
Progress In Electromagnetics Research C, Vol. 87, 147–162, 2018

Novel Approach for Vibration Detection Using Indented Radar

Andrew Gigie, Smriti Rani, Arijit Sinharay, and Tapas Chakravarty*

Abstract—Non-contact vibration detection using microwave radar is becoming a popular research area.
However, vibration sensing using Doppler radar based measurements suffers from the problem of ‘Null
point’. In order to mitigate this, traditional designs incorporate phase measurements using Quadrature
(I/Q) radar. Such Quadrature radars are not cost effective for large scale indoor deployment scenarios.
In this paper, we propose a new configuration of ‘Indented Radar’; a system of two single-channel radars
offset in space by a path length, which is equivalent to 90 degree phase shift. However, such a system
of two independent channels is prone to different imbalances such as amplitude, phase and DC. This
work closely examines the imbalance effect on the two-radar system and reports a novel approach that
can be used to tackle such imbalance in a two-radar configuration. Our approach yields superior results
over other commonly used I/Q algorithms, while measuring vibrational frequencies. Thus, our work
can find immense application in both vital sign detection and structural vibration detection use-cases
where affordable solution is sought.

1. INTRODUCTION

Microwave Radar Technology has become so versatile these days that it is now being used in various
fields rather than detecting only moving targets for use in aviation or space. For example, microwave
interferometry is exploited to detect minute vibrations of objects ranging from building [1, 2], bridges,
structures [3] to heart movements (i.e., monitoring heart rate) or chest-wall movements (i.e., monitoring
breathing rate) [4], or from detecting machine vibrations [5] to human activity. Microwave technology
is particularly interesting for its ability to penetrate structures and take measurements from a distance
(i.e., in non-contact fashion).

However, like every technology, microwave interferometry [6] suffers from some issues that may
corrupt the measurements, if not handled properly. One of such issues arises from the relation between
vibrational amplitudes and probing wavelength, while measurements are done through standard radar
baseband processing (or sometimes termed as microwave interferometry). If the vibrational amplitude
increases in terms of displacement over a certain threshold (compared to the probing wavelength) then
the baseband measurement contains harmonics that can often mislead the measurement. This can be
managed by maintaining a suitable amplitude vs wavelength ratio. However, the measurement can still
suffer from harmonics if measuring around null-points [7]. The situation becomes more problematic
in cases where the radar module cannot be fixed at a desirable position (i.e., at optimal point) but
requires to take treading on the move (say hand-held unit for detecting machine vibration). Similarly,
for use-cases where the subject is also not rigidly bound to a specific point (say non-contact heart-rate or
breathing monitoring where people can comfortably stand or sit in front of a fixed radar), the null-point
issues may pop-up and can lead to erroneous measurements. Moreover, measurement around null-point
not only creates harmonics but also suffers from sharp decrease in sensitivity.
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To overcome such issues related to null-points, people usually use I/Q channels. However, I/Q
radars are more expensive and so, people have started experimenting with two single channel radar
modules placed side-by-side with some spatial offset to effectively behave as I/Q radar [8]. Here we
label this radar system as an “Indented Radar” setup. In this setup, two radar modules have, defined
separation both in lateral and longitudinal directions, essentially introducing a physical indentation
between them. Although this configuration provides an attractive workaround due to affordability and
easy availability of those single channel modules, this configuration is also prone to measurement errors
if the information from both modules is not properly combined. If standard approach of combining I
and Q channels of an I/Q radar is used as in the case of an Indented Radar, then measurements can
suffer from significant errors in certain situations. For example, the most frequently used algorithms
for combining I/Q channels like Complex Signal Demodulation (CSD) [9] and Differentiate And Cross
Multiply (DACM) [10] will severely fail in certain cases due to amplitude and DC imbalances that are
inherently present in the configuration consisting of two independent radar sensors.

The main relevance and usability of an Indented Radar system can be summarized as follows.

• In vibration detection applications such as physiological signals [11] or machine vibration monitoring
to detect structural health [1], the Indented Radar can be used to replace I/Q Radar as a cost
effective solution.

• In applications such as tracking vehicle speed [12–14], detecting human walking speed, [15] etc.
which cut through consecutive null and optimum points the two radars of an Indented Radar
system can be considered to have slight shift in transmit frequency thus effectively acting as an
Multi frequency Continuous wave radar (MFCW Radar). As mentioned in [16], by calculating the
relative phase difference of the output from these radars, we can increase the unambiguous range
in a CW radar.

• Multiple radars work as multiple observation points for the same signal. Due to spatial diversity
(typically utilized in indoor wireless communication systems), both the radars can jointly subdue
the multipath problem besides providing a better coverage area [17].

Thus, Indented Radar potentially performs far better than single channel radars but with accuracy
close enough to an actual I/Q radar, at an affordable cost. In this paper, we mainly focus on applications
related to vibration detection using Indented Radars, as highlighted in our first bullet point.

In this work, we examine the mismatch problems that can happen in an Indented Radar
configuration in detail and propose a suitable approach to combine the information from the two
channels for eliminating such pitfalls. The paper is arranged as follows: Section 1 provides a recap
on the theory of microwave interferometry while using Indented Radars. Section 2 presents theory and
our approach for setting up the Indented Radars. Section 3 briefly explains existing techniques for
combining I and Q radar. Section 4 discusses the issues of using CSD and DACM algorithms for the
set up for Indented Radars. Next in Section 5, our approach of combining the information from each
channel is presented. Next, the experimental set-up is detailed and results are presented in Section 6.
Finally, the work is concluded in Section 7.

2. INDENTED RADAR: THEORY AND SETUP

A Continuous Wave (CW) radar transmits a single high frequency continuous wave signal into space.
A part of this signal gets backscattered to the receiver after hitting targets. This received echo signal
is modulated in phase according to the Doppler principle. Proper demodulation of the received signal
can give information about the frequency of the vibrating target.

2.1. Theory

A simplified general block diagram of a CW Radar is shown in Figure 1. The oscillator generates a
single tone high frequency signal of frequency f and wavelength λ. This signal T (t) is then transmitted
into space using a transmitter antenna (Tx). Let us assume that, the vibrating target, which is at
a distance d0 from the radar, is undulating in simple harmonic motion, x(t) with frequency f . The
displacement of the vibrating target modulates the transmitted signal and a part of this signal gets
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Figure 1. Block diagram of CW radar.

reflected back to the CW radar. This reflected signal is captured by the receiver antenna (Rx). The
received echo signal R(t) is then mixed with local oscillator signal coming from the transmitter T (t)
and the resultant signal is passed through a low pass filter to filter out the baseband signal B(t). The
equation of baseband signal B(t) is as shown in Equation (1) [18].

B(t) = cos

(
θ0 +

4πx(t)

λ
+∆θ(t)

)
(1)

where

θ0 =
4πd0
λ

(2)

and

x(t) = A sin(2πft) (3)

∆θ(t) = θ(t)− θ

(
t− d0

c

)
(4)

Equation (2) represents constant phase due to the fixed distance of the vibrating object from the
radar. Equation (3) depicts vibration frequency of the target. ∆θ(t) in Equation (4) shows the difference
in phase noise from Local Oscillator, for transmitter and receiver respectively. It is usually considered
to be negligible for short range application in a quadrature radar [19]. For a body, vibrating at a fixed
distance, θ0 is constant. In an Indented Radar setup, ∆θ(t) is no longer negligible, as we are using two
separate single channel radars to replicate I/Q Radar.

In Quadrature radar, I and Q outputs are generated by providing a 90 degree phase shift to the
oscillator frequency and then mixing with the received echo signal. For an Indented Radar, I and Q
outputs have been generated, by spatially separating the two single channel radars by a distance equal
to multiples of λ/8 [8]. A pictorial representation of the setup is shown in Figure 2.

For the indented radar configuration, as shown in Figure 2, Equation (1) is rewritten for both the

Figure 2. Null and optimum points.
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channels as:

BI(t) = cos

(
θ0 +

4πx(t)

λ
+∆θ(t)

)
(5)

and

BQ(t) = cos

(
4π(d0 − λ/8)

λ
+

4πx(t)

λ
+∆θ(t)

)
(6)

Equation (6) may be re-written as

BQ(t) = cos

(
π

2
+ θ0 +

4πx(t)

λ
+∆θ(t)

)
(7)

or BQ(t) = sin

(
θ0 +

4πx(t)

λ
+∆θ(t)

)
(8)

Thus, Equation (5) and Equation (8) form the I and Q channel for the Indented Radar setup.
Now, let us assume that we want to detect composite vibration of the target having two distinct

frequencies f1 and f2 as shown in Equation (9).

x(t) = A1 sin(w1t) +A2 sin(w2t) (9)

Let us say ϕ = θ0 +∆θ(t). Then by replacing x(t) in Equation (1) with Equation (9) and writing
in the form of Bessel’s function [20], we get Equation (11).

B(t) = Re

( ∞∑
n=−∞

Jn

(
4πA1

λ

)
ejnw1t

∞∑
m=−∞

Jm

(
4πA2

λ

)
ejmw2tejϕ

)
(10)

or,

B(t) =

∞∑
m=−∞

∞∑
n=−∞

Jm

(
4πA2

λ

)
Jn

(
4πA1

λ

)
cos(nw1t+mw2t+ ϕ) (11)

From Equation (11), we see that the resultant baseband signal displays the presence of
intermodulation frequencies (f1 + f2, f1 − f2, etc.) in addition to the harmonics of vibration frequency
(2f1, 2f2, etc.). Now, depending on the application of interest, we can tune in the value of Bessel co-
efficients (determined by A1 and A2) to determine the amplitude of the harmonic components. Thus,
using Equation (11), we can analyze the frequency spectrum of targets having composite vibration.

2.2. Setting up the Indented Radar System

Considering small angle approximation for Equation (1), at an optimum position, the output will be
proportional to the vibration displacement of target. However, at null position, the output will be
proportional to the square of the vibration displacement. Thus, the output fidelity will depend on
the distance between the target and the radar. The harmonic frequencies are generated around null
position, which decreases the overall sensitivity of the system. The entire distance in space can be
considered to be repetitive bins ranging from Optimum to Null. Since, both the channels are spatially
placed at optimum and null position [21], we may call them pseudo I and pseudo Q channel.

In order to conduct our experiments we used two single channel HB100 radars and kept them in
such a way that path length between them is approximately, λ/8. The effect of interference are reduced
by placing both the radars in different polarization (one in horizontal and other in vertical polarization)
as shown in Figure 3. Ideally, they must behave like a quadrature channel radar. However, because of
the effect of phase imbalance due to ∆θ(t), this was not observed readily. The radars were then carefully
calibrated by finer adjustment in placement to effectively neglect the effect of phase imbalance. This
is depicted in Figure 3. This calibration was done by placing a speaker and generating a single tone
frequency source (75Hz) via an amplifier. The radar captures the vibration displacement of the speaker’s
membrane. The speaker was then placed at a distance such that when one channel (Pseudo I channel)
was at null, as shown in Figure 4(a), the other channel (Pseudo Q channel) tends to optimum position,
shown in Figure 4(b). At null position, we see the harmonic frequency (150Hz) to be dominant and
at optimum position, we see the fundamental frequency (75Hz) to be dominant. The final calibrated
setup where the effect of phase imbalance is removed is shown Figure 3.
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Figure 3. Indented radar setup.
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Figure 4. Calibration testing using speaker vibration. (a) Pseudo I channel signal. (b) Pseudo Q
channel signa. Pseudo I channel captured second harmonic, suggesting the speaker is near null position
and Pseudo Q captured the fundamental frequency, indicating it is near optimum position.

3. PRIOR ART ON COMBINING I AND Q CHANNEL

For ensuring better clarity, we initially explain the existing techniques such as “Complex Signal
Demodulation” (CSD) [9] and “Differentiate and Cross Multiply” (DACM) [10] to retrieve the vibration
frequency from a Quadrature Radar. We further show the disadvantage of using such techniques in an
Indented Radar setup. For an Indented Radar setup, these techniques will become error prone because
of mismatches such as amplitude, DC and phase imbalances. Even though there are many ellipse
based fitting techniques to compensate for mismatch errors but most of these calibrations is a one time
process [22, 23]. To do them repeatedly in real time scenario would be challenging as the mismatch in
a Indented Radar would be prominent and unpredictable. Here, we assume that the effect of phase
imbalance ∆θ(t) was removed in the calibration phase.
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3.1. CSD Algorithm

Complex Signal Demodulation (CSD) [9] applies complex Fourier Transform to the I and Q channels
to effectively generate the combined output independent of distance between target and radar.

BI(t) + jBQ(t) = cos

(
θ0 +

4πx(t)

λ

)
+ j sin

(
θ0 +

4πx(t)

λ

)
(12)

BI(t) + jBQ(t) = exp

(
j(θ0 +

4πx(t)

λ
)

)
(13)

As seen in Equation (13), the effect of exp(jθ0) is constant in frequency domain and can be removed
by removing the average mean. Thus, effectively CSD becomes independent of distance between the
radar and target. So, for a given vibrating target, we expect the same frequency spectrum for the CSD
output at any distance.

3.2. DACM Algorithm

Differentiate and Cross Multiply (DACM) [10] is a technique that uses both I and Q channels to remove
the harmonic content and retrieve the frequency of vibrating target. DACM algorithm is an extension
of the traditional Arctangent demodulation technique. In Arctangent demodulation, we perform the
arctangent operation on the I and Q channels as shown in Equation (14) to retrieve the linear relation
between the output and vibrating frequency of target. Yet, Arctangent demodulation faces the problem
of co-domain restriction. In order to solve this problem, DACM algorithm performs differentiation on
the arctangent of I and Q channel as shown in Equation (15). Here ω(t) gives us the velocity of target
vibration.

tan−1

(
BQ(t)

BI(t)

)
= θ0 +

4πx(t)

λ
(14)

ω(t) =
∂

∂t

[
tan−1 BQ(t)

BI(t)

]
(15)

Ideally, the combined output in DACM is free from harmonics, and we can directly retrieve the
frequency of vibration signal x(t) from its Fourier Transform.

4. EFFECT ON INDENTED RADAR SYSTEM

For simulating the imbalance effect on the existing algorithms, we assume the target to have a composite
vibration of two frequencies (65Hz and 70Hz) with equal vibrating displacement of amplitude 0.2mm

(small angle approximation is valid as 4πAi
λ < 1). In such a case, the amplitude of intermodulation

frequencies (f1 + f2 = 135Hz) would be more than the harmonics (2f1 = 130Hz and 2f2 = 140Hz). In
order to prove this, consider a target vibrating with small amplitude at null point. Then, Equation (1)
can be re-expressed as

B(t) = 1− 1

2

(
4πx(t)

λ
+∆θ(t)

)2

(16)

Substituting Equation (9) in Equation (16), with A1 ≈ A2 ≈ A and using basic trigonometric
properties, we can rewrite Equation (16) as Equation (17). Here, we neglect the effect of phase
imbalance.

B(t) = 1− 1

2

(
4πA

λ

)2 [
1− 1

2
cos(2w1t)−

1

2
cos(2w2t)− cos((w1 + w2)t) + cos((w1 − w2)t)

]
(17)

Thus, from Equation (17), we observe that amplitude of intermodulation frequency, i.e., w1 + w2,
(65Hz + 70Hz = 135Hz) is more dominant than the individual second harmonic, i.e., 2w1 or 2w2

(130Hz or 140Hz).
The transmitting frequency is 10.525GHz, and the target is at a distance such that when one

channel is at optimum position, the other channel is at null position. These parameters were then used
to represent x(t) as shown in Equation (9).
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4.1. CSD

The ideal CSD equation is shown in Equation (13). In case of a calibrated Indented Radar setup,
amplitude and DC imbalances are bound to happen in real time. By simulating different scenarios of
mismatch (amplitude and DC), we found that the effect of amplitude mismatch is significant. Hence,
the effect of amplitude imbalance has been examined more closely, when CSD technique is applied.
Thus, Equation (13) should be modified as Equation (18).

BI(t) + jBQ(t) = Ai cos

(
θ0 +

4πx(t)

λ

)
+ jAq sin

(
θ0 +

4πx(t)

λ

)
(18)

where Ai and Aq represent the amplitude mismatch between the two channels. Ideally, CSD algorithm
gives the same frequency spectrum at any distance for the combined output and we expect the Signal
strength (SNR) at null position to be far less than optimum position. However, due to amplitude
mismatch, this may not always be true. The effect of amplitude imbalance on CSD output is obtained
by simulating Equation (18). Here, the value of amplitude mismatch (Ai, Aq) is given by observing the
outputs obtained from actual experiment (Ai = 0.016V and Aq = 0.01V). Figure 5(a) and Figure 5(b)
show the frequency spectrum of I and Q channels at a particular distance. Figure 5(c) shows the ideal
frequency spectrum without amplitude imbalance and Figure 5(d) shows the frequency spectrum of
CSD having amplitude imbalance. As seen from Figure 5(d), the amplitude imbalance gave relatively
more signal strength to the harmonics.
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Figure 5. Simulated effect of amplitude imbalance on CSD Algorithm. Frequency spectrum of
(a) I channel, (b) Q channel, (c) CSD technique without amplitude imbalance, (d) CSD technique
with amplitude imbalance. It is seen from (d), that harmonic content has more signal strength than
fundamental.

4.2. DACM

For an Indented Radar system, Equation (15) should be modified as it would be subject to Amplitude
and DC imbalance. By simulating different cases, it is observed that in DACM algorithm the effect
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of DC offset is more crucial than amplitude imbalance and other factors, as addressed in [24] and [9].
Thus, considering the DC offset imbalance, Equation (15) gets modified to Equation (19).

∂

∂t

[
tan−1 BQ(t)

BI(t)

]
=

∂

∂t

tan−1

DCi + θ0 +
4πx(t)

λ

DCq + θ0 +
4πx(t)

λ


 (19)

As seen from Equation (19), now it is not possible to directly retrieve the frequency of vibration
signal x(t) from its frequency spectrum, and the combined output would become unpredictable. The
effect of DC imbalance on the combined output of DACM is obtained by simulating Equation (19). A
mean removal filter has been used for DC removal. Thus, a time varying DC imbalance was introduced
in one of the channels. For the first half of the entire time duration of the signal, DCi = 0.0165V
and DCq = 0.01V. For the second half DCi = 0.01V and DCq = 0.01V. Figure 6(a) and Figure 6(b)
show the frequency spectrum of I and Q channels at a particular distance. Figure 6(c) shows the ideal
frequency spectrum of DACM algorithm, without DC imbalance and Figure 6(d) shows the frequency
spectrum of DACM algorithm, with DC imbalance. As seen from Figure 6(d), the DC imbalance in
the two channels led to the generation of unwanted frequencies of significant amplitude. This may lead
to unpredicatable frequency measurements in certain scenarios. Thus, DACM algorithm can only be
taken in a very accurately calibrated dual channel IQ Radar setup. In an Indented Radar setup which
is bound to have irregularities, it is thus impractical to go for such an approach.
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Figure 6. Simulated effect of DC imbalance on DACM Algorithm. Frequency spectrum of (a) I channel,
(b) Q channel, (c) DACM technique without DC imbalance, (d) DACM technique with DC imbalance.
Comparison between (c) and (d) suggests that DC imbalance causes the energy from the fundamental
peaks to spill over to number of other frequency bins.

5. OUR APPROACH

As mentioned earlier, with two entirely separate sets of Transmitters, Receivers and Local Oscillators,
an Indented Radar system is bound to suffer from amplitude (Ai and Aq) and DC imbalance (DCi and
DCq). These effects make the output baseband signal uncertain. To overcome the said issues, we came
up with a novel approach of combining supervised method with complex signal demodulation. We term
it as Supervised Complex Signal Demodulation (SCSD).
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Most vibrating mechanisms are band limited. For instance, for a healthy individual, physiological
signals, such as breathing rate [25] and heart rate are band limited to 0.2–0.4Hz and 1–2Hz, respectively.
Similarly, machines also vibrate in a particular frequency range. Hence, we know the fundamental
frequency band, as well as, the corresponding harmonics. In this paper, we mainly focus on composite
vibration detection of two distinct frequencies. This is taken in order to consider the effect of
intermodution frequencies as well. Now, we create a simulated model of the system using Equation (11)
and generate the frequency spectrum of composite vibration. The entire distance in space can be
considered to be repetitive bins ranging from Optimum to Null. Each such bin is then further subdivided
into five classes. These classes are labelled as “null”, “better null”, “middle”, “better optimum” and
“optimum”. These classes are selected such that the frequency pattern is distinct in each of them.
At any distance, either pseudo I channel or pseudo Q channel captures a better estimation of the
fundamental frequencies present in the vibrating system. Thus, based on the frequency pattern of the
input signal, we create a supervised learning model using weighted KNN algorithm [26] to allocate the
closest resemblance class for the input signal. The features for the model are based on the location
of peaks and the ratio of the relative peak to peak distance between them. The training data for the
model is generated in Matlab using the steps mentioned below.

(i) Select a particular bin ranging from Optimum position to Null position (Indirectly, fixing a
particular distance).

(ii) Depending upon the application, decide on the frequency band of operation (Indirectly, fixing a
frequency bandwidth).

(iii) Depending upon the distinct frequency spectrum (function of distance), we divide the bin into five
classes and Annotate the ground truth with corresponding class labels.

(iv) For a particular class, simulate Equation (11) for incremental steps of all frequencies in the frequency
range and small incremental distances of that particular class.

(v) Using Step (iv) generate features such as location of peaks and peak to peak ratio from frequency
spectrum plots.

(vi) Use these features to train the supervised learning model using weighted KNN. Repeat steps (iv)
and (v) for all classes (“null”, “better null”, “middle”, “better optimum” and “optimum”) of a
particular bin.

Currently, we generate the model by analyzing the frequency spectrum of composite vibration on a
single channel as explained in Equation (11). Thus in the testing phase, feature sets obtained from the
experimental data of pseudo I and Q channel in the Indented Radar system is fed separately to the
model. After discerning the label, the weighted KNN model assigns α and β values to channels I and
Q, respectively. Nearer the frequency pattern is, to the optimum bin, more is the α or β value. The
classes and their corresponding α or β value are shown in Table 1.

B(t) = αI + jβQ; (20)

After assigning α and β values for both the channels, the outputs are combined using Equation (20).
A block diagram is shown in Figure 7 explaining the above process.

Table 1. Assigned values of α or β.

Class Null Better Null Middle Better Optimum Optimum

α or β 0 0.25 0.5 0.75 1

This method addresses the problem of Amplitude and DC offset variations that can happen in the
proposed system, as the model considers both the channels independent of each other while assigning
the class label and more weight is given to the signal having resemblance to the optimum position.

In order to explain the above model, consider a scenario, where a machine is vibrating with a
composite vibration of two frequency components. For experimental analysis, a speaker can be fed
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Figure 7. Supervised CSD block diagrams.

with a multi-tone source, to emulate composite vibration in machines. Here, the speaker would be
fixed, but the Indented Radar system is a movable hand-held device. In this case, the distance between
Indented Radar and speaker is not fixed, but the combined output should be independent of distance.
The data for training the model is generated in this scenario by simulating Equation (11). We first
select a bin from optimum to null and then divide the bin into 5 classes (annotated ground truth),
we then incrementally train our model for the desired frequency range at different distances within
each class. For example, let’s feed an audio signal to the speaker with two frequency components, f1
(65Hz) and f2 (70Hz) of equal amplitude. The amplitude value of the audio source is given so that
the simulated frequency spectrum using Equation (11) (A1 = 0.3mm, A2 = 0.28mm, (A1 ≈ A2))
was similar to the actual experimental frequency spectrum. Thus using Equation (11), the main peak
frequency components expected are, the fundamental frequencies f1 (65Hz), f2 (70Hz) and harmonic
frequencies such as 2f1 (130Hz), 2f2 (140Hz), f1 + f2 (135Hz), etc. As explained using Equation (17),
when A1 ≈ A2, we observe that intermodulation frequency (135Hz) would have more amplitude than
other harmonics (130Hz and 140Hz) in the frequency spectrum. The typical frequency spectrum for
the five annotated ground truth classes is depicted in Figure 8. The data from the two channels of the
Indented Radar system, is then fed to this trained model and depending upon the class label the model
allocates, the values of α and β. The combined output from SCSD will always show a pattern closer
to the optimum pattern. Thus, creating an output relatively independent of distance. This is further
portrayed in Section 6.

For another use-case, consider physiological signals from the movement of the chest wall of
human body. It consists of a composite vibration of breathing and heartbeat. We know that the
typical Breathing rate normally ranges from 0.2Hz to 0.4Hz (12 to 24 beats/minute) and displacement
amplitude of chest for breathing has a peak to peak displacement of 2mm to 6mm [27]. As the
displacement amplitude of heart beat is very less than breathing. In Equation (11) we can assume that
A1 ≫ A2, hence the two main frequency component that is expected at any distance is the fundamental
frequency between 0.2Hz to 0.4Hz and the second harmonic of breathing, generally in the range of
0.4Hz to 0.8Hz. Thus, similar to the approach taken for machine vibration case, a model can be made
by looking into the frequency spectrum generated using Equation (11).

Thus, for composite vibration using Equation (11), a model can be made corresponding to the
signatures and frequency band pertaining to the application. After that, a supervised approach, as
mentioned above can be used along with the existing CSD algorithm.



Progress In Electromagnetics Research C, Vol. 87, 2018 157

2f
1

2f
2

f
1
+f

2

f
1

f
2

f
1
+f

2

f
1
+f

2f
1

f
2

f
1
+f

2

f
2

f
1

f
1

f
2

50 100 150
0

0.5

1

1.5

2

2.5

3
x 10

-3

Frequency (Hz) 

(a)

|P
(f

)|

X: 135

Y: 0.002502

X: 130

Y: 0.001255

50 100 150
0

0.5

1

1.5

2

2.5
x 10

-3

Frequency (Hz) 

(b)

X: 65

Y: 0.00149

X: 70.01

Y: 0.001238

X: 135

Y: 0.002271

50 100 150
0

0.5

1

1.5

2

2.5
x 10

-3

Frequency (Hz) 

(c)

X: 65

Y: 0.002032

X: 70.01

Y: 0.001688

X: 135

Y: 0.002052

50 100 150
0

0.5

1

1.5

2

2.5

3
x 10

-3

Frequency (Hz) 

(d)

X: 65

Y: 0.00282

X: 70.01

Y: 0.002342

X: 135

Y: 0.00152

50 100 150
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

-3

Frequency  (Hz) 

(e)

X: 65

Y: 0.003548

X: 70.01

Y: 0.002948

Figure 8. Frequency spectrum in different classes for a single channel radar. (a) Null class. (b) Better
Null class. (c) Middle class. (d) Better Optimum class. (e) Optimum class for machine vibration.
Distinct Frequency spectrum pattern is observed for different classes (“null”, “better null”, “middle”,
“better optimum” and “optimum”).

6. EVALUATION OF VIBRATION DETECTION

6.1. Experimental Setup

Experiments were performed with the help of Indented Radar system, as described in Section 2. Data
were collected with the help of LabView. To check the ruggedness of the system, no special care was
taken to shield the system from environmental noise and electromagnetic interference. The data from
both the channels are fed to the model explained in Section 5. In order to test the competence of our
approach with respect to existing algorithms, data has been collected in two different scenarios.

6.1.1. Machine Vibration Monitoring

To emulate the behaviour of a vibrating membrane, a speaker is an apt choice. An audio source having
composite vibration of two frequencies is fed to the speaker. The frequency bandwidth considered was
60Hz to 80Hz and model was generated for that frequency range, with a frequency step of 1Hz.

As a test case, the diaphragm of the speaker is vibrated at a combined frequency of 65 and 70Hz.
This reveals various intermodulation and harmonic effects of the two frequencies. The outputs from the
Indented Radar system was sampled at 1KHz using NI DAQ board USB-6216. In order to compare
SCSD with CSD, data were collected by incrementally moving the speaker in 20 steps of 0.2 cm each,
away from the speaker. The duration of measurement at each distance was around 60 seconds. The
buffered data were fed to the simulated model. Based on the frequency pattern, the simulated model
assigns α and β. The complete setup for the experiment was conducted is shown in Figure 9.
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Figure 9. Machine vibration setup. Figure 10. Physiological sensing set up.

6.1.2. Physiological Monitoring

For validating SCSD for physiological signals, the simulation model was generated to have a bandwidth
of 0.2Hz to 0.4Hz (corresponding to normal breathing rate). Experiments were then performed on
one of the authors of this paper. The setup shown in Figure 10 was used to collect data. The subject
was seated at a distance of around 0.3m away from the Indented Radar system and asked to restrict
movement while breathing. The subject was wearing a formal shirt. 20 reading were taken in such an
arrangement. Responses from the Indented Radar system were taken at a sampling rate of 50Hz via
an NI DAQ board USB-6216, through LabView.

6.2. Results and Discussion

In this section, we compare the accuracy of our approach with one of the existing techniques — complex
signal demodulation (CSD). Both the techniques use the same data sets.

Figure 11 shows one of the observations for machine vibration monitoring. Ideally, the signal close
to the null position should have less SNR than the signal near optimum. However, in an Indented
Radar setup, amplitude imbalance can give more strength to the signal near null position. As seen,
pseudo I channel (Figure 11(a)) was near to the null position and had signal strength comparable to the
pseudo Q channel Figure 11(b), which was near optimum position. Thus, the combined CSD output in
Figure 11(c) was incorrect and had more harmonic content. As can be seen from Figure 11(d), SCSD
gives more weightage to the channel near optimum position. Hence, the effect of amplitude imbalance
was suppressed.

Figure 12 shows the error graph for 20 different observation points in machine vibrations scenario.
The error is computed by taking a ratio of the amplitude of the dominant frequency (except the
fundamental) to the amplitude of the fundamental frequency in the combined signal (D-F ratio). For this
case, the fundamental frequency is 65 or 70Hz and the dominant frequency, excluding the fundamental
is 135Hz. This D-F ratio would be small if the combined signal is close to the optimum. Ideally, CSD
should give a constant D-F ratio at any distance as the pattern is independent of distance. However as
seen from Figure 12, in some cases because of amplitude imbalance this ratio is very high. Using SCSD
technique it is seen that the D-F ratio is very less and is comparatively better than CSD in all the cases.

Physiological signals have very low amplitude band-limited signals. Adding up the harmonics can
lead to false detection of the vital signs. 20 sets of data were collected using the setup explained in
Section 6.1.2. Figure 13(a) and Figure 13(b) show the two channels for one of such observations. The
observed Breathing rate for the subject in this observation was 18 breaths per minute. As seen from
the figure, the fundamental breathing rate for the subject was around 0.29Hz (18 breathes/minute) and
the corresponding harmonic frequency was around 0.59Hz. Due to amplitude imbalance, the harmonic
frequency had signal strength comparable to the fundamental frequency. Hence, for CSD technique in
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Figure 13(c), both harmonic and fundamental frequencies are almost equal. However depending upon
its frequency spectrum pattern, SCSD technique detected I channel as in the “better optimum” class
and Q channel was labelled as “better null”. Hence weights were accordingly given to both channels to
suppress the effect of amplitude imbalance. This is clearly visible in Figure 13(d).

Figure 14 plots the D-F ratio for physiological signals of 20 different sets of data for a human
subject. In this case, excluding the fundamental breathing frequency, the second harmonic frequency of
respiration is the dominant frequency. For the case of vital signs, the amplitude of heart rate frequency
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Figure 11. Frequency spectrum of (a) Pseudo I channel, (b) Pseudo Q channel, (c) CSD technique, (d)
SCSD technique in Machine vibration monitoring. Fundamental frequencies (65Hz and 70Hz) are the
prominent peaks for SCSD technique. From (c), it is seen that the intermodulation frequency (13Hz)
gains more signal power, whereas in (d) SCSD gives more weightage to the the fundamental frequency.

 

0 2 4 6 8 10 12 14 16 18 20

No. of Readings

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

D
-F

 R
a
ti

o

CSD

SCSD
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Figure 13. Frequency spectrum of (a) Pseudo I channel, (b) Pseudo Q channel, (c) CSD technique,
(d) SCSD technique in physiological Monitoring. For CSD technique (c), both the fundamental and
harmonic frequencies have almost equal power, whereas, for SCSD technique (d) fundamental frequency
is clearly visible.
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Figure 14. Comparison between CSD technique and SCSD technique in Physiological Monitoring.
Here, D-F Ratio denotes the ratio of dominant frequency (except the fundamental) to fundamental
frequency. Ideally, it should be less than 1.

would be very less than the respiration rate frequency. Consequently, the higher order harmonics of
breathing comes in the Heart beat range. Hence, the combined output should have harmonic content
as less as possible to detect heart rate. We further observe that for almost all observation points, SCSD
scores far better than CSD in terms of finding the fundamental frequencies of vibration. Thus ensuring
that the harmonic content using SCSD technique would be minimum.
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7. CONCLUSIONS

Our work discusses in length the issues of using Indented Radars for vibration measurements. Both
physiological and pure mechanical vibrations are examined closely. Our results clearly show that
standard I/Q algorithms like CSD or DACM often fail to detect actual vibrational frequencies when
applied on Indented Radars. Moreover, our approach of fusing information, through supervised
approach, from the individual channels of radars proves to be accurate and superior to CSD or DACM
when used in indented configurations. This provides an affordable means for exploiting microwave
interferometry, through indented radar configuration, to overcome the null-point issues while monitoring
vibrations from a distance. Thus, our work can find immense applications in non-contact vibration
detection use-cases, especially, where the radar to subject distance is not fixed (i.e., monitoring with
hand-held radars). Currently, both channels are fed independently to the trained model to generate α
and β. This however limits the frequency bandwidth that can be trained. In future work, we intend to
utilize both channel characteristics concurrently to generate more features, in order to generalize this
solution to scale all frequencies.
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