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Design and Development of an Ultrathin Triple Band Microwave
Absorber Using Miniaturized Metamaterial Structure

for Near-Unity Absorption Characteristics

Naveen Mishra* and Raghvendra Kumar Chaudhary

Abstract—This article discusses about the design and development of an ultrathin triple
band microwave absorber using a miniaturized metamaterial structure for near-unity absorption
characteristics. In order to design a miniaturized metamaterial (MTM) absorber unit cell with triple
band response, two resonators, named as Structure-I and Structure-II, are configured within the
single unit cell. The geometrical proportions of the suggested resonators have been chosen in such
a manner so that Structure-I can contribute one absorption band while Structure-II can contribute
two absorption bands. Therefore, the combination of two resonators offers triple band response with
the highest absorption values of 99.04%, 99.62%, and 99.33% at the frequencies of 4.25 GHz, 8.35 GHz,
and 11.06 GHz, respectively. Additionally, the suggested absorber unit cell claims miniaturization with
total electrical size of 0.156λ0 × 0.156λ0 × 0.014λ0, where λ0 corresponds to the free-space wavelength
at the first peak absorption frequency of 4.25 GHz. Additionally, the electric field and vectored surface
current distribution along with the input impedance graph has been used to discuss the absorption
methodology of the suggested structure. Further, the MTM belongings of the suggested structure have
been illustrated with the dispersion curve.

1. INTRODUCTION

Electromagnetic absorbers are passive devices which are utilized to absorb the incident electromagnetic
wave. The historical background of the electromagnetic absorbers have been started from the Salisbury
screen [1], Jaumann layer [2], Dallenbach layer [3] where the absorption of incident electromagnetic
waves occur due to destructive interference. However, these electromagnetic absorbers have some major
flaws such as large thickness and single absorption frequency which restrict their real time applications.
In order to improve the absorption band of electromagnetic absorbers, carbon foam based pyramidal
absorbers [4] become most popular. Until the present these absorbers have been utilized in anechoic
chambers. However, large thickness becomes a major shortcoming of a pyramidal absorber, due to
which it cannot be used for ultrathin applications. In order to reduce the thickness of electromagnetic
absorbers, ferrite based absorbers [5, 6] have been addressed. However, this absorber is extremely bulky
in nature and does not look like a better alternative for ultrathin applications.

In later years, a new kind of material, known as MTMs [7], grabs the attention of the microwave
society. These materials are artificially designed and are homogeneous in nature. It can offer
unconventional properties such as antiparallel group, phase velocities, and negative refractive index.
These unconventional properties of MTMs have been exploited in various microwave applications such
as super lenses [8], cloaking [9], antennas [10], filters [11], sensing [12, 13], harvesting [14, 15], and
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absorbers [16, 17]. In the case of electromagnetic absorbers, the unconventional properties of MTMs are
exploited to achieve miniaturization along with the ultrathin thickness and near unity absorption. The
major advantage of such MTM absorbers is their controllable input impedance. In the case of MTM
absorbers the input impedance can be altered by varying the geometrical proportions of the absorber
unit cell. These absorbers are constituted with two metallic layers, between which a dielectric layer
has been sandwiched. The upper metallic layer has a periodic organization of miniaturized frequency
selective surfaces (FSS). The lower metallic layer is a plane copper surface which has been applied to
restrain further propagation of the incident electromagnetic energy. Since the design mechanism of the
MTM absorbers has been based on the resonant approach, these absorbers offer narrow bandwidth which
becomes the major shortcoming of such absorber structures [17–20]. The problem of narrow bandwidth
has restricted the application of MTM absorbers. With a specific end goal to enhance the operational
bandwidth of such absorbers, several reports came into picture, which offer dual band [21, 22], triple
band [23–26], and wideband [27–30] response. In this regard, mainly two approaches have been analysed.
Among them, the first approach is based on the orthogonal arrangement of the scaled version of unit
cell [23, 25]. This approach fruitfully improves the operational bandwidth of MTM absorbers. However,
the shortcoming of this approach is its larger unit cell size. In another approach, the unit cell has been
designed with multi-resonators within a single unit cell [22, 27]. Further, this work is inspired by the
article [31], where two different kinds of resonators are used to generate triple band response. In [31],
study has been done for an outer rectangular ring which is diagonally split while in the present suggested
work, study has been done for a circular ring which is diagonally split.

In this article, the design and development of an ultrathin triple band microwave absorber using
a miniaturized metamaterial structure for near-unity absorption characteristics are discussed. The
suggested absorber unit cell has been configured with the two resonators termed as Structure-I and
Structure-II. In the triple band response of the suggested absorber configuration, one absorption band
(at the frequency of 8.35 GHz) has been initiated due to Structure-I while the other two absorption
bands (at 4.25 GHz and 11.06 GHz) have been originated from Structure-II. The electrical excitation
of the upper metallic layer (periodic arrangement of resonators or FSS) and magnetic excitation of
dielectric material (sandwiched between upper and lower metallic layers) have been discussed to explain
the absorption methodology of the suggested absorber structure. In addition, the suggested absorber
structure is capable to offer polarization independence property which is further explained with the
four-fold structural symmetry of the suggested unit cell.

2. ABSORBER DESIGN AND ANALYSIS

The layout of the suggested unit cell with its proportions in caption is presented in Fig. 1. It is evident
that two resonators termed as Structure-I and Structure-II have been merged to form the suggested
triple band absorber unit cell. Structure-I is configured with four rectangular split ring resonators which

Figure 1. Layout of the suggested unit cell. [All proportions are in mm: L = 11, L1 = 1.85, L2 = 1.5,
W1 = 0.9, W2 = 1.5, T = 0.3, T1 = 0.3, T2 = 0.4, G = 0.3, G1 = 1.06, R1 = 4, R2 = 4.4, R3 = 4.75,
R4 = 5.35].
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are connected to each other by thin strip lines, forming a plus shaped structure whose all four ends
are connected with the rectangular split ring resonators. Apart from Structure-I, Structure-II has been
configured with two rings where the outer ring is divided diagonally in four parts, and all these divided
parts are connected with an inner ring with the four distinct thin strip lines. In order to design the
suggested absorber structure, a two-sided copper laminated FR-4 epoxy substrate (dielectric constant
4.4, loss tangent of 0.02) with thickness of 1 mm has been used. Further, both the resonators have been
etched on the upper copper coating of thickness 35 µm. The lower side of substrate material is also
covered with a 35 µm thick copper sheet. This sheet is used to restrain the onward propagation of the
incident electromagnetic energy. The complete analysis for the suggested absorber structure has been
conducted on the HFSS 14.0 3-D simulation software. In this process, master-slave boundary along
with floquet port excitation has been applied. The absorptivity of the suggested absorber configuration
has been computed mathematically by Eq. (1).

A = 1 − |S11|2 − |S21|2 (1)

Here |S11|2 and |S21|2 stand for the reflected and transmitted powers, respectively.
Further, the copper layer present on the lower side of the dielectric material restricts the

transmission of incident electromagnetic wave which results in zero transmitted power and due to this
Eq. (1) shrinks into Eq. (2).

A = 1 − |S11|2 (2)

Figure 2 demonstrates the absorption response for Structure-I and Structure-II independently. It
can be observed that Structure-I contributes one absorption band with peak absorptivity of 98.80% at
the frequency of 8.57 GHz while Structure-II contributes dual-band response with peak absorptivities of
97.67% and 99.22% at the frequencies of 4.31 and 11.06 GHz, respectively. Further, the two resonators
are combined to form the suggested unit cell whose reflectance and absorption response are depicted
in Fig. 3. It is evident that the suggested absorber structure offers a triple band response with
peak absorptivities of 99.04%, 99.62%, and 99.33% at the frequencies of 4.25, 8.35, and 11.06 GHz,
respectively. The above two figures (Fig. 2 and Fig. 3) clearly show that after combining the two
resonators (suggested unit cell), the absorption peaks are shifted towards lower frequency. This shift
in absorption frequency has been explained with the coupling between the two resonators. It has also
been observed that the suggested absorber structure offers zero reflectance and near unity absorption
at all the three absorption peaks. The electrical footprint area of the suggested absorber structure is
0.156λ0×0.156λ0×0.014λ0, where λ0 corresponds to the free-space wavelength at 4.25 GHz. Additionally
the suggested absorber structure offers simulated full width at half maximum bandwidth of 190 (4.15–
4.34 GHz), 340 (8.18–8.52 GHz), and 410 (10.85–11.26 GHz) MHz.

Figure 2. Individual simulated absorption response for Structure-I and Structure-II.
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Figure 3. Simulated reflectance and absorption plots for suggested absorber structure.

2.1. Discussion on the Dispersion Characteristics of the Suggested Absorber Structure

The dispersion characteristics of the suggested absorber unit cell is determined with Eq. (3) [32] and
presented in Fig. 4. This analysis has been carried out to approve the MTM characteristics for the
suggested unit cell. Further, the plotted dispersion characteristic has been categorized in two regions,
and among them, one is known as right-handed (RH) region and the other known as left-handed (LH)
region. In LH region, the slope of the graph must be negative which means that it allows antiparallel
phase and group velocities. Apart from the LH region, the dispersion graph shows positive slope in RH
region which allows parallel group and phase velocities.

βd = cos−1

(
1 − S11S22 + S12S21

2S21

)
(3)

Figure 4. Dispersion characteristics for the suggested unit cell.

In the plotted dispersion curve, the first two absorption (4.15–4.34 GHz and 8.18–8.52 GHz) bands
lie in the LH region. The third absorption band (10.85–11.26 GHz) can be divided into two parts, and
the first part (10.85–10.94 GHz) lies in the RH regions while the second part (10.94–11.26 GHz) lies in
the LH region.
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2.2. Discussion on the Dispersion Characteristics of the Suggested Absorber Structure

This section discusses the absorption methodology of the suggested absorber structure. In this regard,
the normalized input impedance plot is depicted in Fig. 5. It is a well-known fact that the reflection
from any surface can be reduced to zero by making the input impedance of the surface identical to the
free space impedance ((377 + j0) Ω). It can be observed that with the optimized dimensions of the
suggested absorber structure, the input impedances at all three peak absorption frequencies become

Figure 5. Normalized input impedance curve for the suggested triple band absorber configuration.

(a) (b)

(c)

Figure 6. Electric field distribution plot at all three peak absorption frequencies of the suggested triple
band absorber.
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(a)

(b)

(c)

Upper Lower

Figure 7. Surface current distribution plot at all three absorption peaks of the suggested triple band
absorber structure.
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near free space impedance. This results in the least amount of reflection from the surface at all three
absorption peaks. Because of this, at all three peak absorption frequencies, near unity absorption has
been achieved. The input impedance of any surface can be mathematically calculated by Eq. (4) [33].

Zin =

√
(1 + S11)

2 − (S21)
2

(1 − S11)2 − (S21)2
(4)

Further the absorption methodology of the suggested absorber structure has also been discussed
with the electric and magnetic excitations. In this analysis, surface current distribution and electric
field distribution are utilized. The electric field concentrations on the surface of the suggested triple
band configuration at all three peak absorption frequencies of 4.25, 8.35, and 11.06 GHz are depicted in
Figs. 6(a), (b), and (c), respectively. It can be observed that the maximum electric field concentrations
at the first and third absorption peaks are on Structure-II. Similarly, at the second absorption peak,
the maximum field concentration is on Structure-I. These electric field concentrations are accountable
for the origination of electrical excitation.

Similar to electric field distribution, the surface current distributions at all three absorption peaks
of 4.25. 8.35, and 11.06 GHz are depicted in Figs. 7 (a), (b), and (c), respectively. Figs. 7(a) and
(c) clearly show that the maximum surface current distributions at the absorption peaks of 4.25 and
11.06 GHz are on Structure-II while the maximum surface current concentration at the frequency of
8.35 GHz is on Structure-I. Additionally, it can also be observed that the directions of surface current
at all three absorption peaks in the upper and lower metallic layers make a circulating current which
is accountable for the magnetic excitation. This simultaneous occurrence of electric and magnetic
excitation is responsible for the origination of all three absorption peaks.

2.3. Effect of Polarization and Incidence Angle Variation on Absorption Coefficient

The absorption response, at distinct polarization angles, under normal incidence of electromagnetic
energy is presented in Fig. 8. It is evident that under normal incidence of electromagnetic energy the
variation in polarization angle does not affect the absorption coefficient which confirms the polarization
independence property of the suggested MTM absorber structure. The polarization independent
behaviour of the suggested configuration can be theoretically clarified with the four-fold structural
symmetry of the suggested structure. During this analysis, the direction of wave propagation remains
settled, and the directions of E field and H filed start turning with the angle of φ degrees. In this study,
the polarization angle φ is varied from 0◦ to 90◦ at a step size of 15◦.

Figure 8. Simulated absorptivity response for suggested absorber structure at distinct polarization
angles.
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(a)

(b)

Figure 9. Simulated absorptivity response for suggested absorber structure at distinct incidence angles.
(a) TE polarization state. (b) TM polarization state.

Further, the effect of incidence angle (θ) variation on the absorption response for the suggested
absorber configuration is depicted in Fig. 9. In this study, the absorptivities are analysed under transvers
electric (TE) and transvers magnetic (TM) polarization states by varying incidence angle θ from 0◦ to
90◦ at a step size of 15◦ and are depicted in Figs. 9(a) and (b), respectively. It is observed that
the suggested absorber structure, under both the polarization states up to 60◦ incidence angle, offers
more than 80% absorptivity. In the analysis of TE polarization state, the electric field vector remains
settle while the magnetic field vector and direction of wave propagation rotate with the incidence
angle of θ. Similar to TE polarization state in the case of TM polarization, the magnetic field vector
remains stationary, and the electric field vector along with direction of wave propagation rotates with
the incidence angle of θ. It can also be observed that under both polarization states with the increment
in incidence angle from 0◦ to 90◦, the absorptivity decreases. This can be explained with the reduction
in electric and magnetic excitations. In TE polarization with the rotation of magnetic field vector, the
magnetic excitation decreases which results in reduction of absorptivity at distinct incidence angles. In
a similar manner under TM polarization, the rotating electric field vector corresponds to low electric
excitation and causes reduction in absorptivity.
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3. EXPERIMENTAL RESULTS

In order to verify the absorption response of the suggested absorber configuration, a prototype has
been fabricated which is shown in Fig. 10. In this process, a 1 mm thick FR-4 epoxy substrate is used.
The substrate material should be laminated on both sides with a 35 µm thick copper layer. On the
upper copper layer, the suggested unit cell is printed in the form of a 25 × 25 array. Further, the
absorption measurement for the fabricated proto-type is executed with two similar horn antennas of
desired frequency spectrum and PNA vectored network analyzer (Agilent N5221A). In this measurement
setup, any horn antenna from the selected two horn antennas can be employed for transmission and
reception purposes. The layout of the ideal measurement setup for measuring absorption coefficient is
depicted in Fig. 11(a). Further, the real time measurement setup used for measuring absorption, only
under oblique incidence angle, is shown in Fig. 11(b).

Figure 10. Fabricated proto-type of the suggested triple band MTM absorber.

(a) (b)

Figure 11. Absorption measurement setup. (a) Layout of ideal measurement setup. (b) Real
environment measurement setup.

In the beginning of absorption measurement, first of all a reference input reflection coefficient is
estimated. In this regard, a metallic (copper) plate is placed in front of the pair of horn antennas,
and input reflection coefficient is estimated. This estimated input reflection coefficient is treated as
reference. A similar approach has been utilized to estimate the input reflection coefficient for the
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(a) (b)

Figure 12. Simulated and measured responses for the suggested triple band MTM absorber structure.
(a) Input reflection coefficient, (b) absorptivity.

experimentally developed proto-type. In order to eliminate the surrounding effect, estimated value
of reference input reflection coefficient is subtracted from the estimated input reflection coefficient of
proto-type. The difference between the two input reflection coefficients is termed as normalized input
reflection coefficient. This normalized input reflection coefficient is substituted in Eq. (2) to calculate
the absorptivity of fabricated proto-type. Fig. 12 illustrates the simulated and estimated values of
input reflection coefficient (Fig. 12(a)) and absorptivity (Fig. 12(b)) responses for the suggested triple
band MTM absorber structure. It can be observed that the measured and simulated responses show
proper concurrence with each other except the occurrence of ripples, out of the absorption bands. This
deviation may occur due to the measurement in open surrounding. The measured result shows a triple
band response with peak absorptivities of 98.96%, 99.39%, and 99.27% at the frequencies of 4.26, 8.37,
and 11.06 GHz, respectively.

A small deviation has been observed between the simulated and measured absorption peaks. This
deviation may be because of the non-uniformity of the substrate material. Further, the suggested
structure provides measured full width at half maximum (FWHM) bandwidth of 180 (4.16–4.34 GHz),
330 and (8.18–8.51 GHz) 400 (10.84–11.24 GHz) MHz in all three absorption bands. Additionally,
Table 1 depicts the performance comparison of the suggested absorber structure with the earlier reported
works.

Table 1. Comparison of the performance of the suggested work with earlier published works.

Parameters This work [23] [24] [25] [26]
UCS* (mm3) 11 × 11 × 1 15 × 15 × 1 18 × 18 × 1 18 × 18 × 1.5 28.2 × 28.2 × 1.6

LAP* 4.25 7.46 5.22 3.07 4.2
UCS with
respect to
LAP (λ0)

0.156 × 0.156
×0.014

0.37 × 0.37
×0.024

0.31 × 0.31
×0.017

0.184 × 0.184
×0.015

0.398 × 0.398
×0.022

Bands Three Three Three Three Three

* UCS — Unit cell size, LAP — Lowest absorption peak.
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4. CONCLUSION

In this article the design and development of an ultrathin triple band microwave absorber using
miniaturized metamaterial structure for near-unity absorption characteristics has been presented. There
are two resonators termed as Structure-I and Structure-II which are merged to form the suggested triple
band absorber unit cell. Structure-I is accountable for the origination of the second absorption band
while Structure-II is responsible for the first and third absorption bands. In order to confirm the
MTM characteristics of the suggested ultrathin triple band absorber, the dispersion characteristics are
utilized. The suggested absorber structure offers triple band response with the highest absorption
values of 99.04%, 99.62%, and 99.33% at the absorption peaks of 4.25 GHz, 8.35 GHz, and 11.06 GHz,
respectively. Further, it also claims miniaturization with a complete electrical footprint area of
0.156λ0 × 0.156λ0 × 0.014λ0, where λ0 corresponds to the free-space wavelength at the first absorption
peak of 4.25 GHz. Additionally, the absorption methodology for the suggested absorber structure has
been discussed with the electric field and vectored surface current distribution plot. It can also be
discussed with the input impedance curve.
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14. Ünal, E., M. Bağmancı, M. Karaaslan, O. Akgol, H. T. Arat, and C. Sabah, “Zinc oxide-
tungsten-based pyramids in construction of ultra-broadband metamaterial absorber for solar energy
harvesting,” IET Optoelectronics, Vol. 11, No. 3, 114–120, 2017.
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