2

⎛⎜⎝ V n
x

3

V n
y

3

V n
z

3

⎞⎟⎠
−ΔlΔt

ε0

⎛⎝ JLorentz,x

JLorentz,y

JLorentz,z

⎞⎠n+1

+
Sn−1

2

⎛⎜⎝ V n−1
x

V n−1
y

V n−1
z

⎞⎟⎠
⎤⎥⎦ (35)

The normalized admittance at time (n + 1)Δt can be expressed as:

n+1Yox = ε∞ +
Sn+1

2
− 1 (36)

The JE-TLM model with voltage sources is based on recursive calculation of normalized admittance
made in Equation (36) and the voltage sources expressed in Equation (35). The obtained values are
then inserted in Equation (33). The solution of the last equation is then used in the calculation of
reflected pulses and in the connection process along the TLM mesh nodes. With this manner we can
simulate the propagation of signal in each position and each time.

3. NUMERICAL RESULT

We now present the results of numerical tests to validate the formulations of Section 2. The air-nonlinear
dispersive medium interface is located at z = 8Δl with the spatial resolution Δl = 10 nm. The network
is divided into (1, 1, 20000)Δl. The excitation pulse is modulated with the hyperbolic secant function
with a characteristic time constant 14.6 fs, initial maximum field intensity 1 V/m, and carrier frequency
fc = 1.37 × 1014 Hz. For both cases, linear and nonlinear dispersions, we analyze by selecting the
following parameters [10].
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Figure 1. JE-TLM simulation results of the short pulse propagation in the Lorentz medium after 8000,
29000 and 56000 iterations.



74 Attalhaoui et al.

For the Lorentz medium wL = 4× 1014 rad/s, εs = 5.25, ε∞ = 2.25 and δLorentz = 2× 109s−1. For
the nonlinear Kerr and Raman media χ

(3)
0 = 7 × 10−2(V/m)−2, τ1 = 12.2 fs, τ2 = 32 fs and α = 0.7.

Figure 1, linear case [χ(3)
0 = 0], shows simulation result of pulse propagating after 6µm, 75 µm and

150 µm corresponding to propagation respectively to 8000, 29000 and 56000 iterations. The appearance
of attenuation, broadening and modulation of the pulse carrier frequency is predicted as reported and
presented in [10] and [14].
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Figure 2. JE-TLM simulation results of the soliton propagation in the Kerr and the Raman medium
after 8000, 29000 and 56000 iterations.
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Figure 3. JE-TLM simulation results of small daughters pulses. (a) First daughter soliton. (b) Second
daughter soliton.
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Figure 4. JE-TLM simulation results of Normalized Admittance after 29000 and 56000 iterations.

Figure 2, nonlinear case [χ(3)
0 = 7 × 10−2(V/m)−2], depicts the TLM simulation results that show

the formation of a temporal soliton conserving its amplitude and width even at the distance of 150 µm,
followed by a small low-amplitude soliton (Figure 3). Those results are similar to those presented in [10]
and [14].
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Figure 4 shows the variation of the normalized nonlinear admittance propagating after 75µm and
150 µm corresponding to propagation respectively to 29000 and 56000 iterations.

4. CONCLUSION

We have efficiently analyzed Maxwell’s equations and different polarization expressions for spatio-
temporal modeling propagation of optical pulses in linear and nonlinear dispersive media using the
JE-TLM model. In this model, we introduce voltage sources modeling linear and nonlinear properties
and variable admittance concept. The advantage of this new model is its modularity since it allows
separately calculating each dispersion, and its accuracy is tested by the obtained numerical results. The
good agreement between the novel JE-TLM approach results and those available in the literature proves
its validity and efficiency.
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