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A Mach-Zehnder Interferometry Method for the Measurement
of Photonic State Squeezing in Quantum Cavities

Siamak Khademi1, *, Ghasem Naeimi1, 2, and Ozra Heibati1

Abstract—Recently, manipulation and measurement of quantum states, especially in quantum cavities,
have attracted the attention of many researchers in different fields, such as quantum optics, quantum
information, and quantum computation. In this paper, a non-demolition method for the measurement
of squeezing parameter via atomic Mach-Zehnder interferometer is presented. An experimental setup
was also proposed which included two quantum cavities, in different arms of an atomic Mach-Zehnder
interferometer. Each quantum cavity was settled between two classical cavities. Quantum cavities
contained entangled states with arbitrary squeezed photons. It is shown that the outgoing atomic
states of Mach-Zehnder interferometer carry on the properties and situation of quantum states of the
cavities. The squeezing parameter of photonic state for one of the cavities is obtained by the detection
of excited and non-excited probabilities of Mach-Zehnder interferometer’s outgoing ports, for a train of
incoming two-level Rydberg atoms.

1. INTRODUCTION

The concepts and applications of nonclassical states like squeezing and entangled states have been
considered by many authors [1–4]. Recently, squeezing and entangled states have found many
applications in different fields [5–8], and many experimental setups have been presented to check the
properties and applications of quantum entangled states [9–11]. Measurement and manipulation of
quantum states, especially in quantum cavities, are a milestone for the development and improvement
of atom-photon interaction methods [12–14], quantum teleportation [15], quantum cryptography [16],
measuring the Wigner function of cavity field [17, 18], detecting photons in a cavity by non-demolition
method [4, 19], quantum information and invention of quantum computers [20, 21], etc. A winner of the
Nobel Prize, Serge Haroche, has presented an interesting non-demolition method for measuring Wigner
function in a quantum cavity [12]. On the other hand, the Mach-Zehnder interferometry is applied
to Bell’s inequality [22, 23], electronic Mach-Zehnder interferometer (MZI) [24], single and two photon
interferometry [25, 26], production and observation of Greenberger-Horne-Zeilinger entanglement [27],
and optical amplification [28, 29].

In this article, another experimental setup is presented, which consists of an atomic MZI and a
triplet array of cavities in each arm (see Figure 1). A train of individual excited Rydberg atoms was
injected into the atomic MZI. Their atomic states were divided by the first atomic beam splitter and
traveled in different MZI’s arms, interacted with the cavity fields, and re-interfered by the second beam
splitter. It was shown that the measurement of atomic states after the outgoing ports of the second
beam splitter could simultaneously provide the amount of squeezing parameter of the photonic states,
which are trapped in two different quantum cavities.
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Figure 1. In a Mach-Zehnder interferometer, two arrays of triple cavities, including a quantum cavity
(denoted by C, Red Square) between two classical cavities (denoted by R, Blue Diamond), are set in
different paths. The photonic states in the quantum cavities are squeezed and entangled with each other
(indicated by dotted line). A train of Rubidium atoms which are ejected from an oven is excited into
higher levels, by a laser beam to prepare the Rydberg atoms. The state of atoms and their probabilities
are detected by two ionized detectors D1 and D2.

In the next section, a brief review of our proposed model and method is presented. In Section 3,
the MZI outgoing probabilities of excited and non-excited atomic states are discussed. Sensitivities of
probabilities to the interferometer’s internal phase shift, squeezing and superposition parameters are
also investigated. In Section 4, an analytical evaluation of superposition and squeezing parameter is
presented, where Δϕ = π. The final section is devoted to the conclusions.

2. MODEL AND METHOD: A BRIEF REVIEW

An interaction between a beam of Rydberg (e.g., Rubidium) atom and a cavity field has been
theoretically and experimentally studied [12–14, 19, 30, 31]. The Rydberg atom whose valance electron
is excited into higher atomic levels (e.g., the levels with the principal quantum number of 49, 50, or 51
labeled by as f , g, and e levels, respectively) is considered here. These atoms interact with both classical
and quantized fields of cavities. In the present experimental setup, two arrays of quantum cavities, each
including a quantum cavity C between two classical cavities R’s, were settled in two arms of atomic
MZI, as depicted in Fig. 1. The quantum cavities Cj (j = 1, 2) were tuned to have a non-resonance
interaction (δ = ωf−ωa �= 0) between the trapped photons, with frequency of ωf , and two atomic levels
of e and g, with the transition frequency of ωa. The electromagnetic field within the classical cavities
Rk (k = 1 and 2 for the clockwise (CW) and 3 and 4 for the counter clockwise (CCW) arms) interacted
resonantly (δ = ωf−ωa = 0) with the transition frequency of f and g atomic levels. Thus, in each cavity,
there was a two-level atom interaction with the electromagnetic fields.

In a semi-classical model of a two-level atom and electromagnetic field interaction, the populations
of atomic states oscillate with the Rabi frequency ΩR [30, 31]. A full-quantum model of a two-level
atom and quantized electromagnetic field interaction has also been described by Jaynes-Cummings
model [30, 31].

For the classical cavities Rs interaction Hamiltonian for a two-level atom and classic electromagnetic
field is given by Hsc(t) = V̂◦ cosωf t, where V̂◦ = −d̂ ·E◦, and d̂ and E0 are the electric dipolar moment
of atom and the electric field amplitude, respectively. Consider the electromagnetic field in the classical
cavity R is tuned to interact with f and g levels of atomic state, where the atoms are initially in the
|g〉 state. The atomic state after interaction is evolved as:

|ψ(t)〉 = e−iĤ(I)t/� |g〉 = cos
(

ΩRt

2

)
|g〉 + i sin

(
ΩRt

2

)
|f〉 , (1)

where ΩR = ν/� is the classical Rabi frequency and ν = 〈g| V̂◦ |f〉 = −d̂gf .E◦. If the atoms are initially
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in state |f〉, the final state after interaction is evolved as:

|ψ(t)〉 = e−iĤ(I)t/� |f〉 = cos
(

ΩRt

2

)
|f〉 + i sin

(
ΩRt

2

)
|g〉 . (2)

The flight time t is the traveling time of atom through the electromagnetic field in the cavity.
For the quantum cavity C, Jaynes-Cummings Hamiltonian ĤJC = �λ(σ̂+â+σ̂−â+) [30, 31] describes

the interaction between the quantized electromagnetic field Ê = e (�ω/ε◦V )1/2 (â+ â+) sin(kz) and two-
level Rydberg atoms, where â+(â) is the creation (annihilation) operator, λ = − d

�
(�ω/ε◦V )1/2 sin kz,

and σ̂± are the transition operators between the atomic levels e and g (where σ̂+ = |e〉 〈g| = σ̂+
−).

In a non-resonant interaction regime and a few calculations, the Jaynes-Cummings Hamiltonian is
transformed into Ĥeff = �χ(σ̂+σ̂− + â+âσ̂3), where χ = λ2/δ. If the initial state of the atom field is
given as |ψ(t = 0)〉 = |e〉 |n〉 or |ψ(t− 0)〉 = |g〉 |n〉, the final state is obtained a:

|ψ(t)〉 = e−iĤeff t/� |e〉 |n〉 = e−iχ(n+1)t |e〉 |n〉 , (3)

or
|ψ(t)〉 = e−iĤeff t/� |g〉 |n〉 = eiχnt |g〉 |n〉 , (4)

respectively. In these cases, the states of atom-field just have a phase which is proportional to the number
of photons; therefore, the atoms have no transition between the atomic levels during this interaction.
If the photonic state of quantum cavity is a squeezed number state, the final states also depend on the
squeezing parameter as:

|e〉 |n, r〉 → e−iĤeff (r)t/� |e〉 |n, r〉 → e−iχ((2n+1) cosh2 r−n)t |e〉 |n, r〉 , (5)

|g〉 |n, r〉 → e−iĤeff (r)t/� |g〉 |n, r〉 → eiχ((2n+1) cosh2 r−(n+1))t |g〉 |n, r〉 (6)

|f〉 |n, r〉 → e−iĤeff (r)t/� |f〉 |n, r〉 → |f〉 |n, r〉 , (7)

where the effective interaction Hamiltonian for atom and squeezed photons is obtained from:

Ĥeff (r) = �χ [σ̂+σ̂− + (S−1(r)â+S(r))(S−1(r)âS(r))σ̂3]. (8)

In relations (5)–(7), the squeezed state of number state of the photons is given by:

|n, ξ〉 = Ŝ(ξ) |n〉 . (9)

The unitary squeezed operator is defined as Ŝ (ξ) = exp
(

1
2ξ

∗â2 − 1
2ξâ

+
2
)

where ξ = reiθ. Parameters
r and θ are the squeezing parameter and squeezing phase [30, 31], respectively. For relations (5)–(8)
and hereafter, the squeezing phase is assumed to be zero for simplicity.

3. MZI OUTGOING PROBABILITIES

In the proposed experimental setup, the states of quantum cavities C1 and C2 are initially prepared to
be entangled as:

|ψ〉 = α |0, r〉1 |1〉2 +
√

(1 − |α|2) |1, r〉1 |0〉2 . (10)

Different values of α provide different amounts of entanglement, and its maximum entanglement is given
by α = 0.5. In relation (10), state of the photons in the quantum cavity C1 is assumed to be squeezed
with an unknown squeezing parameter r, while (for simplicity) the second quantum cavity C2 is not.
A scheme of the proposed experimental setup which includes an MZI is depicted in Fig. 1, where beam
splitters are illustrated by BS1 and BS2, and mirrors are indicated by M1 and M2. A train of individual
Rubidium atoms is produced, and their states are transformed into Rydberg atoms initially in the state
|g〉 by a laser pump before BS1. Each atom is passed through the MZI, independent of the previous
and next one. The incoming atomic states are divided by a symmetric 50–50 BS1, passing through
the CW or CCW arms of MZI, and recombined (or interfere again) by another symmetric 50–50 BS2.
The states of outgoing atoms are measured by detectors D1 and D2. The dotted line between quantum
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cavities in Fig. 1 indicates their entanglement. In each arm of MZI, there is a triplet cavity consisting
of two classical cavities on the sides and one quantum cavity in the middle. The classical (quantum)
cavities and their electromagnetic fields are set to interact with the atoms resonantly (non-resonantly).
Quantum cavities interact with |g〉 and |e〉 atomic states with phase π, have a high Q-factor, and are
made of an open Fabry-Perot resonator with two superconducting Niobium spherical mirrors. The Ri’s
(i = 1, 2, 3, 4) cavities contain classical electromagnetic fields which resonantly interact with |g〉 and
|e〉 atomic states. The atoms interact with classical cavities, where the phases of R1, R2, and R3 are
ΩRt = π/2, and the phase in R4 is ΩRt = 3π/2.

The BS1 divided incoming state |g〉 into |ψ′〉1 = |g〉 /√2 and |ψ′〉2 = |g〉 /√2 in the CW and CCW
arms, respectively: ( |ψ′〉1

|ψ′〉2

)
=

1√
2

(
1 1
1 −1

)( |g〉
0

)
, (11)

where 1√
2
( 1 1

1 −1 ) is the beam splitter operator. In the CW arm, the atom passes through the upper

cavities array, as illustrated in Fig. 1. After passing through cavity R1, the atomic states are transformed
into a superposition state (|g〉 + i |f〉)/√2. The total CW atom-field state is obtained as:

|Atom− Field〉CW = |ψ′〉1 (α|o, r〉1|〉2 + β|1, r〉1|0〉2)
R1,π/2−→ 1√

2

[
1√
2
(|g〉 + i|f〉)

]
(α|o, r〉1|1〉2 + β|1, r〉1|0〉2). (12)

Relations (2) and (3) are used to derive Eq. (12) where β =
√

(1 − |α|2) and ΩRt = π/2. Relations (6),
(7), and (12) with the interaction phase π are applied to obtain the effect of quantum cavity C1 (with
squeezed field) on its incoming state (12) as:

|Atom− Field〉CW

C1,π−→ 1
2
[|g〉 (−αeiγ cosh2 r |0, r〉1 |1〉2

+βei3π cosh2 r |1, r〉1 |0〉2) + i |f〉 (α |0, r〉1 |1〉2) + β |1, r〉1 |0〉2]. (13)

Relation (13) shows that the quantized electromagnetic fields in quantum cavities are entangled with
the atom, where the atom passes through the cavity R2 with interaction phase ΩRt = π/2. The atomic
states |g〉 and |f〉 in Eq. (13) are transformed into states (|g〉+i |f〉)/√2 and (|f〉+i |g〉)/√2, respectively.
The CW atom-field state that enters the port of the second beam splitter BS2 is obtained as:

|Atom− Field〉CW =
1

2
√

2
[|g〉 (−α (

1 + eiγ
) |0, r〉1 |1〉2 − β

(
1 − ei3γ

) |1, r〉1 |0〉2)

+i |f〉 (
α

(
1 − eiγ

) |0, r〉1 |1〉2) + β
(
1 + e3iγ

) |1, r〉1 |0〉2] eiϕ1 . (14)

where γ = π cosh2 r is a function of squeezing parameter, and the total phase shift due to the path
length and mirrors reflections is shown by eiϕ1 .

In the CCW path, the atomic states were transformed by passing through the second array of
cavities, in which the interaction phases for the cavities R3, C2, and R4 are π/2, π, 3π/2, respectively.
So, the total interferometer’s internal phase shift due to the path length and mirror reflections is given
by eiϕ2 .

The atom-field state in the CCW arm that enters the next port of the second beam splitter is
obtained similarly as:

|Atom− Field〉CCW =
1

2
√

2
[−2iα |f〉 |0, r〉1 |1〉2 − 2β |g〉 |0, r〉1 |0〉2] eiϕ2 . (15)

The CW and CCW states in Eqs. (14) and (15) are recombined by the second beam splitter BS2,
and outgoing states are obtained by applying the beam splitter operator on the incoming states:( |Out〉1

|Out〉2

)
=

1√
2

(
1 1
1 −1

) ( |Atom− Field〉CW

|Atom− Field〉CCW

)
, (16)
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The detectors D1 and D2 measure the state of outgoing atomic states from two ports of BS2 and
are indicated by indices 1 and 2, respectively. Therefore, they measure four outgoing probabilities PgD1 ,
PfD1 , PgD2 , and PfD2 , where PiDj is the probability of finding the atoms in the ith state by the j-th
detector. These probabilities are obtained from relations (14)–(16) as:

PgD1 = (1 + α2 cos(γ) + β2(2 − cos(3γ) − 2 cos(Δϕ+ 3γ) + 2 cos(Δϕ)))/8, (17)

PfD1 = (1 + α2(2 + 2 cos(Δϕ+ γ) − cos(γ) − 2 cos(Δϕ)) + β2 cos(3γ))/8, (18)

PgD2 = (1 + α2 cos(γ) + β2(2 − cos(3γ) + 2 cos(Δϕ+ 3γ) − 2 cos(Δϕ)))/8, (19)

PfD2 = (1 + α2(2 − 2 cos(Δϕ+ γ) − cos(γ) + 2 cos(Δϕ)) + β2 cos(3γ))/8, (20)
where Δϕ = ϕ1 − ϕ2 is the total internal phase difference between the two arms of MZI. Clearly, these
probabilities are sensitive to the squeezing parameter r, superposition coefficient α, and internal phase
difference Δϕ. Therefore, the MZI in our proposed experimental setup is a suitable instrument for the
measurements of squeezing and superposition parameters.

Figures 2(a)–2(d) show the probabilities of atomic states in Eqs. (17)–(20) in terms of internal
phase difference Δϕ, detection by two ionized detectors for α =0, and different values of small squeezing
parameter r = {0, .1, .2, .3, .4, .5}. The probabilities PgD1 and PgD2 have a periodic behavior. Their
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Figure 2. (a)–(d) Probabilities of atomic states outgoing of MZI in terms of internal path phase shift,
detected by two ionized detectors for α = 0 and r = {0, .1, .2, .3, .4, .5}. (a) and (b) have a periodic
bevaviour for probabilities PgD1 and PgD2, respectively. The maximum of probabilities are decreased
and also have a phase shift by increasing the squeezing parameter. (c) and (d) probabilities PfD1 and
PfD2 are constant and are increased by increasing the squeezing parameter. (e)–(h) the probabilities
are plotted for r = 0 and α = (0, .25, .5, .75, 1}. All have a periodic behavior in terms of internal
phase difference. (e) and (f) maximum probabilities of detecting g-state are decreased by increasing
the superposition coefficient α. (g) and (h) maximum probabilities of f-state detection are increased
by increasing the superposition coefficient α. In all plots, the squeezing parameters are supposed to be
small.
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peaks are decreased and suffer a phase shift by increasing the (small) squeezing parameter. The
probabilities PfD1 and PfD2 are also constant for all the phase shifts Δϕ. Figures 2(e)–2(h) represent
the corresponding probabilities for α = (0, .25, .5, .75, 1}, where the squeezing parameter is vanishing.
All the probabilities have a periodic behavior in terms of Δϕ. The peaks of probabilities PgD1 and PgD2

are decreased (PfD1 and PfD2 are increased) by increasing the superposition coefficient α.
Larger squeezing parameters are also investigated. Figures 3(a)–3(d) demonstrate that all

probabilities at a constant internal phase difference (e.g., Δϕ = 0) have an oscillatory behavior in
terms of squeezing parameter r. Their periods are decreased by increasing the squeezing parameter.
Figures 2 and 3 show that the probabilities are sensitive to the amounts of squeezing and superposition
coefficients.

(a) (b)

(c) (d)

Figure 3. All probabilities have an oscillatory behavior with a decreasing period for larger squeezing
parameters. In this case, the internal phase difference and superposition coefficient are supposed to be
Δϕ = 0 and α = 0.

Also, probabilities (17)–(20), as well as C1 = PgD1 − PgD2 and C2 = PfD1 − PfD2, give us a
numerical solution of C1 and C2 in terms of Δϕ and α where the squeezing parameter vanishes, r = 0.
The difference probabilities C1 and C2 are plotted in terms of Δϕ and α, in Figure 4. Clearly, C1 (C2)
is more sensitive to internal phase difference Δϕ for small (large) values of superposition parameter.

4. SQUEEZING AND SUPERPOSITION PARAMETERS

Outgoing probabilities are useful, and in general sufficient, to evaluate squeezing and superposition
parameters for the photonic states of the corresponding quantum cavities. For practical purposes,
the internal phase difference is controllable by a simple phase shifter. Therefore, without any loss
of generality, the internal phase difference is supposed to be Δϕ = π. Then, the squeezing r or
equivalently γ = π cosh2 r and the superposition parameter α can be analytically obtained. In this case,
the probabilities are obtained as:

PgD1 = PfD2 =
1
8

(
1 + α2 cos(γ) + (1 − α2) cos(3γ)

)
, (21)

PfD1 =
1
8

(
1 + α2(4 − 3 cos(γ)) + (1 − α2) cos(3γ)

)
, (22)

PgD2 =
1
8

(
1 + α2 cos(γ) + (1 − α2)(4 − 3 cos(3γ))

)
. (23)

Using relations (21)–(23) and the identity cos(3u) = 3 cos2(u) sin(u) − sin3(u) to neglect cos(γ) and some
straightforward calculations to find: C1 = C2(3 + 4C2/α

2)2(−1 + α2)/α2 and cos2(γ/2) = 1 + C2/α
2.
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Figure 4. The probability differences are plotted in terms of superposition parameter (vertical axis)
and interferometer’s internal phase shift (horizontal axis), where the squeezing parameter r = 0.

The superposition parameters α and cos(γ/2) are obtained analytically as:

α2 =
(S0 + 9C2S1 − 24C2

2S1 + 31/3S2
1)

(3S1(C1 + 9C2)
, (24)

and
cos(γ/2) =

2C2(3S1(C1 + 9C2)
(S0 + 9C2S1 − 24C2

2S1 + 31/3S2
1)

+ 1, (25)

where
S1 = 8

√
3
√
C1C

6
2 (C1 + 9C2)2(27C1 + (3 + 4C2)3)

+ 9C3
2 (8C2

1 + (3 + 4C2)3 + 4C1(9 + 2C2(3 + 8C2)))1/3
(26)

and
S0 = 32/3C2

2 (8C1(3 − 2C2) + 3(3 + 4C2)2). (27)

Equations (24) and (25) give us an analytical calculation of squeezing and superposition parameters
where the internal phase difference of MZI is set to π. Our method does not destruct the quantum
states of cavities, hence it is a non-demolition measurement method.

5. CONCLUSIONS

In this paper, an experimental method is proposed to measure the squeezing and superposition
parameters of photonic states for two quantum cavities settled in an MZI. The MZI has a set of
triple cavities in each arm. Each triple cavity has a quantum cavity in each arm in the middle
of two classical cavities. The squeezed states of photons in the quantum cavities are set to be
entangled. In the present method, the atomic states in the outgoing ports of the MZI and also their
probabilities’ detection depend on the amount of internal phase difference, superposition coefficient, and
squeezing parameters of photonic states in quantum cavities. The behaviors of outgoing probabilities
are studied in terms of squeezing parameter or superposition coefficient, in special cases. It is shown
that measurements of outgoing ports probabilities provide the squeezing parameter and superposition
coefficient simultaneously for a special internal phase difference, either numerically or analytically.

The peaks curves in Figures (2a)–(2b) and values of curves in Figures (2c)–(2d) depend on the
squeezing parameter. When α = 0 and r = {0, .1, .2, .3, .4, .5}, the probabilities PgD1 and PgD2 have a
periodic bevaviour whose peaks are decreased and also have a phase shift by increasing the squeezing
parameter. In Figures (2c)–(2d), the probabilities PfD1 and PfD2 are constant and are increased by
increasing the squeezing parameter. Both of coupled probabilities {PgD1, PgD2} or {PfD1, PfD2} are
suitable for the measurement of squeezing parameter r independently.

Also, the outgoing probabilities, Figures (2e)–(2h), are plotted for r = 0 and α = (0, .25, .5, .75, 1}.
All curves have a periodic behavior in terms of internal phase difference. The maximum probabilities
of PgD1 and PgD2 (PfD1 and PfD2) are decreased (increased) by increasing the superposition coefficient
α.
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