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Improving Efficiency of the Secondary Sources Method for Modeling
of the Three-Dimensional Electromagnetic Field

Dmitriy M. Filippov* and Alexandr A. Shuyskyy

Abstract—A mathematical model is constructed for calculating a three-dimensional quasistationary
electromagnetic field in a piecewise-homogeneous medium containing massive conductors which is
excited by a variable magnetic field. The field is varying in time according to an arbitrary law. It
is proposed to use the integral relation instead of the boundary condition written at a point, which
allows one to get away from the problem of collocation points and at the same time increase the
computational efficiency of the numerical model. The magnetic field is calculated for the case of the
excitation of eddy currents in a conducting sample containing a cut of finite size. The results obtained
are confirmed by natural experiments.

1. INTRODUCTION

Mathematical modeling of the distribution of eddy currents in conductive bodies of various geometries
has a wide range of practical applications [1–5]. From the point of view of automation, as well as
the possibility of studying both surface and subsurface defects, one of the most effective methods of
nondestructive testing of conducting non-ferromagnetic samples is eddy current testing (ECT) [6, 7].
The calculation of eddy currents can be carried out analytically only in the simplest cases [8, 9], when
the geometry of the computational domain is balls, cylinders, etc. For the majority of practically
significant cases, the mathematical model requires the use of numerical methods.

Finite element method (FEM) is the most common numerical method for solving boundary
problems of electrodynamics [2, 5]. The key problem of FEM is that the computational domain includes
the amount of empty space surrounding the conductive body under consideration [10], which affects
the amount of computational work. In the tasks of ECT this is especially significant, since the air
gaps between the conductors in this case can be a few microns. In [10], a method is presented in
which the introduction of a special-type computational grid allows one to avoid the key problem of the
FEM. The problem in [10] is solved under the condition of sinusoidal electromagnetic (EM) field in the
approximation of a thin metal sheet. In [11], a model oriented on the calculation of an eddy current
signal in ECT problems is presented. In the framework of this approach, the influence of an oscillating
charge on the surface of a conductor is neglected [12]. In [13, 14], an efficient method is presented for
simulating eddy currents in multiply connected thin conductors using the boundary element method.

Among the methods of numerical simulation of field problems, the secondary sources method is also
known [15]. This method consists in solving integral (or integro-differential) equations for the density
of secondary sources. The advantage of this method over FEM is that only the investigated conducting
bodies are subjected to discretization. In accordance with the above, in this work a mathematical model
of the EM eddy current field is developed based on the secondary sources method.
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2. FEATURES OF THE SOLUTION OF THE SYSTEM OF INTEGRO-
DIFFERENTIAL EQUATIONS BY THE COLLOCATION METHOD

In [16], a numerical method was described for solving a system of integro-differential equations for
the density of secondary sources which arise in the volumes and on the surfaces of conductors under
the action of a quasistationary electromagnetic field of variable currents arbitrarily varying in time or
moving permanent magnets. This numerical method is widely known as the collocation method. Its
essence is that the densities of secondary sources (surface charges and eddy currents) are replaced by a
set of piecewise constant functions, and the observation point is fixed within the region splitting element.
Such a replacement allows instead of a system of integro-differential equations to write down a system
of linear algebraic equations (SLAE). We give this system of equations [16]:
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where σk,i is the value of the surface density of electric charge on the k-th element of the conductor
surface partitioning S at the i-th instant of time; NS is the number of elements of the surface partitioning
S; rPQ is the radius vector drawn from point P ∈ S to point Qk ∈ ΔSk; nQ is the outward normal to
point Qk; ΔSk is the area on the surface S of the conductor occupied by the k-th splitting element; ε0

and μ0 are the electric and magnetic constants, respectively; NV is the number of partitioning elements
of the volume V of the conductor; δk,i is the vector of the volume density of eddy currents in the k-th
element ΔVk of the partitioning of the conductor volume V at the i-th moment of time; rQN is the
distance between point Qk ∈ ΔSk and point N ∈ ΔVk; A0 is the vector potential of free field sources;
Mk is a point located in the geometric center of the element ΔVk; NT is the number of moments of time
into which the period under consideration is divided.

An iterative procedure was proposed in [16], with the help of which the system in Eqs. (1), (2) can
be solved.

The magnetic field at a point in space M at time ti, after finding the density of eddy currents, is
calculated by the formula:
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where H0 is the magnetic field of free sources; Nk is the point in the center of the region ΔVk.
Equation (1) approximate the boundary integral equation, which is derived from the boundary

condition [16]:
(δ,nQ) = 0. (3)

The normal component of the density vector of eddy currents at point Q ∈ S is zero.
In accordance with the collocation method, when calculating the coefficients included in

Equation (1), point Q is fixed within the limits of the partitioning elements. Therefore, from
the continuous spectrum of Q ∈ S values, a transition is made to a discrete set of Qk ∈ ΔSk

(k = 1, 2, . . . , NS) values. This means that the solution of Equations (1), (2) will satisfy the boundary
condition in Equation (3) only at a given set of points Qk (k = 1, 2, . . . , NS).

As a rule, the collocation points are specified in the centers of the discretization elements. This
method is not always optimal in terms of computational efficiency. However, they continue to use this
method, since a mathematically rigorous method, which makes it possible to determine the optimal
position of the collocation points, has not been proposed to date.

In practice, when solving problems, especially with a complex geometry of the computational
domain, the collocation method requires an unjustified large splitting. The authors associate this
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phenomenon with the fact that the points Qk ∈ ΔSk (k = 1, 2, . . . , NS) are fixed in the centers of the
elements of the partition. This is the main disadvantage of the collocation method.

This article proposes a new method to eliminate the problem of collocation points, while
significantly increasing the computational efficiency of the secondary sources method.

3. MODIFICATION OF THE SECONDARY SOURCES METHOD

3.1. Derivation of a New System of Linear Algebraic Equations

Consider an arbitrary conducting non-ferromagnetic body with magnetic permeability μ0 and specific
electrical conductivity γ (Figure 1).

Divide the surface of the body S into elements ΔSk (k = 1, 2, . . . , NS). We assume that within
each element, the density of the electric charge at the i-th moment of time is σk,i. Each partitioning
element is covered by a closed surface ΔS∗

k in the form of an irregular cylinder, which tightens this
element (Figure 2).

Figure 1. An arbitrary conducting body in an
alternating magnetic field.

Figure 2. The element of the partition ΔSk,
covered by a closed surface (cylinder).

We denote the base of the cylinder located outside the conductor by ΔS−
k and denote the base of

the cylinder located inside the conductor by ΔS+
k (Figure 2). The bases of the cylinder ΔS−

k and ΔS+
k

are infinitely close to the element ΔSk; therefore, the size Δh tends to zero.
We write for the closed surface ΔS∗

k Maxwell’s postulate:∮
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k
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In Eq. (4) D is the electric displacement vector.
If we take into account that the integration over the lateral surface of the vector D will give zero

in view of the condition Δh → 0, then the integral over the closed surface ΔS∗
k, in the left-hand side of

Eq. (4) can be represented in the form of the sum of two integrals:∮
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In Eq. (5) E+
n and E−

n are the projections of the intensity vector on the normal nQ to the surface ΔSk

as the conductor tends to it from inside and outside, respectively.
Since E +

n = 0 (this follows from the condition in Eq. (3)), Equation (4) takes the form:
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The intensity E−
n included in Eq. (6) can be represented as a superposition of the fields:

E −
n = E −

nk + EnΣ + En0, (7)

where E−
nk is the normal component of the vector of the electric field strength at points of the surface

ΔS−
k created by the charge distributed on the element ΔSk; EnΣ is a normal component of the vector

of the electric field strength generated by charges distributed over all other elements of the surface
partitioning; En0 is a normal component of the vector of the electric field strength generated by third-
party sources (including eddy currents).

The values included in Eq. (7) are respectively equal to [16]:
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When writing Eq. (10), it is assumed that the volume V of the conductor (Figure 1) is divided into NV

elements, and the density of eddy currents within the k-th element at the i-th moment of time is equal
to δk,i [16].

Taking into account Eqs. (7)–(10) and also considering that the integral on the right-hand side of
Eq. (6) is equal to σk,i ΔSk, from expression (6) we get the following SLAE with a rectangular matrix:
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In the derivation of Eq. (11), it is taken into account that since the surface ΔS−
k is close to the surface

ΔSk, integration over area ΔS−
k can be replaced by integration over area ΔSk.

The system of Equation (11) replaces the system of Equation (1). Its distinctive feature is that it
is obtained from the boundary condition written in integral form in Eq. (4) and not from the boundary
condition in Eq. (3) written at the point, and therefore the problem of collocation points is missing for
it.

3.2. The study of the Properties of the Matrix of the System of Equation (11)

The matrix of system in Eq. (11) is degenerate: its rows are linearly dependent. Let us cover an
arbitrary conducting non-ferromagnetic body, in the volume of which the eddy currents of density
δ(Q, t) are closed by the closed surface S̃ infinitely close to the surface of the body S (Figure 3).

From the surface S̃ we select the element, which is infinitely close to the element ΔSNS
of the

partitioning of the body surface S (Figure 3). For this element, you can write:
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where ΔS̃k is the elements of the surface S̃, infinitely close to the elements of the partition ΔSk.
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Figure 3. Arbitrary conductive non-ferromagnetic body with eddy currents, covered by a closed surface.

For the integral over a closed contour included in Eq. (12), in accordance with Maxwell’s postulate,
we can write:
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In the right-hand side of Eq. (13) is the total charge covered by the closed surface S̃ , where q(ti) is the
charge of the solitary conductor at time ti (i = 0, 1, . . . , NT − 1).

Then, in view of Equation (13), Equation (12) takes the form:
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Since the elements of the surface ΔS̃k are geometrically infinitely close to the elements of the partition
ΔSk, the integration in Eq. (14) with respect to ΔS̃k can be replaced by the integration with respect
to ΔSk (k = 1, 2, . . . , NS). Then Eq. (14) will take the following form:
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Equation (11) is an equivalent record of Equation (6). If we compare Eqs. (6) and (15), we can see
that the left side of Eq. (15) is equivalent to Equation (11) for k = NS , and the right side of Eq. (15)
is equivalent to the sum of the first NS − 1 of Equation (11) and the value of the charge of the solitary
conductor. From this, it follows that the equations of system in Eq. (11) are linearly dependent.

In connection with the above, it is proposed to replace one of Equation (11) with an equation that
is linearly independent of the other Equation (11). As such an equation the following is proposed:

NS∑
k=1

σk,iΔSk = q (ti) , i = 0, 1, . . . , NT − 1. (16)

In the particular case q(t) = 0, if the conductive body is not charged.
Thus, the SLAE proposed in this work consists of Equations (11), (16) and (2).

4. COMPARISON OF A CONSTRUCTED NUMERICAL MODEL WITH EXISTING
APPROACHES

The disadvantages of the collocation method are known and are noted by many authors who are
investigating the method of boundary integral equations. In some works, it is proposed to solve the
problem of collocation points using the Galerkin method to obtain a SLAE from the corresponding
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boundary integral equation [17–19]. Mathematically, this method leads to SLAE, the coefficients of
which are expressed in terms of double integrals. One of these integrals is taken over the observation
point Q, and the second integral is taken over the integration point P . That is, these coefficients will
coincide with those obtained in SLAE of Eq. (11) of this article. This means that there is some similarity
between the method proposed here and the Galerkin method. However, we believe that the method
described here is independent and more general than the Galerkin method. Here are the arguments:

– The arguments given in this article provide a clear explanation of the reason for the unsatisfactory
accuracy of the collocation method in the case of a complex boundary of the computational domain.
This reason is the lack of accuracy in satisfying the boundary conditions. Therefore, in order to
increase accuracy, a boundary condition written at a point was proposed to be replaced with a
boundary condition written in integral form in Eq. (4). However, the Galerkin method does not
give such clarity but is merely a mathematical technique.

– In this article, it is proved that SLAE in Eq. (11) has a degenerate matrix, since its rows are
linearly dependent. This evidence is repelled by the interpretation that underlies the conclusion of
this SLAE. At the same time, a simple solution was immediately found that allows one to escape
from degeneracy. Obviously, SLAE obtained in [17] by the Galerkin method is also degenerate, but
the authors do not write about this.

– The approach proposed in this article can be generalized to other types of boundary secondary
sources, for example, on sources such as a simple layer of magnetization currents [20–22]. However,
when deriving a SLAE for this type of sources, the law of total current should be applied. This
law is written in the form for closed circuits, covering the elements of discretization. Obviously,
the SLAE obtained in this way will not coincide with the SLAE obtained by the Galerkin method.

5. EXAMPLE OF CALCULATION AND ANALYSIS OF THE CALCULATING
EFFICIENCY OF THE METHOD

As an example, we consider the problem of calculating eddy currents in a conducting non-ferromagnetic
plate, having the shape of a parallelepiped and containing a thin section (Figure 4).

Figure 4. Conductive parallelepiped in a variable field: 1 — conductor; 2 — cut.

This conductor is placed in an alternating electromagnetic field created by a coil with round turns.
The axis of the coil is perpendicular to the base of the parallelepiped.

Conductor material — aluminum with conductivity γ = 3, 77 ·107 S/m. Parallelepiped dimensions:
width 12 mm, length 14 mm, height 0.3 mm. The thickness of the incision is 40 µm. A non-sinusoidal
current flows through the coil: i (t) = 4 · t · Im/T + 2Im, if −T/2 < t ≤ −T/4; i (t) = −4 · t · Im/T ,
if −T/4 < t ≤ T/4; i (t) = 4 · t · Im/T − 2Im, if T/4 < t ≤ −T/2 (T = 1/f — current period). The
amplitude of the current is Im = 5A.

Figure 5 shows the distribution of the normal component of the magnetic field generated by the eddy
currents and currents of the coil, along the line L, which is shown in Figure 4 (this line is perpendicular to
the section and divides the conductor into two equal parts) obtained for different values of the frequency
of the current f1 and f2. The solid lines in the graph show the total field; the dotted lines indicate
the field of eddy currents; and the dotted line with a dot shows the field of the inductor. Graphics of
Figure 5 correspond to time point t = −T/4.
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As can be seen, there is a significant field gradient in the region above the cut and above the
edges of the plate. This effect is confirmed by numerous experiments in the field of magneto-optic eddy
current introscopy [23].

The presented result was obtained on the basis of the solution of the system of Eqs. (11), (16), (2).
When calculating the field at a frequency of 20 kHz, the method based on solving the system of

Eqs. (11), (16), (2) converges when the number of surface splitting elements is NS = 10560. This
partition is obtained by numerous calculations with a gradual increase in the number of partitions. The
number of partitions increased as long as the resulting solution was changed by more than 1%.

Figure 6 shows the density distribution of eddy currents in the cross section of the plate (the cross
section is drawn along line L) for the time point t = −T/4 at a current frequency of f = 20KΓΠ.

As can be seen from Figure 6, there is a discontinuity in the current in the region of the cut plate.
This gap provides an extremum of the field in the area above the cut, which is visible in Figure 5.

However, as shown by numerous calculations, when solving a problem using the collocation method,
it is not possible to achieve a characteristic current distribution. Figure 7 shows the current distribution,

Figure 5. The distribution of the magnetic field
above the plate: f1 — 20 kHz; f2 — 60 kHz.

Figure 6. The distribution of y-component of the
eddy current density along the axis x at y = 0 at
time t = −T/4.

Figure 7. The distribution of y-component of the
eddy current density along the axis x at y = 0 at
time t = −T/4. This distribution is obtained by
the collocation method.

Figure 8. Graph of convergence of the
collocation method (dotted line with a dot) and
the proposed method (solid line).
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which is obtained for a similar point in time but using the collocation method. As can be seen, the
current distribution in the conductor volume obtained by the collocation method is not correct. This
is evident from the fact that this current is not closed inside each of the halves of the cut conductor.
This is a consequence of the violation of boundary conditions. In turn, the proposed method gives the
correct current distribution (Figure 6), although the same discretization was set for both methods.

We present a graph showing the process of convergence of a numerical solution with an increase
in the number of partitions of the computational domain for the proposed method and the collocation
method (Figure 8).

As can be seen from Figure 6, the use of the proposed method obviously gives a substantially fast
convergence of the numerical solution with an increase in the number of partitions compared with the
collocation method.

When the number of elements of the partitioning of the surfaces of the conductors is equal to 10320,
the calculation error of the resulting field by the proposed method is about 40 times lower than the
error obtained when solving the problem using the collocation method.

6. CONCLUSION

The proposed method allows to significantly increase the computational efficiency of the method
of secondary sources when modeling a three-dimensional quasistationary electromagnetic field in a
piecewise-homogeneous medium containing massive conductors.

The proposed method is applicable to the simulation of eddy currents excited in conducting bodies
by an external alternating field. The external field varies in time according to an arbitrary law. The
law of field change can be periodic or non-periodic. The main limitation is the satisfaction of the field
with the conditions of quasistationarity.

Also, the method has no restrictions on the geometry of the calculated area. But its efficiency
compared with the collocation method depends on the complexity of the geometry of the computational
domain. With the complication of the geometry of the area, the efficiency of the method increases. In
particular, if there are angles or very small air gaps in which a large field gradient occurs, the method
demonstrates high efficiency. If the computational domain does not contain singularities, then the
proposed method gives the same accuracy as the collocation method.

The method was verified experimentally by comparing the simulation results with the observed
magneto-optical images of defects in the conductors. The results of this comparison are given in
publications from the list (in particular, [23]). The material of this article is devoted exclusively to
the development of a theoretical model, so the results of the experiment are not presented here.

In the future, the authors plan to develop the proposed model in the case of piecewise-homogeneous
media containing conductors and ferromagnets.
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