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Target Classification with Low-Resolution Radars Based on
Multifractal Features in Fractional Fourier Domain

Huaxia Zhang, Qiusheng Li, Chuicai Rong, and Xindi Yuan*

Abstract—Due to the limitations of low-resolution radar system and background clutter, the task of
target classification with conventional low-resolution radars is relatively difficult. This paper introduces
fractional Fourier transform (FrFT) to process aircraft echoes in order to find the optimal fractional
Fourier domain, in which signal to noise ratio can reach the maximum, and then applies multifractal
theory to the feature extraction of radar targets. Based on the above, we use SVM to do target
classification. Experiments show that the multifractal characteristics of aircraft echoes can be enhanced
by FrFT, and the features extracted from the optimal fractional Fourier domain can be used effectively
to classify different types of aircraft even in the case of low SNR.

1. INTRODUCTION

Most surveillance radars adopt conventional low-resolution radar systems, which are mainly used
for target detection and tracking. Surveillance radars have been restricted in the application of
target classification in consequence of the limitations of conventional low-resolution radar system.
For instance, single-polarization narrow-band transmitting signals cannot fully stimulate the physical
characteristics of aircraft easily, low pulse repetition frequency and short irritation time [1, 2]. The
features that can be used to identify aircraft targets with low-resolution radars can be divided into
three categories: fluctuation characteristics of aircraft echoes (radar cross-section (RCS), fluctuation of
amplitude and phase, two-dimensional gray scale, etc.), motion characteristics of aircraft (height, speed
and acceleration, etc.) and jet engine modulation (JEM) features. Considering all feature extraction
methods, the way based on JEM features accounts for a large proportion [3–9]. Fractional Fourier
transform (FrFT) is a generalized form of Fourier transform (FT), which combines the information
both from time domain and frequency domain. Based on the existing feature extraction methods, Du et
al. introduced FrFT to extract the features of jet aircraft, propeller aircraft and helicopters, and then
combined with linear relevance vector machine to classify the three types of aircraft [10]. Yu et al.
used FrFT to do detection and delay estimation of moving targets in strong clutter background [11].
Elgamel and Soraghan, adapted FrFT to do adaptive filtering of radar data [12]. Radar target echoes,
background and sea clutter of radars all have multifractal characteristics [13–15]. On the basis of
fractal determination and non-scaling interval estimation, Li et al. analyzed multifractal characteristics
of conventional low-resolution radars by applying fractal theory [16–18]. The above researches show that
FrFT and fractal analysis can effectively enhance the classification rates of conventional low-resolution
radars.

In this paper, we use FrFT to dispose low-resolution radar echoes and analyze their multifractal
characteristics in the optimal fractional Fourier domain, and discuss the classification performance of
different types of low-resolution radars combining with SVM. Firstly, we introduce the theoretical basis
of fractional Fourier transform and multifractal. Then, we analyze the multifractal characteristics of
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the measured low resolution radar echoes in the optimal fractional Fourier domain and further extract
the multifractal features in order to do target classification. Lastly, we verify the classification and
recognition performance of the algorithm by means of measured radar echoes data.

2. THEORETICAL ANALYSIS

2.1. Fractional Fourier Transform (FrFT)

FrFT is the generalized form of Fourier transform (FT). On the one hand, it reserves the superiorities
of FT; on the other hand, it has many special properties. FrFT can be viewed as a ray that transforms
the signal from the time axis to u axis by rotating the angle α counterclockwise. The pth order FrFT
of the signal f(t) can be defined as follows:

fp(u) =
∫ ∞

−∞
Kp(u, t)f(t)dt (1)

kp (t, u) =

⎧⎨
⎩
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(
u2 cot α − 2u csc α + t2 cot α
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fp(u) is the signal obtained by the pth order of FrFT in fractional Fourier domain, and Kp(u, t) is the
kernel function of FrFT, where Aa =

√
1 − j cot α, α = pπ/2, p �= 2n, n ∈ Z. Actually, in digital

signal processing, we generally need the discrete form of FrFT, and this paper uses the method that
transforms FrFT into the convolution form to obtain the discrete form of FrFT [11, 19].

By using the Shannon interpolation formula:
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Substitute Eq. (4) into Eq. (3), we can yield the discrete form of FrFT:
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where 1/Δx is the sampling interval of the time domain; n and m are the sampling points of time domain
and fractional Fourier domain respectively; N denotes the total number of time domain samples. If f(t)
is a linear frequency modulation signal, its FrFT fp(m/2Δx) forms an impulse function in the optimal
fractional Fourier domain, so that the energy can be maximally aggregated.

2.2. Multifractal Analysis

What multifractal theory describes is the characteristics of different levels of a factual object during the
growth process. The investigated object can be divided into many small regions, whose total number
is N , and ε is the size (ε < 1) of a small region. The growth probability of the ith small region is Pi(ε),
and σi indicates the growth probabilities of different regions. The relationship between Pi(ε) and ε is:

pi(ε) ∝ εσi , i = 1, 2, · · · , N (6)

where σi can be called local fractal dimension (LFD) or singular index, whose value reflects the size of
growth probability of fractal in a small region. If different regions have different singular indexes, the
fractal is a multifractal geometry; if all singular indexes are almost the same, the fractal can almost be
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considered as a monofractal geometry. Eq. (6) takes the power of q and sums to obtain the partition
function:

Γ(q, ε) =
N∑

i=1

P q
i (ε) = ετ(q) ∝

N∑
i=1

εσiq, q ∈ (−∞,+∞) (7)

In Eq. (7), if q � 1, the subsets with large probabilities dominate; if q � 1, the subsets with small
probabilities play a major role. In practical application, the range of q can be determined according to
specific conditions. We can see from Eq. (7) that the partition function Γ(q, ε) and ε have power-law
relationship, and their slope, denoted as τ(q), is called the mass index. If τ(q) is a linear function of
q, the fractal has monofractal properties; if τ(q) is a convex function of q, the fractal has multifractal
characteristics.

The definition of multifractal spectrum f(σ) is the fractal dimension of fractal subset with the same
singular index. We can use the infinite sequences of f(σ), corresponding to different σ, to represent the
fractal dimension of the entire fractal in order to reflect the characteristics of the growth distribution
probability. In [19], it has been proved that τ(q), q and f(σ), σ have the relationship of Legendre
transform, so the multifractal spectrum f(σ) can be obtained by the Legendre transform of mass index
τ(q).

3. THE MULTIFRACTAL FEATURE EXTRACTION METHOD

During the short time when an aircraft is being exposed to the irradiation of the radar, the target
can be viewed as a dot moving with a uniform acceleration. To simplify the description, the target
classification method is based on multifractal features in fractional Fourier domain (MFIFFD). Next we
study the implementation steps and classification performance of MFIFFD algorithm.

3.1. Determination of the Optimal Fractional Fourier Domain

In the optimal fractional Fourier domain, the energy of the aircraft echoes can be maximally aggregated,
and the distribution of clutter is relatively dispersed, so we should find the optimal fractional Fourier
domain of low-resolution radar echoes. Before feature extraction, we take FrFT to process the aircraft
echoes and further confirm the optimal fractional Fourier order. In information theory, entropy can
represent the average information of a signal and reflect the degree of distribution of echo energy.
Renyi entropy is a generalized form of Shannon entropy, which has more generality in measuring the
information. Third-order Renyi information entropy is an effective tool for measuring the information of
time-frequency distribution. The maximum value of the third-order Renyi information entropy indicates
that the time-frequency distribution of the analyzed signal has the highest aggregation [20]. Refs. [21, 22]
use third-order Renyi information entropy to measure the time-frequency aggregation of the observed
signal. In the paper, we also use third-order Renyi information entropy to measure the aggregation
performance of aircraft echoes in time-frequency domain. We do feature extraction of aircraft echoes in
the optimal fractional Fourier domain later. It is considered that the fractional Fourier domain, whose
transform order is the optimal transform order popr, is the optimal fractional Fourier domain.

The optimal transform order popr corresponds to the maximum value of the third-order Renyi
information entropy.

The definition of third-order Renyi information entropy:

v = −1/2
∑

k
log

(|FrFTP (K)|3) (8)

Different types of aircraft have different structural parameters, and their third-order Renyi information
entropies are also different. As for the same aircraft, the third-order Renyi information entropy can
also be influenced by the speed, acceleration, altitude, environment, etc. Different third-order Renyi
information entropies generally have different optimal transform orders of FrFT, so every experiment
needs to determine the optimal transform order of FrFT in order to achieve specific analysis of specific
experiment. In order to verify the effectiveness of the algorithm, we use the measured radar echoes to
carry out the following experiments. In experiment, we select six kinds of aircraft, three of which were
to fly toward the station and three to fly off the station. The radar worked in the VHF band with pulse
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Figure 1. The third-order Renyi information entropy curve of jet aircraft.

repetition frequency of 100 Hz and pulse width of 25µs. Calculating the third-order Renyi information
entropies of six types of aircraft respectively with the range [0, 2] and the step of transform order p 0.01,
respectively, we can obtain their optimal transform orders of FrFT and further determine their optimal
fractional Fourier domains. In Fig. 1, we chose one of the six types of aircraft, the fourth class, to plot
the third-order Renyi information entropy of target echoes. For other types of aircraft, the third-order
Renyi information entropy curves are roughly similar.

3.2. Extraction of Multifractal Features

By using FrFT to process the original aircraft echoes and further determining the optimal transform
orders, we can do multifractal analysis of radar echoes in the optimal fractional Fourier domain. Fractal
theory is based on the fractals which have self-similarity and should be studied in the non-scale interval,
so it is necessary to further discuss whether the radar echoes have multifractal characteristics in the
optimal fractional Fourier domain. There are six types of aircraft targets, and the radar working
parameters have been described above. We compare the multifractal characteristics of six kinds of
aircraft in time domain and the optimal fractional Fourier domain. The experimental results are shown
in Figs. 2 ∼ 5.

As can be seen from Fig. 2(a) and Fig. 3(a), the mass index curves of six kinds of aircraft are
approximately linear, that is to say, the multifractal characteristics of aircraft echoes in time domain
are inconspicuous. After using FrFT to process the aircraft echoes, their multifractal characteristics can
be enhanced evidently as shown in Fig. 2(b) and Fig. 3(b), and the relationship between q and τ(q) is
obvious convex functions.

(a) (b)

Figure 2. The mass index curves of three types of aircraft flying toward the station. (a) Not doing
FrFT. (b) Doing FrFT.
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(a) (b)

Figure 3. The mass index curves of three types of aircraft flying off the station. (a) Not doing FrFT.
(b) Doing FrFT.

(a) (b)

Figure 4. The multifractal spectrum of three types of aircraft flying toward the station. (a) Not doing
FrFT. (b) Doing FrFT.

(a) (b)

Figure 5. The multifractal spectrum of three types of aircraft flying off the station. (a) Not doing
FrFT. (b) Doing FrFT.

It can be seen from Fig. 4(a) and Fig. 5(a) that the distribution ranges of the six types of aircraft
are relatively narrow, which verifies the approximately linear relationship of the mass index curves in
Fig. 2(a) and Fig. 3(a). After FrFT, we can conclude from Fig. 4(b) and Fig. 5(b) that the distribution
ranges of singular index σ of all types of aircraft have been significantly increased. For the first three
types of aircraft, the range of singular index σ of the third class increased the most, followed by the
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second class. For the last three types of aircraft, the range of singular index σ of the fifth class increased
the most, followed by the sixth class. Compared with the aircraft flying off the station, the multifractal
characteristic of the aircraft in the case of flying toward the station is more obvious.

The experiments verify that the aircraft echoes have multifractal characteristics in the optimal
fractional Fourier domain, and their properties can be enhanced by FrFT. From Figs. 2 ∼ 5, we can see
that the shapes of multifractal spectrums f(σ) and mass index curves τ(q) are obviously different, so we
can extract the differences of multifractal curves as feature vectors to discriminate six types of aircraft
targets. We use the following three multifractal characteristic parameters to classify the aircraft:

(1) The difference of fractal dimension between the maximum probability and minimum probability
subset

Δf = |f(σmax − σmin)| (9)

where σmax represents the maximum singular index σ, corresponding to the minimum probability subset,
and σmin denotes the minimum singular index σ, corresponding to the maximum probability subset.

(2) Multifractal spectral width Δσ

Δσ = σmax − σmin (10)

(3) Mass index symmetry Rτ

Rτ =
∣∣∣∣max(τ(q))
min(τ(q))

∣∣∣∣ (11)

Figs. 6 ∼ 7 show the probability density distribution of the three multifractal parameters of six
types of aircraft echoes. The working conditions and parameters of radar have been shown above. In
the case of an aircraft flying toward the station, three multifractal characteristics all have strong ability

(a) (b)

(c)

Figure 6. Probability density distributions of multifractal features of aircraft flying toward the station.
(a) Mass index symmetry Rτ . (b) Multifractal spectral width Δσ. (c) The difference of fractal dimension
Δf .
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(a) (b)

(c)

Figure 7. Probability density distributions of multifractal features of aircraft flying off the station. (a)
Mass index symmetry Rτ . (b) Multifractal spectral width Δσ. (c) The difference of fractal dimension
Δf .

for target classification. In the case of an aircraft flying off the station, the sixth type of aircraft can
be easily separated from the three kinds of aircraft, and the difference of fractal dimension between the
maximum probability and minimum probability subset can easily distinguish the three types of radars.
Intuitively, although the multifractal characteristics overlapped within a certain range, it is hopeful to
get a better performance by comprehensive utilization of the three features.

4. CLASSIFICATION EXPERIMENTS

In this part, we experimentally study the performance of MFIFFD method for aircraft target
classification and recognition with the measured data. In [18], it has been proved that the radar target
correct classification rate (CCR) based on multifractal features in time domain is higher than that of
dispersion situations of eigenvalue spectra. In [1], it has been confirmed that the target classification
performance of extended fractal features was superior to that of characteristic spectrum and fractional
Brownian method. To simplify the description, the classification method described in [18] is called
MFITD, and the method proposed in [1] is called EFITD in the following text. MFITD extracts the
multifractal characteristics in time domain; EFITD reveals the extended fractal features also in time
domain; MFIFFD analyses the multifractal characteristics in the optimal fractional Fourier domain.
MFITD extracts the multifractal characteristics in time domain, and MFIFFD analyses the multifractal
characteristics in the optimal fractional Fourier domain. We compare the classification and recognition
performance among MFIFFD, EFIFFD, and MFITD using the measured aircraft and radar data that
have been shown in the above experiments.

SVM has the superiorities of strong generalization ability and fast convergence speed, so the
experiments utilize SVM as a classifier to compare the classification performance between MFIFFD
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and MFITD. The SVM classifier adopts Gaussian kernel function K(xi, xj) = exp(−‖xi − xj‖2 /σ2).
As we all know, there is no prior knowledge about parameter σ2, and in the following experiments, we
will try different values many times without going beyond the calculation burden to get the reasonable
parameters. In this way, the simulation results can obtain better CCRs under the reasonable selection
of parameters of Gaussian kernel function.

Experiment 1: In order to verify the effectiveness of the algorithm, we use the measured radar
echoes to carry out the following experiments. The radar worked in the in VHF band with pulse
repetition frequency of 100 Hz and pulse width of 25µ. There are six kinds of aircraft, and each type
of aircraft collects 1024 sets of echoes, of which 512 sets of data are used as training data and 512 sets
of data used for testing data. Table 1 shows the CCRs of MFIFFD and MFITD in the condition of
aircraft flying toward the station. Table 2 shows the CCRs of MFIFFD and MFITD in the condition
of aircraft flying off the station.

Table 1. CCRs of MFIFFD and MFITD.

Comparative Items MFITD EFITD MFIFFD
Training

Data
Testing
Data

Training
Data

Testing
Data

Training
Data

Testing
Data

The first class/% 97.02 96.24 100 98.55 99.61 99.61
The second class/% 90.99 89.54 100 100 98.84 98.65
The third class/% 93.50 90.76 100 98.75 100 99.80
Average CCRs/% 92.85 94.50 100 99.10 99.48 99.35

Table 2. CCRs of MFIFFD and MFITD.

Comparative Items
MFITD EFITD MFIFFD

Training
Data

Testing
Data

Training
Data

Testing
Data

Training
Data

Testing
Data

The fourth class/% 93.37 93.28 100 100 96.75 96.65
The fifth class/% 86.46 82.86 100 97.94 98.21 95.18
The sixth class/% 93.32 92.65 100 91.69 100 99.61
Average CCRs/% 91.05 89.60 100 96.39 98.32 97.15

We can see, from both Table 1 and Table 2, that for all the six kinds of aircraft, the CCRs and
average CCRs of MFIFFD are higher than MFITD, and MFIFFD can achieve better classification
performance. The average CCRs of training data of EFITD are higher than that of MFIFFD, but the
average CCRs of testing data of EFITD are lower than that of MFIFFD. As for the MFIFFD method,
in the case of toward-station situation, the CCR of the third kind of aircraft is the highest, followed by
the first type of aircraft. In the off-station situation, the CCR of the sixth type of aircraft is the highest,
followed by the fourth type of aircraft. The CCRs of aircraft flying toward the station is superior to
CCRs of aircraft flying off the station.

Experiment 2: In this experiment, we further investigate the classification and recognition
performance of multifractal features of MFIFFD method under low SNRs (signal to noise ratio), and the
measured radar echoes are described above. We take the first three kinds of aircraft, and the aircraft
flied toward the station as an example. We add Gauss white noise with different intensities to the
measured target echoes. We also use SVM as a classifier to do radar target classification. Table 3 shows
average CCRs of the first three kinds of aircraft under different SNRs. It can be seen from Table 3
that the multifractal features have strong robustness, and even under the condition of −5 dB SNR, the
average CCR of aircraft can still reach more than 92%. This experiment demonstrates the effectiveness
of the extracted features and the feasibility of the MFIFFD method.
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Table 3. Classification and identification results under different SNRs.

SNR/dB 2 0 −0.5 −1 −2 −5
Average CCRs/% 99.48 99.35 98.61 94.86 92.48 92.37

Compared with MFITD, the multifractal characteristics of MFIFFD are calculated in the optimal
fractional Fourier domain, so MFIFFD had to carry out the calculation of third-order Renyi information
entropy and fractional Fourier transform. In the above experiments, we have six types of aircraft, each
of which has 1024 sets of echoes, and the length of each set of echo data is 1024. The running time of the
algorithm can illustrate the complexity of the algorithm to a certain extent. Although the running time
of MFIFFD is 174.163 seconds more than MFITD, 139.21 seconds, the computational complexity of
MFIFFD is still within the allowable range due to the huge data of radar echoes. EFITD and MFIFFD
have similar classification performances, but the classification features of EFITD are generalized Hurst
exponents without any dimensionality reduction. Compared with MFIFFD, EFITD has higher feature
dimension and longer classification and recognition time.

5. CONCLUSIONS

In this paper, we have proposed a new method by using FrFT and multifractal theory to do low-
resolution radar target classification. We firstly use the third-order Renyi information entropy to
calculate the optimal transform orders in order to determine the optimal transform Fourier domains of
FrFT and then adopt the multifractal theory to extract the multifractal features for target classification.
Experimental results show that not only the low-resolution radar echoes have multifractal characteristics,
but also their features can be enhanced by FrFT. The average CCRs of MFIFFD are higher than that
of MFITD, and the CCRs of aircraft in the case of toward the station are higher than that off the
station. Although the computational complexity of the third-order Renyi entropy is very small, it also
increases the complexity of the algorithm to some extent. In view of the limitations of low-resolution
radar system, it is only applicable to the rough target classification of conventional radars, although
the CCRs have been greatly improved.
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