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Sidelobe-Level Suppression for Circular Antenna Array via New
Hybrid Optimization Algorithm Based on Antlion and

Grasshopper Optimization Algorithms

Anas A. Amaireh1, *, Asem S. Al-Zoubi1, and Nihad I. Dib2

Abstract—The suppression of the side-lobe level (SLL) of antenna arrays is a significant factor that
can enhance the reliability and validity of a communication system. Recently, metaheuristic algorithms
have been widely implemented in the design of antenna arrays, in order to find the optimal minimization
for the side-lobe level of the array’s radiation pattern. In this paper, we propose a new hybrid algorithm
that combines the characteristics of two stochastic algorithms, Antlion Optimization (ALO) algorithm
and Grasshopper Optimization Algorithm (GOA). ALO, which is an evolutionary algorithm, is robust in
exploitation and has been effectively used in many articles in the literature. GOA has strong capability
of exploration all over the search space due to the swarm nature of the algorithm, which has been
proven in several articles in the literature. Therefore, combining these characteristics and overcoming
the drawbacks of ALO and GOA are the main motivation behind hybridizing ALO and GOA in one
hybrid algorithm. Simulation results show that the proposed hybrid algorithm has a good performance in
the radiation pattern optimization of circular antenna array (CAA) and fast convergence rate compared
with other strong optimization algorithms, which prove the efficiency, robustness, and stability of the
hybrid algorithm.

1. INTRODUCTION

Optimization is the process of finding the global (best) solution(s) for an optimization problem [1].
Among metaheuristic (stochastic) optimization algorithms, which depend on randomness as the
main characteristic [2], nature-inspired techniques have been widely used in the literature. Nature-
inspired algorithms represent natural actions of creatures, like hunting or flying, which mimic natural
problems-solving methods. The following are some of the well-known nature-inspired algorithms and
their applications: Particle Swarm Optimization (PSO) [3, 4], Genetic Algorithm (GA) [5, 6], Grey
Wolf Optimizer (GWO) [7], Antlion Optimization Technique [8, 9], Galaxy-based Search Algorithm
(GbSA) [10], Ant Colony Optimization (ACO) [11], Grasshopper Optimization Algorithm [12, 13], and
Hybrid Particle Swallow Swarm Optimization (HPSSO) [14].

Depending on No Free Lunch (NFL) theorem, there is no optimization technique that could solve
all optimization problems [15]. This theorem gives the chance to propose new optimization techniques,
improve the characteristics of the current methods or combine optimization algorithms together, in
order to get more robust and superior methods, which can deal with various problems difficulty and
complexity [16].

Using the characteristics of several algorithms when solving optimization problems is the main
motivation behind hybridization [17]. Hybridization should combine different types of algorithms,
like: population-based metaheuristic algorithms (P-metaheuristics) and single solution metaheuristic
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algorithms (S-metaheuristics), or swarm metaheuristic algorithms and evolutionary algorithms, to
guarantee integration in the new proposed method. So, we choose Antlion optimization technique
(ALO) [8] and Grasshopper optimization algorithm (GOA) [13] in this paper, because of the advantages
of ALO as an evolutionary algorithm in exploiting the global optimal solution along with balanced
exploration of the search space, and the swarm effect of GOA in which the simple search agents of
the swarm, with limited capabilities on their own, spread out all over the search space to ensure that
all regions are equally explored. Moreover, both methods have been applied successfully in different
applications in the literature [9, 12, 18–20], which is another motivation to effectively combine these
methods on order to get new robust hybrid method.

Our proposed hybrid algorithm combines the characteristics of these two algorithms; the ability of
antlions to hunt other insects in incognito way that lets preys to be consumed in their massive jaws,
which shows that ALO is robust in exploitation, and the social relation in the swarm of grasshoppers that
swap between the attraction and repulsion forces until reaching a comfortable zone which represents
the strong capability of exploration all over the search space [8, 13]. On the other hand, ALO has
some drawbacks such as reliance on roulette wheel selection method and elitism, and GOA has other
drawbacks which can be represented in exploiting the search space [21]. Moreover, both methods have
weakness when they deal with large number of dimensions as mentioned in the results in Section 2.6.
Therefore, we do this hybridization to accumulate the complementary characteristics and overcome the
drawbacks of ALO and GOA.

Recently, circular antenna arrays (CAA) have been widely investigated in the literature [4, 6, 22, 23].
CAA is a desirable choice, since the main lobe can be directed and focused in any direction in the whole
space through 360◦. This array has been used in several fields including radars, navigation systems,
and satellite communication [24, 25].

The array elements field must be added constructively in the desired directions and destructively
to the other directions, in order to reduce the interference in the side lobes and place nulls in the
antenna patterns [19, 22]. Therefore, several optimization algorithms have been used to minimize
the side-lobe level in the synthesis of nonuniform CAA, such as Particle Swarm Optimization
(PSO) [4, 22, 23, 26], Genetic Algorithm (GA) [6, 22, 26, 27], Dragonfly Algorithm (DA) [28], Seeker
Optimization Algorithm (SOA) [24], Non-dominated Sorting Genetic Algorithm II (NSGA-II) [29, 30],
Differential evolution [26, 31], Differential Evolution for Multiobjective Optimization (DEMO) [30, 32],
and Elitist-Mutated Multi-Objective Particle Swarm Optimization (EM-MOPSO) [30].

Several parameters have to be determined to synthesize circular antenna arrays: feeding currents
and their phases, number of elements in the array, position for each element along the circle, and the
circle’s radius [33].

The rest of the paper is organized as follows. The proposed hybrid algorithm is discussed and
explained in Section 2. The geometry of circular antenna array and the fitness function are detailed in
Section 3. Results and discussion are mentioned in Section 4. Finally, the conclusions of the paper are
mentioned in Section 5.

2. THE PROPOSED HYBRID ALGORITHM

ALO mimics the hunting behavior between antlions and insects inside a cone-shaped trap as shown
in Figure 1. GOA simulates the predisposition of Grasshoppers to seek the food resources for
solving optimization problems. Consequently, GOA studies the social interactions between adjacent
grasshoppers and decides the next position of the grasshopper depending on these interactions.

In this paper, the general idea of the proposed hybrid algorithm assumes that grasshoppers walk
randomly on the land and interact with each other by social forces. Then, when they fall in antlions’
traps, the antlions will catch and hunt them as their preys, and finally, consume their body.

The main ideas of the proposed hybrid algorithm are summarized as follows:
- Inside the search space, N grasshoppers will move randomly in random walks, and N antlions will

be allowed to catch and hunt them.
- The movement of grasshoppers inside the search space depends essentially on the following factors:

a- The social interactions between grasshoppers; switching between attraction and repulsion
forces until reaching to the comfortable zone.
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Figure 1. Cone-shaped traps and hunting behavior of antlions.

b- The roulette wheel selection method; antlion with more fitness will have more capability to
catch grasshoppers.

c- The effect of the elite (most fitness antlion) affects all the grasshoppers’ movements during
iterations.

- Once the prey is inside the pit, the antlions shoot sands outside.
- The final step of hunting occurs when the antlion pulls the grasshopper inside the sand and consumes

its body.
This section is divided into 6 subsections. The first 3 subsections describe the details and theory of
the proposed hybrid algorithm. Subsection 4 defines the advantages of the algorithm. Subsection 5
shows the algorithmic form of our proposed hybrid method, and Subsection 6 illustrates the results of
benchmark functions.

2.1. Grasshoppers’ Movement

According to the assumption in our proposed algorithm, grasshoppers that have social interactions
among each other will be allowed to move randomly in random walks inside the search space. At the
same time, the same number of antlions will be allowed to catch them. These random walks are affected
by several critical factors; the roulette wheel selection method, the elite antlion, and antlions’ traps.

Roulette wheel selection method is a mechanism that gives much interest for highly fit search
agents, at the expense of less fitness ones. Therefore, the interest in fitter search agents will enhance
the exploitation process. On the other hand, not ignoring the less fitness search agents will keep the
exploration process alive, because these search agents will have the chance to discover more promised
regions.

Elitism represents the idea of letting search agents seek around the promised optima. So, the elite
is the antlion that has the best fitness among all other antlions, and it is a good way to save the best
solution in each iteration. The elite will be able to affect the movement of all grasshoppers during the
iterations [8].

The following equation represents the random walk [8]:
x(t) = [0, cumsum(2r(t1) − 1), cumsum(2r(t2) − 1), ..., cumsum(2r(tn) − 1)] (1)

where cumsum, n, t, and r(t) represent the cumulative sum, the maximum number of iterations, the
number of iterations, and the stochastic function, respectively. r(t) is defined as follows [8]:

r(t) =
{

1 if rand > 0.5
0 if rand ≤ 0.5

(2)

where rand is a random number generated in the interval [0, 1].
In order to keep the random walks inside the search space for all dimensions, the following equation

is used for normalization [8]:

Xt
i =

(
Xt

i − ai

)× (di − Ct
i

)
(dt

i − ai)
+ ci (3)
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where ai and di denote the minimum and maximum of random walk of the ith variable, respectively;
Ct

i represents the minimum; and dt
i is the maximum of the ith variable at the tth iteration [8].

In our proposed algorithm, we assume that the random walks of grasshoppers are affected by
antlions’ traps, similar to the assumption in ALO algorithm. This assumption is mathematically
modeled as follows [8]:

ct
i = Antliont

j + ct (4)

dt
i = Antliont

j + dt (5)

where, respectively, ct and dt are the minimum and maximum of all variables at the tth iteration; ct
i

indicates the minimum of all variables for the ith grasshopper; Antliont
j is the position of the jth antlion

at the tth iteration; and the maximum value of all variables for the ith grasshopper is represented by
dt

i [8].
It has been assumed that the random walks’ radius around the antlion decreases proportional to

iteration numbers. The following equations represent this [8]:

ct =
Ct

I
(6)

dt =
dt

I
(7)

where ct and dt indicate the minimum and maximum of all variables at the tth iteration, respectively,
and I represents a ratio, such that I = 10w t

T where t represents the current iteration, T the maximum
number of iterations, and w a constant that depends on the current iteration to define its value (w = 2
when t > 0.1T , w = 3 when t > 0.5T , w = 4 when t > 0.75T , w = 5 when t > 0.9T , and w = 6 when
t > 0.95T ) [8]. These values increase the value of parameter I in Equations (6) and (7) with respect
to the number of iterations. Hence, the decrement of ct and dt will gradually decrease the bounds and
allowed region of the search space for the random walks, which rises the exploitation process.

One of the advantages of using random walks and random movement for each search agent
is enhancing the exploration process, since randomness increases the capability of discovering more
promised regions, randomly, in the search space. On the other hand, the beginning bias of the search
by the outstanding search agents may cause loss of diversity and early convergence. Moreover, when all
search agents have the same fit, this method does not have enough pressure to select the fittest search
agents [21]. This is a drawback for ALO in some optimization problems.

According to Figure 2, a state of interchange between repulsion and attraction occurs between
grasshoppers depending on the distance, until reaching a comfortable zone, where neither attraction
nor repulsion occurs. The attraction between grasshoppers represents the exploitation process, while
the exploration of the search agents inside the search space is represented by the repulsion forces.

Figure 2. Model of the social interactions in grasshoppers.
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The social forces through which the grasshoppers interact with each other are calculated as
follows [13]:

s(r) = fe
−r
l − e−r (8)

where f is the intensity of attraction, and l indicates the attractive length scale. l = 1.5 and f = 0.5
have been chosen in this work. Equation (9), beside its utilization in GOA algorithm, is utilized in
the proposed algorithm to reach the comfortable zone slowly, which enhances the opportunity for our
hybrid method to explore and exploit the search space around a solution [13].

Xd
i = c

⎛
⎜⎜⎝

N∑
j=1
j �=i

c
ubd − lbd

2
s
(∣∣∣Xd

j − Xd
i

∣∣∣)Xj−Xi

dij

⎞
⎟⎟⎠ (9)

where ubd and lbd represent the upper and lower bounds in the dth dimension, respectively, and s(r) is
defined in Equation (8).

Parameter c represents a coefficient that shrinks the three zones in Figure 2; comfort zone, repulsion
zone, and attraction zone. So, parameter c is calculated as follows [13]:

c = cmax−l
cmax−cmin

L
(10)

where cmax and cmin represent the maximum and minimum values, respectively; L indicates the
maximum number of iterations; and l is the current iteration [13]. In this work, 1 and 0.00001 have
been chosen for cmax and cmin, respectively.

According to Equation (9), the outer c is responsible for decreasing the movement of search agents
around the optimal values in the promised regions, and the inner c is responsible for decreasing the
searching regions around optimal values. This parameter decreases proportional to the number of
iterations. So, parameter c controls the exploration at the beginning of iterations with large value of
c, while small value of c will decrease the movement of search agents and shrink the search region of
them; in other words, exploiting the search space for global optima.

The previous theory of parameter c already exists in GOA algorithm. But according to the idea
of c parameter, it can be concluded that the exploration process takes almost all the iterations, while
exploitation does not have enough iterations to find the global optima. This is a drawback for GOA,
since the exploration process takes more interest than exploitation, and half of the iterations are more
than enough for the algorithm to discover the promised regions in the whole search space. Therefore, in
the proposed hybrid algorithm, more interest has been given to exploitation process, in which the hybrid
algorithm needs half number of what GOA needs of iterations to reach the same level of exploitation.
So, this change balances the exploration and exploitation processes more and gives the algorithm enough
iterations to exploit the global optima after the determination of the promised regions in the exploration
process. Because of this, Equation (10) has been modified as follows:

if l ≤ L/2

c = cmax−l
cmax−cmin(

L
2

) (11)

if l > L
2

c = (L − l + 1) ×
(

cmin
L × 10l

)
(12)

The modifications in Equations (11) and (12) have been done to increase the decrement of parameter
c proportional to the number of iterations, which leads to more ability to exploit the global optima in
the search space.

2.2. Hunting the Prey and Reconstruction of the Pit (Final Step of the Process)

The last step of the hunting mechanism is pulling the grasshopper inside the sand and consuming its
body by the antlion. Hence, this occurs mathematically when grasshopper’s fitness becomes greater
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than its following antlion [8]. Consequently, the corresponding antlion will update its position to the
position of the consumed grasshopper, which improves its chance to hunt and catch again. The following
equation represents this [8]:

Antliont
j = Grasshopperti if f

(
Grasshopperti

)
> f

(
Antliont

j

)
(13)

where t is the current iteration; Antliont
j is the position of selected jth antlion at the tth iteration;

Grasshopperti represents the position of the ith grasshopper at the tth iteration; f(Grasshopperti)
represents the fitness of the position value for the ith grasshopper at the tth iteration; and f(Antliont

j)
is the fitness value of the position of the jth antlion at the tth iteration [8].

2.3. Next Position Criteria

Three essential factors affect the random walks for each grasshopper around a selected antlion; roulette
wheel selection method, the social forces between grasshoppers and the elite. To guarantee the diversity
in the proposed hybrid method, the effect of each factor has been calculated and taken into consideration
to choose the next position (values of the dimensions). All the values of next positions generated using
different factors have been combined in one matrix and ranked depending on their fitness. Then, three
samples of this matrix have been chosen; a most fitness, an average fitness, and a least fitness samples,
such that the number of chosen sampled values is the same as search agents’ number. Choosing a
low fitness sample will give the opportunity to other regions in the search space to be scanned, which
improves the exploration process in this algorithm. At the same time, choosing high fitness sample will
enhance the exploitation in this proposed algorithm. Thus, better diversity of search agents is provided
with this combination of exploration and exploitations.

2.4. Hybrid Algorithm Advantage

The advantages of our proposed hybrid method can be summarized in its ability to explore the search
space, due to the combination of several factors; the population nature of the proposed algorithm that
reduces local optima stagnation, the repulsion force in grasshopper’s social interactions, the random
walks of grasshoppers that let them walk randomly in the search space, and choosing different samples
of average and less fitness search agents from next position’s matrix, which gives the chance to scan
and explore other promised regions than the one with local optima.

Further, the proposed hybrid algorithm improves the characteristic of exploitation of the
global optima because of the following reasons: the attraction forces of social interactions between
grasshoppers, parameter c modification that improves the balance between exploration and exploitation,
roulette wheel selection method which gives more interest for fitter search agents, and parameter w in
Equations (6) and (7), which shrinks the searched region depending on the number of iterations.

The benefits of hybridization can be concluded in overcoming the drawbacks of ALO and GOA.
Roulette wheel method in selecting the next positions is the main disadvantage of ALO, which may
cause, as mentioned previously, early convergence, loss of diversity, and no enough pressure to select the
fittest search agents when they have the same fit. On the other hand, parameter c is the main drawback
for GOA algorithm, which does not give enough iterations for the exploitation process.

Therefore, the combination of all previous factors significantly improves the exploration and
exploitation process in our proposed hybrid algorithm. This increases the diversity of the search agents
in the search space and leads to high probability for local optima stagnation avoidance.

Furthermore, the intensity of search agents in the proposed algorithm has been decreased rapidly
compared with ALO and GOA, due to the modification of parameter c and its combination with other
shrinking factors like w. Therefore, compared to ALO and GOA, the hybrid algorithm guarantees fast
and mature convergence.

2.5. Algorithmic Form of the Proposed Hybrid Technique

Input: rand : Random number generated function. Dim : Dimensions of grasshoppers. N : Search
agents’ number. lb: Minimum search range limit. ub: Maximum search range limit. c: decreasing
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parameter for searching area. l : Current iteration number. cmax : Maximum value in equation 10.
cmin : Minimum value in equation 10. f : The intensity of attraction. l : The attractive length scale.
w : Constant adjusts the accuracy of exploitation. Xd

i : The position of ith iteration and dth dimension.
L: Maximum number of iterations.
Output: Best grasshopper positions and its fitness value.
Algorithm:
Initialize the input parameters
Initialize the first population of grasshopper swarm and antlions randomly
while the end criterion is not satisfied
Update c using Equation (11) and Equation (12)
for every grasshopper
Normalize the distances between grasshoppers
Update the position of the current search agent by the Equation (9)
Select an antlion using Roulette wheel
Update c and d using equations, Equations (6) and (7)
Create a random walk and normalize it using Equation (1) and (3)
Gather the positions of grasshoppers that affected by roulette wheel, elite and social forces in one matrix
Choose 3 different samples with different fitness
Update the position of the grasshoppers
end for

Bring the current search agent back if it goes outside the boundaries
Calculate the fitness of all grasshoppers
Replace an antlion with its corresponding grasshopper it if becomes
fitter (Equation (13))
Update elite if an antlion becomes fitter than the elite
Update the positions of the grasshoppers randomly
end while

Return elite

2.6. Results of Benchmark Mathematical Function

The performance of our proposed algorithm has been tested using three different benchmark functions;
unimodal, multimodal, and composite test functions. Table 1 shows six mathematical benchmark
functions with a comparison of the results of our proposed hybrid method with ALO and GOA. In [8, 13],
ALO and GOA have been compared with other optimization techniques like PSO, SMS, BA, FPA, CS,
FA, GA, DE, and Gravitational Search Algorithm (GSA), and it was found that both algorithms were
slightly better than all other compared optimization techniques. Dim indicates the dimension of the
function; Range is the boundary of the function’s search space; and fmin is the optimum value. According
to Table 1, the results prove the superiority of our proposed hybrid algorithm over ALO and GOA in all
the mentioned benchmark functions. Moreover, the proposed method reaches the exact global optimum
in some functions, while ALO and GOA stagnate in local optimum. This proves the ability of our hybrid
method to effectively explore and exploit the search space. The results show the great advantages of
our hybrid algorithm in overcoming the drawbacks of ALO and GOA.

3. GEOMETRY AND FITNESS FUNCTION

The geometry of a nonuniform Circular Antenna Array (CAA) with N isotropic elements, which are
positioned on a circle of radius a in the x-y plane, is shown in Figure 3.
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Table 1. Benchmark test functions and their results.

Function
Dim

(n)
Range fmin

Hybrid ALO GOA

Best

sol.
Std.

Best

sol.
Std.

Best

sol.
Std.

F1(x) =
n∑

i=1

x2
i 30 [−100, 100] 0

2.448

e-39

6.300

e-40

1.455

e-07

1.352

e-06

0.057

3

0.75

0

F2(x) =
n∑

i=1

|xi| +
n∏

i=1

|xi| 30 [−10, 10] 0
3.388

e-20
0 0.919

52.69

6

0.150

2

21.9

28

F3(x) = 0.5 +
sin2

√
x2
1+x2

2−0.5

1+0.01(x2
1+x2

2)2
2 [−10, 10] 0 0 0

1.554

e-15

2.971

e-14

7.216

e-15

1.47

e-14

F4(x) =
n∑

i=1

[x2
i − 10 cos(2πxi) + 10] 30 [−5.12, 5.12] 0 0

16.85

69

33.82

8

19.54

6

35.83

4

24.3

29

F5(x) =
∑D

i=1 x2
i + (

∑D
i=1 0.5ixi)

2

+(
∑D

i=1 0.5ixi)
4

30 [−10, 10] 0
4.317

e-40

1.478

e-38

1.311

e + 02

1.305

e + 02

46.17

6

58.8

86

F6(x) =
(
x2

2 − 5.1
4π2 x2

1 + 5
π
x1

)
+10

(
1 − 1

8π

)
cos(x1) + 10

2
[−5, 10]

[0, 15]
0.398 0.397

9.085

e-15
0.397

1.887

e-14
0.397

1.40

e-13

Figure 3. Geometry of a non-uniform circular antenna array with N isotropic antennas.

The radiation pattern for such a geometry can be described by the following array factor
equation [25]:

AF (θ, ϕ) =
N∑

n=1

In exp (j [ka sin(θ) cos (ϕ − ϕn) + αn]) (14)

where

ka =
2π
λ

a =
N∑

i=1

di (15)

ϕn =

2π
n∑

i=1

di

ka
(16)

To focus the main beam in (θo, ϕo) direction, the excitation phase is assumed as follows [25]:
αn = −ka sin (θo) cos(ϕo − ϕn) (17)
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In and ϕn represent the excitation amplitude and the angular position of the nth element in the x-y
plane, respectively. dn represents the arc distance between two adjacent elements (in terms of λ). θ
represents the elevation angle which is measured from the positive z-axis. θ is assumed to equal 90◦,
since the array factor in the x-y plane will be of interest. ϕ is the azimuth angle measured from the
positive x-axis. Furthermore, θo and ϕo show the direction of the main lobe. For simplicity, in all
coming examples, the main lobe is assumed to be directed along the positive x-axis, such that θo = 90◦
and ϕo = 0◦.

The goal in any antenna array problem is to optimize many key parameters such as side-lobe level,
gain, size, and radiation pattern, which can be used to evaluate a specific fitness function. In this paper,
the goal is to reduce the maximum side-lobe level for specific first null beam width (FNBW). So, the
following shows the used fitness function [33]:

Fitness = 10 log
[
(W 1F1 + W2F2)/ |AFmax|2

]
(18)

F1 = |AF (ϕnu1)|2 + |AF (ϕnu2)|2 (19)

F2 = max
{
|AF (ϕms1)|2 , |AF (ϕms2)|2

}
(20)

A desired FNBW can be obtained by minimizing the array factor at two angles ϕnu1 and ϕnu2, where
ϕnu denotes the angle at a null. So, the FNBW = ϕnu2 − ϕnu1 = 2ϕnu2 [33].

The range of angles in which the optimization process works to minimize the side-lobe level are
represented in two bands; the lower band (from −180◦ to ϕnu1) as ϕms1 and the upper band (from ϕnu2

to 180◦) as ϕms2. Therefore, function F2 minimizes the AF in the side-lobe regions around the major
lobe.

AFmax denotes the maximum value of the array factor at (θo, ϕo). W1 and W2 are weighting factors
which will be chosen in each example respectively. Thus, for the design of CAA with minimum side-
lobe level, the optimization problem is to search for the current amplitudes (In’s) and the arc distances
between the elements (dn’s) that minimize the fitness function.

4. RESULTS AND DISCUSSION

All the examples in this paper have been optimized for 20 independent runs, and the one with the least
fitness function is shown here. Examples with optimized excitation currents have been normalized with
respect to largest current value.

4.1. Example 1: 8, 10, 12-Element CAA

In this example, a circular antenna array with 8, 10, and 12 elements is optimized using ALO and the
hybrid method. The obtained results are compared with those obtained using BBO [33], Self-Adaptive
DE (SADE) [33], Sequential Quadratic Programming (SQP) [33], GA [6], and PSO [4]. The best values
of the maximum side-lobe level for these algorithms are shown in Table 2. The maximum SLL for
8-element case, which is obtained using ALO, the hybrid method, BBO, SADE, SQP, GA, and PSO in
(dB) are −13.71, −15.00, −12.18, −12.70, −13.16, −9.81, and −10.8, respectively. It can be noticed
that the hybrid algorithm gets better SLL than other algorithms, which proves the ability of the hybrid
algorithm to outperform other strong techniques. The maximum SLLs obtained using ALO and the
hybrid method in 10-element CAA case are −13.52 dB and −14.20 dB, respectively, while −12.72 dB,
−13.43 dB, −13.02 dB, −11.03 dB, and −12.31 dB for BBO, SADE, SQP, GA, and PSO, respectively.
This shows that the max SLL values of ALO and hybrid technique outperform the values of the rest
of the mentioned techniques. In 12-element case, it is clearly shown that ALO and hybrid technique
slightly outperform other algorithms. This proves the effectiveness of our proposed methods. Figure 4
represents the radiation patterns for ALO and the hybrid method compared with BBO, SADE, SQP,
GA, and PSO, in 8, 10 and 12-element CAA. Figures 5(a) and (b) show the convergence curves of
ALO and the hybrid techniques over 300 iterations for 8-element and 10-element CAA, respectively,
which start converging with less than 50 iterations to reach the optimum value. Figure 5(c) illustrates
the convergence curve of ALO and the proposed hybrid method over 500 iterations for the 12-elements
array. Figure 6 shows box-and-whisker plots for both algorithms in 20 independent runs for 8, 10, and
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Table 2. Optimum values of current amplitudes and spacing for optimized, 10 and 12-element CAA.

[d1, d2, d3, ..., dN ] in λ’s

[I1, I2, I3, ..., IN ]

Max.

SLL

(dB)

N = 8,

ϕnu2

= 34◦

ALO
[0.3832, 0.71592, 0.86847, 0.58769, 0.3681, 0.54072, 0.66945, 0.40809] ⇒ ∑

= 4.5416

[0.5911, 0.3107, 1.0000, 0.9867, 0.3254, 0.4976, 0.7003, 0.6026]
−13.71

Hybrid
[0.32632, 0.82689, 0.80623, 0.60948, 0.82323, 0.67637, 0.24608, 0.22379] ⇒ ∑

= 4.5384

[0.7413, 0.4178, 0.8977, 1.0000, 0.3644, 0.4233, 0.5671, 0.1342]
−15.00

BBO

[33]

[0.3406, 0.7682, 0.2988, 0.5756, 0.6627, 0.8805, 0.6337, 0.4214] ⇒ ∑
= 4.5815

[0.7637, 0.6075, 0.1090, 1.0000, 0.8722, 0.5396, 0.7177, 0.4858]
−12.18

SADE

[33]

[0.3438, 0.6668, 0.2059, 0.7951, 0.6272, 0.8437, 0.8295, 0.3383] ⇒ ∑
= 4.6503

[0.8749, 0.2302, 0.4633, 0.9542, 1.0000, 0.6442, 0.9099, 0.1844]
−12.70

SQP

[33]

[0.3192, 0.3867, 0.4809, 0.8277, 0.6450, 0.8066, 0.8573, 0.3287] ⇒ ∑
= 4.6521

[0.8849, 0.1438, 0.5516, 1.0000, 0.9998, 0.6233, 0.9158, 0.1053]
−13.16

GA

[6]

[0.1739, 0.3144, 0.662, 0.7425, 0.6297, 0.8969, 0.4633, 0.5267] ⇒ ∑
= 4.4094

[0.3289, 0.2537, 0.7849, 1.0, 0.9171, 0.5183, 0.6176, 0.4612]
−9.81

PSO

[4]

[0.3590, 0.5756, 0.2494, 0.7638, 0.6025, 0.8311, 0.7809, 0.3308] ⇒ ∑
= 4.4931

[0.7765, 0.3928, 0.6069, 0.8446, 1.0000, 0.7015, 0.9321, 0.3583]
−10.8

N = 10,

ϕnu2

= 27◦

ALO
[0.3224, 0.90353, 0.5122, 0.96631, 0.50981, 0.42519, 0.68649, 0.29396, 0.96161, 0.38708] ⇒ ∑

= 5.9686

[0.9324, 0.5491, 0.6133, 1.0000, 0.9151, 0.2755, 0.3917, 0.6184, 0.9195, 0.8949]
−13.52

Hybrid
[0.33134, 0.46725, 0.95313, 0.93073, 0.54016, 0.9018, 0.83961, 0.44049, 0.27222, 0.20533] ⇒ ∑

= 5.8821

[1.0000, 0.2648, 0.7127, 0.9852, 0.9451, 0.6948, 0.2659, 0.6235, 0.6497, 0.4569]
−14.20

BBO

[33]

[0.387, 0.9088, 0.3232, 0.2549, 0.8932, 0.5083, 0.8781, 0.6733, 0.88, 0.3498] ⇒ ∑
= 6.0566

[0.8848, 0.5265, 0.3690, 0.3744, 1.0000, 1.0000, 0.6374, 0.5803, 0.8792, 0.5606]
−12.72

SADE

[33]

[0.2775, 0.9516, 0.5141, 0.9865, 0.6166, 0.9703, 0.2755, 0.2648, 0.8826, 0.3137] ⇒ ∑
= 6.0532

[00.9333, 0.5834, 0.4528, 1.0000, 0.9620, 0.3544, 0.2959, 0.4202, 0.8792, 0.1412]
−13.43

SQP

[33]

[0.3311, 0.4761, 0.5888, 0.3355, 1.0000, 0.5818, 0.9346, 0.7570, 0.7405, 0.2865] ⇒ ∑
= 6.0319

[0.9288, 0.1237, 0.3838, 0.5450, 1.0000, 0.8450, 0.7054, 0.4424, 0.8559, 0.1589]
−13.02

GA

[6]

[0.3641, 0.4512, 0.275, 1.6373, 0.6902, 0.9415, 0.4657, 0.2898, 0.6456, 0.3282] ⇒ ∑
= 6.0886

[0.9545, 0.4283, 0.3392, 0.9074, 0.8086, 0.4533, 0.5634, 0.6015, 0.7045, 0.5948]
−11.03

PSO

[4]

[0.3170, 0.9654, 0.3859, 0.9654, 0.3185, 0.3164, 0.9657, 0.3862, 0.9650, 0.3174] ⇒ ∑
= 5.9029

[1.0000, 0.7529, 0.7519, 1.0000, 0.5062, 1.0000, 0.7501, 0.7524, 1.0000, 0.5067]
−12.31

N = 12,

ϕnu2

= 23◦

ALO
[0.3410, 0.5083, 0.2792, 0.7175, 0.7388, 0.7921, 0.5084, 0.9812, 0.3618, 0.8489, 0.8675, 0.3209] ⇒ ∑

= 7.2661

[0.7906, 0.1037, 0.3133, 0.7593, 0.3020, 1.0000, 0.9989, 0.5623, 0.6002, 0.6089, 0.6862, 0.6560]
−14.56

Hybrid
[0.3571, 0.935, 0.4866, 0.8501, 0.7115, 0.4867, 0.9440, 0.1871, 0.2680, 0.8213, 0.8238, 0.3430] ⇒ ∑

= 7.2153

[0.9322, 0.3441, 0.7926, 0.3505, 0.8585, 1.0000, 0.3679, 0.2897, 0.5656, 0.6006, 0.6908, 0.6496]
−14.12

BBO

[33]

[0.4083, 0.6416, 0.7554, 0.7185, 0.6943, 0.3818, 0.3284, 0.8152, 0.9981, 0.3097, 0.7983, 0.3701] ⇒ ∑
= 7.2196

[0.6567, 0.3879, 0.6960, 0.4596, 0.5627, 0.9600, 0.4168, 0.5890, 0.5368, 0.6230, 0.6910, 1.0000]
−14.01

SADE

[33]

[0.4272, 0.6798, 0.6380, 0.6954, 0.9017, 0.5223, 0.7686, 0.6235, 0.2582, 0.5151, 0.8151, 0.3343] ⇒ ∑
= 7.1792

[0.3617, 0.3740, 0.3498, 0.6514, 1.0000, 0.8604, 0.4864, 0.3960, 0.3696, 0.3390, 0.5058, 0.8387]
−13.19

SQP

[33]

[0.4177, 0.5963, 0.7442, 0.7173, 0.7994, 0.4433, 0.8958, 0.7129, 0.7622, 0.4557, 0.1607, 0.3786] ⇒ ∑
= 7.0841

[0.4685, 0.4221, 0.6701, 0.3644, 0.6449, 0.8077, 0.4698, 0.4986, 0.5102, 0.1341, 0.2746, 1.0000]
−13.41

GA

[6]

[0.4936, 0.4184, 1.4474, 0.7577, 0.4204, 0.5784, 0.4520, 0.8872, 0.7514, 0.4202, 0.4223, 0.7234] ⇒ ∑
= 7.7724

[0.2064, 0.5461, 0.2246, 0.6486, 0.7212, 0.7993, 0.5277, 0.3485, 0.5125, 0.4475, 0.5233, 0.8553]
−11.80

PSO

[4]

[0.2569, 0.8509, 0.6607, 0.7057, 0.8540, 0.3734, 0.1609, 0.8321, 0.6464, 0.7079, 0.8330, 0.2682] ⇒ ∑
= 7.1501

[0.9554, 0.6641, 0.7109, 0.7769, 1.0000, 1.0000, 0.3958, 0.7162, 0.6746, 0.7695, 0.9398, 0.6415]
−13.68

12-element CAA. Note that the number of search agents of ALO and the hybrid method in 8, 10, and
12-element cases are (50, 50), (50, 50), and (150, 50), respectively. The maximum numbers of iterations
are 300 for 8 and 10-element cases, and 500 for 12-element case. Further, the weighting factors of the
fitness function (W1 and W2) for 8, 10, and 12-element cases are (1, 5), (1, 10), and (1, 1), respectively.

4.2. Example 2: 20-Element CAA

In this example, 50 search agents, 500 iterations, W1 = 1, and W2 = 5 have been used. Similar to
previous examples, Table 3 shows the optimum currents, optimum spacing, and the maximum SLL
(dB) for 20-element circular antenna array. The radiation patterns for ALO and the hybrid algorithm
compared to other techniques, BBO, SADE, and SQP, are illustrated in Figure 7(a). Again, the hybrid
algorithm outperforms all other techniques including ALO, but with slight difference compared to SQP.
It is worth to be mentioned that the hybrid method gets the smallest circumference of CAA along with
the best SLL. The convergence curves for ALO and the hybrid method are presented in Figure 7(b),
which shows that almost 200 iterations are needed to reach the global minimum for this problem.
Figure 7(c) represents a combined box and whisker for ALO and the hybrid method.
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(a) (b)

(c)

Figure 4. (a) Radiation patterns for the optimized 8-element CAA. (b) Radiation patterns for the
optimized 10-element CAA. (c) Radiation patterns for the optimized 12-element CA.

(a) (b) (c)

Figure 5. (a) Convergence curves of ALO and hybrid method for 8-element CA. (b) Convergence
curves of ALO and hybrid method for 10-element CAA. (c) Convergence curves of ALO and hybrid
method for 12-element CAA.

4.3. Example 3: 20-Element CAA with Constant Circumference

From previous examples, it can be noticed that the circumference (i.e., the summation of the arc
distances between elements) of the optimized arrays using different algorithms is larger than that of
the uniform array, which has λ/2 spacing between adjacent elements. To make the comparison between
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(a) (b) (c)

Figure 6. (a) Box-and-whisker plot of ALO and hybrid method in 20 runs for 8-element. (b) Box-and-
whisker plot of ALO and hybrid method in 20 runs for 10-element. (c) Box-and-whisker plot of ALO
and hybrid method in 20 runs for 12-element.

(a) (b) (c)

Figure 7. (a) Radiation patterns for the optimized 20-element CA. (b) Convergence curves of ALO
and hybrid method. (c) Box-and-whisker plot of ALO and hybrid method in 20 runs.

Figure 8. Radiation patterns for the optimized 20-element CAA using fitness function (21).

different optimization techniques fair, the circumference of the optimized arrays must be almost the
same as that of the uniform array. In order to accomplish this, the following modified fitness function
has been used [33]:

Fitness = (W1F1 + W2F2)/ |AFmax|2 + F3 (21)
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Table 3. Optimum values of current amplitudes and spacing for the optimized N = 20 CAA.

N = 20

ϕnu2 = 14◦
[d1, d2, d3, ..., d20] in λ’s

[I1, I2, I3, ..., I20]

Max.

SLL (dB)

ALO

[0.60943, 0.59257, 0.87452, 0.78683, 0.54473, 0.9433, 0.96702, 0.98326, 0.42234, 0.61703,

0.44987, 0.88652, 0.23454, 0.86473, 0.29602, 0.99958, 0.66856, 0.95044, 0.60746, 0.59609]

⇒ ∑
= 13.8948

[0.8229, 0.5180, 0.5919, 0.2521, 0.6313, 0.4851, 0.5649, 0.9427, 0.9433, 0.9923, 0.8665, 0.4725,

0.3112, 0.4011, 0.2856, 0.5601, 0.7973, 0.9022, 0.9046, 1.0000]

−14.39

Hybrid

[0.48636, 0.37306, 0.73972, 0.15148, 0.36325, 0.81309, 0.73599, 0.90463, 0.70386, 0.33118,

0.4698, 0.99927, 0.63298, 0.18699, 0.39993, 0.2781, 0.57851, 0.90866, 0.42596, 0.25917]

⇒ ∑
= 10.7420

[0.7364, 0.4895, 0.2950, 0.8534, 0.3807, 0.3672, 0.5657, 0.5512, 1.0000, 0.9192, 0.4595, 0.4797,

0.4012, 0.4541, 0.2529, 0.4946, 0.6557, 0.7004, 0.6785, 0.8198]

−14.98

BBO

[33]

[0.4196, 0.4588, 1.0000, 0.4406, 0.6314, 0.3635, 0.8939, 0.3215, 1.0000, 0.4786, 0.4856, 0.5848,

0.4761, 0.5695, 0.8245, 0.9013, 0.7483, 0.8833, 0.4748, 0.4417] ⇒ ∑
= 12.3978

[0.8227, 0.9057, 0.3545, 0.1653, 0.7815, 0.6918, 0.6865, 0.7171, 1.0000, 1.0000, 0.9981, 0.7308,

1.0000, 0.6543, 0.9493, 0.1000, 0.5944, 0.6473, 0.5730, 1.0000]

−13.84

SADE

[33]

[0.4825, 0.1795, 0.1793, 0.6164, 0.9753, 0.3628, 0.6046, 0.9890, 0.2913, 0.9223, 0.5750, 0.7937,

0.9161, 0.8519, 0.9921, 0.5791, 0.2997, 0.7233, 0.5166, 0.3347] ⇒ ∑
= 12.1852

[0.9072, 0.4465, 0.1364, 0.7688, 0.6309, 0.5683, 0.5877, 0.2080, 0.3060, 1.0000, 0.9771, 0.5235,

0.7805, 0.3250, 0.7083, 0.6721, 0.6070, 0.8726, 0.6762, 0.8076]

−13.95

SQP

[33]

[0.5682, 0.6833, 0.4381, 0.4709, 0.7318, 0.8736, 0.6329, 0.2492, 0.9944, 0.6006, 0.5653, 1.0000,

0.8636, 0.8893, 0.3727, 0.3865, 0.4148, 0.5996, 0.5457, 0.4453] ⇒ ∑
= 12.3258

[0.8708, 0.2126, 0.6157, 0.5070, 0.2995, 0.4988, 0.3782, 0.3621, 0.8598, 1.0000, 0.6950, 0.5762,

0.7123, 0.3460, 0.1815, 0.6140, 0.3407, 0.3590, 0.8188, 0.9923]

−14.87

Uniform

[0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5]

⇒ ∑
= 10.0

[1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0]

−6.08

Table 4. Optimum values of current amplitudes and spacing for the optimized 20-element CAA using
fitness function (21).

N = 20

ϕnu2 = 14◦
[d1, d2, d3, ..., d20] in λ’s

[I1, I2, I3, ..., I20]

Max.

SLL

(dB)

FNBW

(deg)

ALO

[0.1125, 0.7710, 0.3783, 0.8338, 0.2914, 0.4662, 0.7609, 0.3821, 0.8508, 0.5007, 0.3033, 0.6937, 0.5245,

0.2902, 0.6090, 0.2816, 0.6267, 0.4127, 0.4014, 0.5091] =⇒ ∑
= 10

[1.0000, 0.8468, 0.5623, 0.7603, 0.2219, 0.4930, 0.4620, 0.3592, 0.8579, 0.6492, 0.4555, 0.3381, 0.5437,

0.8799, 0.3620, 0.4762, 0.5176, 0.7947, 0.6556, 0.9128]

−12.15 3.06

Hybrid

[0.43962, 0.68527, 0.1315, 0.18265, 0.57491, 0.70708, 0.93932, 0.28695, 0.84466, 0.34695, 0.13591,

0.33026, 0.50352, 0.99359, 0.37457, 0.41363, 0.96354, 0.51167, 0.32517, 0.30925] ⇒ ∑
= 10

[0.3196, 0.1734, 0.2017, 0.6241, 0.4340, 0.5036, 0.5510, 0.2000, 0.8267, 0.9553, 0.4398, 0.4800, 0.9311,

0.5354, 0.7467, 0.4909, 0.7467, 0.6050, 0.7531, 0.2119, 1.0000]

−12.35 30.4

BBO [33]

[0.3992, 0.9735, 0.2235, 0.3108, 1.0000, 0.2110, 0.4899, 0.1000, 0.3585, 0.4811, 0.2717, 0.5740, 0.7261,

1.0000, 0.3988, 0.2548, 0.8606, 0.5380, 0.5212, 0.3077] ⇒ ∑
= 10

[0.5576, 0.1000, 0.9253, 0.6877, 1.0000, 0.3850, 0.1000, 0.1000, 0.3295, 0.1000, 1.0000, 0.8999, 0.5202,

0.6851, 0.6877, 1.0000, 0.4435, 0.2389, 0.6996, 1.0000]

−10.67 28.6

SADE [33]

[0.2188, 0.2808, 0.7180, 0.3800, 0.8207, 0.2932, 0.9706, 0.6226, 0.5565, 0.1364, 0.4640, 0.5064, 0.8742,

0.1964, 0.8028, 0.2789, 0.4280, 0.6616, 0.4842, 0.3062] ⇒ ∑
= 10

[0.7398, 0.4071, 0.3937, 0.7197, 1.0000, 0.9281, 0.7220, 0.3150, 0.8843, 0.7853, 0.5352, 0.3133,

0.6459, 0.9790, 0.9843, 0.7044, 0.1857, 0.3126, 0.8326, 0.6337]

−11.30 28.9

SQP [33]

[0.1817, 0.1738, 0.8299, 0.7268, 0.2955, 0.8317, 0.7392, 0.8753, 0.2633, 0.1484, 0.2256, 0.9999,

0.7963, 0.3393, 0.3556, 0.4066, 0.9978, 0.5057, 0.2006, 0.1070] ⇒ ∑
= 10

[0.1278, 0.4208, 0.1790, 0.7576, 1.0000, 0.8536, 0.3456, 0.1000, 0.9955, 0.5949, 0.3683, 0.3726,

0.5160, 0.9991, 0.5923, 0.6132, 0.1000, 0.3723, 0.3600, 0.7845]

−11.81 28.22

Uniform
[0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5] ⇒ ∑

= 10.0

[1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0]
−6.08 28

F3 = Abs

({
N∑

i=1

di

}
− (desired circumference)

)
(22)

where desired circumference is the same as that of a uniform CAA. So, depending on this fitness function,
Table 4 mentions the best results among 20 independent runs for currents, arc distances, FNBW values,
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and max SLL for a 20-element CAA. In this table, the summation of the spacings between elements
for all techniques equals 10λ, which is the same as uniform array. Figure 8 demonstrates the radiation
patterns for ALO, the hybrid method, BBO, SADE, and SQP compared with uniform antenna array.
It can be concluded that the hybrid algorithm and ALO beat other methods. Here, 180 and 50 search
agents have been used for ALO and the hybrid method, respectively. Moreover, the numbers of iterations
and weighting factors used for both proposed algorithms are 500, W1 = 1 and W2 = 10.

5. CONCLUSION

In this work, we propose a new hybrid algorithm that combines the characteristics of ALO and GOA,
by using the advantages of both techniques. The proposed algorithm mathematically implements
the random walks of antlions and elitism in addition to the social forces in grasshopper’s swarm.
Consequently, both algorithms are utilized in a proper hybridization. Moreover, the new hybrid
algorithm and ALO are successfully introduced in the synthesis of circular antenna arrays. In this
paper, five cases are discussed; 8-element, 10-element, 12-element, 20-element, and 20-element with
constant circumference. The results show that the proposed hybrid algorithm is very competitive in
reducing the SLL compared to other methods like ALO, PSO, GA, SADE, SQP, and BBO.
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