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Study of Unequally-Excited Random Antenna Arrays
for Beam Shaping

Giovanni Buonanno* and Raffaele Solimene

Abstract—Random arrays have been typically studied by considering real uniform excitations. This
is suited for single-beam radiation patterns but does not allow for more sophisticated patterns. Indeed,
only even patterns, with respect to the steering angle, can be achieved. To overcome this limitation, we
recently proposed a new model whereby the excitation coefficients are not uniform and are determined
by means of two random variable transformations. In this paper, we deal more extensively with the
properties of this model, highlighting things that have not been pointed out previously. In order to get
analytical results, we just consider symmetric random arrays. For such a case, we determine the design
error, that is the cumulative distribution function of the supremum of the the difference between the
actual and desired array factors. It is shown that general shaped beams can be actually achieved but
at the cost of an increase of the design error as compared to the single-beam case. Numerical analysis
validates the presented theory.

1. INTRODUCTION

In random array antennas radiators are arranged non-uniformly according to a probabilistic law. As well
known, random arrays offer remarkable advantages, compared to the more common uniform arrays, in
terms of number of required elements, occurrence of grating-lobes and frequency bandwidth. These
advantages, actually, become particularly evident and predictable for a large number of radiators.
Accordingly, random arrays become attractive for large apertures [1, 2].

Usually, random arrays are considered equally-excited with at most a linear phase-shift in order to
steer the main-beam. This allows optimisation of the working point of the T/R module as all elements
are fed at the same power level. Moreover, the nonuniform element arrangement allows control of the
side-lobe level without the need to taper the excitations. However, uniform excitations are suited only
for even beam-like radiation patterns. In order to achieve more complex patterns, one must address
nonuniform excitations. The first study concerning unequally-excited random arrays is Steinberg’s [2].
In his work, he considered both the radiators’ positions and the corresponding real excitations being
modelled as independent and identically distributed (i.i.d.) random variables. However, no clues about
how the excitations are linked to the desired radiation pattern were provided, and unfortunately that
scheme proved to be no better than the usual uniform excitations [1]. Indeed, the average array factor
was simply scaled by the average of the current coefficients, and moreover, the variance of the array
factor was higher. Similar considerations hold true for the scheme presented in [3], where the spacings
between adjacent radiators, instead of the element positions, were considered as random.

In this paper, we introduce a different scheme for unequally-excited random arrays where we model
the magnitude and the phase of the excitation currents by suitable transformations of the random
variable describing the radiators’ positions. In particular, such transformations are chosen so as to
shape the radiation pattern according to the design requirements. We remark that we already exploited
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this same philosophy for multi-beam array factors [4]. Here, we study what extent we can apply such
an approach to the case of more complex array factors.

It is clear that the described scheme implicitly subtends a sort of synthesis procedure and a metric
for measuring the mismatch between the reference pattern and the obtained one (the design error).
To accomplish such a task here we adopt the following procedure [4]: first, the array parameters are
designed so that the mean array factor is equal to the desired one; then the design error is estimated
by computing how much the actual radiation pattern deviates (statistically) from such a mean. Note
that the latter question is equivalent to finding the probability distribution of the magnitude maximum
of a central random process. To cope with this point, different approaches have been proposed in the
literature. However, they return relatively easy (though approximate) analytical formulas under some
restrictive assumptions (i.e., radiation pattern weak stationarity) that in general do not hold. Here, in
order to compute the design error, the up-crossing theory [5] is used. In particular, we gain advantage
by restricting the study on symmetric (in the sense explained later on) random arrays. This actually
allows to find a more accurate analytical estimation for the design error which does not require the
aforesaid assumptions.

It is shown that there are different ways of setting the probability law to assign the radiators’
positions and to choose the transformations to obtain the required excitation coefficients. Among them,
random phase only excitations suffice to get the desired mean array factor. Accordingly, amplitude
tapering is not necessary, and hence the advantage concerning the working point of the T/R modules
is preserved. However, even though a general beam shaping can be achieved, the design error increases
as compared to the single-beam case. In this framework, the number of elements plays a fundamental
role since the larger such a number is, the lower the design error is. Instead, having fixed the number of
radiators the performance degrades as the array aperture increases. However, the effect of the number
of elements prevails, and hence random arrays for beam-shaping become convenient for large radiating
array antennas.

The study is organised as in [6], considering only symmetric arrays. This is because the math is
much easier, and after all there is no significant degradation in terms of the achievable performance with
respect to the asymmetric case [7]. Note that herein symmetric arrays rely upon geometric arguments
but also on some conditions pertaining the random variable transformations. This point will be clarified
in the subsequent sections. First, the mean and variance of the array factor are calculated. Subsequently,
the error function (over the visible angles), i.e., the distribution of the supremum of the difference
between the actual and desired array factors, is pursued. Once the supremum distribution is known,
the achievable performance can be statistically foreseen. The theoretical findings are finally checked
through an extensive numerical analysis. In particular, the cases where the array factor must resemble a
non-centred-sector, and a cosecant behavior is considered. However, before proceeding along this plan,
in the next section we will recall the basics concerning random arrays which are required to make the
paper self-contained.

2. UNEQUALLY-EXCITED SYMMETRIC RANDOM ARRAYS

In this section we introduce the model for unequally-excited symmetric random arrays by generalising
the one concerning equal excitations studied in [7].

Consider N isotropic radiators randomly deployed within the interval [−L/2, L/2] of the X axis,
where L = L̃/λ is the normalised array extent, that is the array physical aperture normalised to the
wavelength λ. The number of radiators, N , is chosen even since it entails a slightly simpler mathematical
notation. However, the case of an odd N can be addressed as well, as shown in [7]. The random array
is assumed symmetric in the following sense. For each element located at Xn ∈ [0, L/2] there is another
one located at −Xn. Moreover, said In the excitation coefficient for the radiator in Xn, we further
assume that I−n = I∗n, where ()∗ stands for conjugation. Accordingly, on assuming that the mutual
coupling is negligible [8], the normalised array factor can be written as [4]

F (u) =
2
N

N/2∑
n=1

M(Xn) cos[2πXnu + α(Xn)] (1)
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where θ ∈ [0, π] is the angle (with respect to the X-axis) of the observation direction (see Fig. 1),
and u = cos θ ranges within the visible space [−1, 1]. Moreover, the excitation coefficients have been
expressed in terms of their magnitudes and phases, which is In = M(Xn) ejα(Xn), and the conjugated
relationship assumed above has been exploited. The radiator positions Xn are i.i.d. random variables
which are supported (because of the symmetry assumption) over half the array aperture. Accordingly,
f(X) denotes the common (to all radiators) probability distribution function (pdf) of the positions.
Clearly, it is supported over the interval [0, L/2]. It is important to note that, as opposed to the
Steinberg’s approach, the excitation coefficients have been expressed by the real M(X) and α(X)
transformations of the random positions. The advantage of this choice compared to the Steinberg’s
approach will appear shortly in this section. In particular, here, because of the symmetry assumption,
M(X) is an even function and α(X) an odd one.

Figure 1. Geometry of a generic symmetric random arrays where the element positions are implicitly
ordered.

The array factor in Equation (1) is clearly a stochastic process. As such it can be (even though
partially) characterised in terms of the mean and variance. The latter can be explicitly written as [4]

φ(u) =
∫ L/2

0
f(X)M(X) cos[2πXu + α(X)] dX (2)

and

σ2(u) =
E[M2(X)] + E[M2(X) cos(4πXu + 2α(X))] − 2φ2(u)

N
(3)

For a large number of radiators (indeed for large N/2), as it is common in the framework of
random arrays, the Central Limit Theorem can be invoked, and the array factor, for a given u, can be
considered Gaussian distributed with the mean and variance given by Equations (2) and (3), that is
F (u) ∼ N [φ(u), σ2(u)]. Moreover, for the multivariate form of the Central Limit Theorem [9], the array
factor can be seen as a Gaussian process.

Let us now turn to discuss our choice concerning the excitation coefficients. In Steinberg’s approach
the excitations are still random but are assumed independent on the radiators’ positions Xn. As shown
in [2], this actually does not lead to any advantage with respect to the equally-excited case. Indeed, the
mean array factor is only scaled in amplitude, by means of a constant coefficient (by the average of the
excitation coefficients), and the shape of φ(u) is only due to f(X). The latter, being a real function,
allows to achieve only even array factors. Instead, by the model in Equation (2), the excitation functions
directly enter the φ(u) expression. Therefore, M(X) and α(x) provide further degrees of freedom that
can be exploited to shape φ(u), which in turn no longer needs to be an even function.

Let us now turn to address how the random array can be generated (including the excitation
coefficients) in order to satisfy the design requirement. According to the previous discussion, once N
and L have been fixed, it amounts to setting f(x), M(X) and α(X) according to desired array factor.
To this end, the following steps can be carried out:

(i) Choosing the desired array factor, φ̃DES(u). Note that according to Equation (2) φ̃DES(u) must
be a real function.

(ii) Determining the equivalent continuous current i(X) supported on the array aperture that yields
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φ̃DES(u). This is achieved by a standard Fourier procedure, that is

i(X) =

⎧⎨
⎩

∫ ∞

−∞
φ̃DES(u) e−j2πXu du 0 ≤ X ≤ L/2

0 elsewhere
(4)

Note that since φ̃DES(u) is real, i(X) is Hermitian, hence it is sufficient to compute it over half the
array aperture. Moreover, i(X) in Equation (4) actually corresponds to the (actual) desired array
factor

φDES(u) =
∫ L/2

L/2
i(X)ej2πXudX (5)

which is indeed the least mean square error approximation of φ̃DES(u), when the latter is not a
band-limited function.

(iii) Setting f(X)M(X) = 2|i(X)| and α(X) = ∠i(X). At this juncture, while the sough after phase
function α(X) is uniquely determined, different choices are indeed possible for f(X) and M(X).
This is because choosing φDES(u) only fixes their product. However, whatever strategies one may
want to adopt for setting f(X) and M(X), it must hold that

∫ L/2
0 f(X) dX = 1, since f(X) is a

pdf.

In order to introduce the strategies for setting M(X) and f(X) that are used in the following, we
need to elaborate more in depth on item (iii). According to the previous discussion, once |i(x)| has been
determined, an easy way to proceed is to choose M(x) and hence to find f(X) or vice versa. This leads
to the following three different approaches.

(i) The amplitude excitation function is fixed according to some assigned law, that is M(X) = γM̃(X),
and hence it results in f(X) = 2|i(X)|/γM̃ (X). Here, the constant must be defined as
γ =

∫ L/2
0 2|i(X)|/M̃ (X)dX which assures that f(X) is actually a pdf. Choosing M̃(X) �= 0 ∀ X

assures the feasibility of this approach.
(ii) The amplitude excitation function is set constant, that is, M(X) = M , consequently f(X) =

2|i(X)|/M . Since
∫ L/2
0 f(X) dX = 1, we are not free to choose such a constant at will. It must

be fixed as M =
∫ L/2
0 2|i(X)|dX so as to actually have f(X) as representative of a pdf. Note that

this approach coincides with the previous one when M̃(X) is set uniform. Therefore, this approach
is a particular case of the method 1. For convenience, we keep them separate. Also note that in
this case, the excitation coefficients turn out to be pure complex phase terms, and therefore the
advantage concerning the working point of the T/R modules is restored.

(iii) The pdf f(X) is fixed, and consequently the amplitude excitation function is determined by
M(X) = 2|i(X)|/f(X). This strategy is basically the opposite of the previous one. It offers
the possibility of being free to choose standard pdf for f(X) that facilitates the generation of the
random element positions Xn.

All the approaches presented above set the parameters of the unequally excited random arrays
that enable obtaining the mean radiation pattern equal (in the mean square sense) to the desired one.
However, they lead to different design errors. This can be appreciated by Eq. (3) that returns the
corresponding variance functions. The latter allows for a comparison of different design schemes and
gives important clues concerning the achievable performance. However, in order to estimate the design
error we need a metric that more specifically measures how close the random array factor is to the
desired one. This point will be addressed in the next section.

3. DESIGN ERROR ESTIMATION

Assume that we have fixed the random array parameters as described above. Then, we have φ(u) =
φDES(u). Accordingly, the design error is related to the stochastic process ε(u) = F (u) − φDES(u).
Hence, ε(u) is a Gaussian centered stochastic process, that is ε(u) ∼ N [0, σ2(u)], where σ2(u) is the
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same as in Eq. (3). Note that in ε(u) we considered φDES(u) instead of φ̃DES(u). This is of course
because φDES(u) is the best one that can aim for finite array apertures. Moreover, since random arrays
are better suited for large array apertures, as we pointed out in the introduction, it can be reasonably
considered that φ̃DES(u) � φDES(u).

A first easy way to characterise the design error is to determine the interval within which ε(u) can
range. In our case, this is equivalent to studying the p-per-cent level curves rp(u), that is

P{|ε(u)| ≤ γ σ(u)} = P{−γ σ(u) ≤ ε(u) ≤ γ σ(u)} = p % (6)

where we have set rp(u) = γ σ(u). Of course, the real constant γ is related to the value of the probability
p%. For example, because of the Gaussian distribution of ε(u), γ = 3 yields p% = 0.997. In general,
the link between γ and p is more involved, since [7]

p% = Q(−γ) − Q(γ) (7)

with Q(t) = (1/
√

2π)
∫ ∞
t e−y2/2 dy. Therefore, in general, in order to find the link between γ and p,

one needs to resort to the tabulated version of Q(·) or to invoke some approximation of it and solve the
corresponding non-linear polynomial equation [10].

The p-per-cent level curves allow identifying the strip [−rp(u), rp(u)] within which the error ε(u)
belongs with probability p. This is, however, a fairly punctual characterisation in the sense that it varies
with u. In order to get a more complete characterisation we employ the uniform norm distribution of
|ε(u)|, that is [6]

P

{
ε = max

u∈[−1,1]
|ε(u)| ≤ ξ

}
= P{|ε(u)| ≤ ξ ∀ u ∈ [−1, 1]}
= P{−ξ ≤ ε(u) ≤ ξ ∀ u ∈ [−1, 1]} (8)

In particular, to estimate Eq. (8), we employ the up-crossing approach. In detail, say ξ the level
with respect to which the number of up-crossings has to be estimated and say Nξ the random variable
that counts how many times |ε(u)| up-crosses ξ (i.e., crosses ξ with a positive slope). Accordingly,
P

{
ε = maxu∈[−1,1] |ε(u)| ≤ ξ

}
coincides with the probability that Nξ = 0 or, equivalently, with

1 − P (Nξ ≥ 1). Since, by Markov inequality

P (Nξ ≥ 1) ≤ E[Nξ] (9)

the problem can be conveniently cast as the determination of E[Nξ]. To this end, the famous Rice’s
formula can be exploited [5, 11], once it is adapted to the symmetric array case at hand [7]. In fact,
since ε(u) is a real random process, determining the up-crossings of |ε(u)| is actually equivalent to the
two barrier problem where one has to study the up-crosses of ε(u) and ε̃(u) = −ε(u) for the given level
ξ > 0. Since ε(u) and ε′(u) = dε(u)/du, and of course ε̃(u) and ε̃′(u) = dε̃(u)/du, are jointly Gaussian,
the mean number of up-crossings can be written as [7]

E{Nξ} = 2
∫ 1

−1
du

∫ ∞

0
ε′

e
− 1

2[1−ρ2(u)]

{
ξ2

σ2(u)
−2ρ(u) ξε′

σ(u)σ′(u)
+ ε′2

σ′2(u)

}

2πσ(u)σ′(u)
√

1 − ρ2(u)
dε′ (10)

where σ′2(u) is the variance of ε′(u), and ρ(u) = E[ε(u), ε′(u)]/(σ(u)σ′(u)) is the correlation coefficient
that can be computed as shown in [7]. It must be remarked that Eq. (9) is meaningful only when
E[Nξ] ≤ 1. More in general, E [Nξ] can be used to get a direct estimation of P{ε ≤ ξ}, under, however,
a further assumption that up-crossing points occur as a random point Poisson process [12]. In this case,
it can be shown that [6]

P{ε ≤ ξ} ≈
{

Q

[
− ξ

σ(−1)

]
− Q

[
ξ

σ(−1)

]}
e−E[Nξ] (11)

and eventually, the latter is the estimation of the ε distribution that will be used in the sequel.
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4. NUMERICAL ANALYSIS

In this section, we conduct a numerical critical analysis in order to asses to what extent the proposed
random array schemes are able to shape the array factor and the related design error. In particular, we
selected two types of array factors for φ̃DES(u): the sector and the cosecant patterns. These are more
complex than the relatively simple multi-beams addressed in [4] and are often employed in literature
as reference for the introduction of continuous source and uniformly-spaced unequally-excited arrays
synthesis methods [13, 14].

Let us start by the sector-pattern case. In this case, we set the initial desired array factor equal to

φ̃DES(u) =

⎧⎪⎨
⎪⎩

0 −1 ≤ u < 0.3

1 0.3 ≤ u < 0.7

0 0.7 ≤ u ≤ 1

⇐⇒ φ̃DES(θ) =

⎧⎪⎨
⎪⎩

0 72.54◦ ≤ θ ≤ 180◦

1 45.57◦ ≤ θ < 72.54◦

0 0◦ ≤ θ < 45.57◦
(12)

where it is reminded that θ = cos−1(u) is the observation angle. From Eq. (4) the equivalent continuous
current can be determined in closed form as

i(X) =

{
0.4 e−jπX sinc(0.4X) 0 ≤ X ≤ L/2

0 elsewhere
(13)

where sinc(X) = sin(πX)/(πX). Accordingly, the mean array factor is φ(u) by setting f(X)M(X) =
0.8|sinc(0.4X)| and α(X) = −πX +∠{sinc(0.4X)}. Now, the next step is to determine the behaviors of
f(X) and M(X). According to the methods presented previously, besides the case M(X) = M (method
2) we set:

• for method 1, M̃(X) = {7 × 10−3[1 − (4/L)X] + (8/L2)X} (raised triangular M(X) case) and
M̃(X) = {5.6 × 10−3/ sin[5.6 × 10−3(L/2)]} cos(5.6 × 10−3X) (raised cosine M(X) case);

• for method 3 f(X) = 2/L (uniform pdf case), f(X) = {7 × 10−3[1− (4/L)X] + (8/L2)X} (raised
triangular pdf case) and f(X) = {[5.6×10−3/ sin(5.6×10−3(L/2))] cos(5.6×10−3X)} (raised cosine
pdf case).

The variance behaviors for the considered six cases are shown in Fig. 2 with N = 200 and L = 500.
As can be seen, the strategy of setting M(X) returns better results than setting f(X). In particular, the
constant M(X) (method 2) is the best one while the worst case occurs for the uniform pdf. Accordingly,
we choose the constant M(X) method for the rest of the analysis. In Fig. 3, we analyse the variance
behavior for such a strategy for different values of the number of radiators and array lengths. In
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Figure 2. Behaviour of the array factor variance for different choices of f(X) and M(X) for the sector
beampattern case. The number of the antenna elements is N = 200 and the aperture is L = 500.
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particular, it can be recognised that, for fixed N , the variance increases with the array length, whereas
for a fixed length it decreases by increasing N . This is consistent with Eq. (3). Furthermore, even when
the average spacing between the radiators remains constant, the variance does not follow the same
behavior. This can be clearly seen by comparing the cases (N = 200, L = 200) and (N = 500, L = 500)
or (N = 200, L = 100) and (N = 500, L = 1000). However, the number of antenna elements plays a
major role compared to the array aperture and dominates the variance behavior.

In Fig. 4, we turn to show some sample array factors and the related φ(u) for the same cases as
in Fig. 3. As can be expected, the array factors exhibit the classical oscillating behavior of a random
process. Nonetheless, they follow the desired pattern by oscillating around it. Also, it is seen that
the samples deviate from φ(u) according to the variance behavior sketched in the previous figure. For
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Figure 3. Behaviour of the array factor variance for different values of the number of antenna elements
and array aperture in the case of the sector beampattern. The function M(X) is chosen constant.
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The green and black solid lines show φ̃DES(u)+ rp(u) and φ̃DES(u)− rp(u), respectively, with p = 99.7.
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example, it is seen that for N = 200 the sample array factor deviates less when the aperture is shorter.
Again, for N = 1000 and L = 500 the sample array factor is “closer” to the desired array factor than
for N = 200 and L = 100, or when N = 500 and L = 500 with respect to N = 200 and L = 200. In
the same figure φ̃DES(u) + rp(u) and φ̃DES(u) − rp(u), with p = 99.7, are reported as well. As can be
seen, they may provide a too severe estimation of the design error.

Finally, the empirical and theoretical ε distributions are reported in Fig. 5. It is seen that the
theoretical estimation works very well. Basically, these curves confirm the trend described above;
however they allow for an estimation of the maximum design error according to the parameters of the
random array.
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Figure 5. Behaviour of the empirical and theoretical distributions of ε for the sector-pattern case,
when the number of antenna elements and the array aperture vary.
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We now switch to consider the cosecant-pattern case. In this case, the desired array factor is given
by

φ̃DES(u) =

⎧⎪⎪⎨
⎪⎪⎩

0 −1 ≤ u < 0.3
0.3
u

0.3 ≤ u < 0.7

0 0.7 ≤ u ≤ 1

⇐⇒ φ̃DES(θ) =

⎧⎪⎪⎨
⎪⎪⎩

0 72.54◦ ≤ θ ≤ 180◦

0.3
cos θ

45.57◦ ≤ θ < 72.54◦

0 0◦ ≤ θ < 45.57◦
(14)

and the same analysis as the previous one is then achieved. Fig. 6 shows the comparison of the variances
for N = 200 and L = 500 for the considered six cases. Once again it can be deduced that setting M(X)
and then getting f(X) is better than doing the opposite. Moreover, the case of M(X) constant is still
the best one. Fig. 7 shows the bahaviors of the variances of the array factor related to the cases in which
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Figure 7. Behaviour of the array factor variance for different values of the number of antenna elements
and array aperture for the cosecant-pattern. The function M(X) is chosen constant.

 -1  -0.5 0 0.5 1
 -0.5

0

0.5

1

1.5

u

N=200, L=100

 

 

 -1  -0.5 0 0.5 1
 -1

0

1

2
N=200, L=500

u
 -1  -0.5 0 0.5 1

 -0.5

0

0.5

1

1.5
N=200, L=200

u

 -1  -0.5 0 0.5 1
 -0.5

0

0.5

1

1.5 N=1000, L=500

u
 -1  -0.5 0 0.5 1

 -0.5

0

0.5

1

1.5 N=500, L=500

u

desired array factor φ(u)
a sample array factor F

s
(u)

φ(u)+3σ(u)
φ(u) 3 σ(u)

Figure 8. Behaviours of the desired and a sample array factors for different values of the number
of antenna elements and array aperture for the cosecant-pattern case. The function M(X) is chosen
constant. The green and black solid lines show φ̃DES(u)+rp(u) and φ̃DES(u)−rp(u), respectively, with
p = 99.7.



138 Buonanno and Solimene

the transformation M(X) is constant, and the parameters N and L vary. It can be noted again that, for
fixed N , the variance increases with the extension of the array aperture while if this extension is fixed
then it decreases when N becomes higher. Looking at Fig. 8, even in the cosecant case one can conclude
that the samples of the array factor oscillate around the mean array factor, φ(u), and obviously, these
oscillations become smaller and smaller as the number of radiators increases (having fixed the array
aperture). Furthermore, observing also the curves φ̃DES(u) + rp(u) and φ̃DES(u)− rp(u) with p = 99.7
reported in the same figure, it can still be recognised that these curves may be too pessimistic. Finally,
in Fig. 9 the empirical and theoretical ε distributions are shown. It can be noted that the theoretical
estimation is very much closer to the experimental ones. Eventually, for the cosecant pattern case the
same conclusions as for the sector case can be drawn out.
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when the number of antenna elements and the array aperture vary.
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Figure 10. Comparison between the empirical distribution of ε for the sector-pattern case, for the
cases M(X) is constant and f(X) is uniform, respectively.
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We just end this section by turning to the question of the best choice for setting M(X) and f(X).
Previously, according to the variance behavior, we have argued that method 2 is the best one. It is
worth checking if it is actually so by inspecting the design error cumulative distribution (i.e., the ε-
distributions). This is achieved in Figs. 10 and 11, respectively for the two considered cases. These
figures actually confirm that method 2 always allows for a lower design error.
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Figure 11. Comparison between the empirical distribution of ε for the cosecant-pattern case, for the
cases M(X) is constant and f(X) is uniform, respectively.

5. CONCLUSION

In this paper we want to verify some properties of the above model that in [4] have not been taken into
consideration. In particular, here the dominant theme is the modality of choice of the function related
to the excitation coefficient magnitudes and to the radiators pdf, which in [4] had less weight. From our
analysis, it has been found that the best choice is the one in which the excitations are pure exponentials.
We have in fact observed that lower levels of the variance of the array factor are obtained when the
random variable transformation, associated with excitation magnitudes, is constant. In addition, we
have also investigated the effect that the array aperture has on performance, showing that when the
number of antenna elements is fixed, the larger the aperture is, the higher the variance levels are.
Conversely, when the array aperture is fixed, the higher the number of radiators, the more the sample
array factors approach the desired one. This finding was also verified through the centered array factor
distributions. Since the advantage of constantly choosing the function M(X) was made by evaluating
the variance of the array factor, we wanted to verify this also by resorting to the centered array factor
distributions, in particular comparing this case with that in which the radiators positions pdf is uniform.
As expected, the choice made at the beginning was confirmed to be the best.

In every way, although the numerical results presented are only partial, it can be said that when
the number of antenna elements is very high (for example N = 5000) as in the case of radar arrays [15],
the presented model can be useful for a probabilistic synthesis of unequally-excited aperiodic arrays.
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