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Abstract—For most of space-frequency joint anti-jamming algorithms, the solution of adaptive steering
vector is a high complexity problem. To solve this issue, a space-frequency combined anti-jamming
algorithm based on sub-band energy detection (SF-SED) is proposed. At first, the algorithm performs
fast Fourier transform (FFT) on the received data of the array antenna and obtains multi-snapshot
data of each sub-band through sub-band decomposition. Then, the interference detection statistic
and decision threshold are constructed by the energy of the sub-band to judge whether there is an
interference in each sub-band. Finally, different methods are used to solve the adaptive weights of the
two types of sub-bands according to sub-band classification results. Compared with the related work, the
proposed algorithm not only has lower computational complexity, but also has higher output signal-to-
interference-and-noise ratio. Theoretical analysis and simulation results demonstrate the anti-jamming
performance of the proposed method.

1. INTRODUCTION

With the increasingly fierce military confrontation, the potential security threat to satellite navigation
becomes an intractable problem [1]. Currently, the major anti-jamming researches of global navigation
satellite system (GNSS) mostly focus on receivers [2, 3]. Receiver antennas have a great influence on the
anti-jamming performance of GNSS. In part of the researches on uniform linear array, [4] puts forward
an effective and low-complexity linear arrays synthesis method which still has good performance when
an even distribution is required on element excitations. Besides, the researches on anti-interference
algorithms are also significant. Most anti-interference algorithms use adaptive filtering technology
to process the received signals in the digital domain, e.g., time-domain filtering, frequency-domain
filter, spatial filtering, space-time adaptive filtering, space-frequency adaptive filtering, and multi-beam
technology [5, 6]. Compared with time and frequency domain filtering, spatial filtering has lager anti-
jamming degree of freedom (DOF) and can suppress more kinds of interferences, including broadband
interferences. However, when interference signals and satellite signals have the same frequency or
direction of arrival (DOA), it is difficult for single-dimensional filtering technology to achieve ideal
anti-jamming effect.

Space-time adaptive processing (STAP), which was first proposed by Frost, III in 1972, adds delay
taps behind each antenna on the basis of spatial filtering [7]. STAP combines the received data of spatial
domain and time domain as the input signals, which not only increases DOF but also has the ability
to suppress multipath and wideband interferences. In 2000, the application of STAP in global position
system (GPS) was discussed by Fante and Vacarro [8], which is one of the most important techniques
in GPS anti-interference at present. For the past few years, quite a few excellent STAP algorithms
have been proposed to improve performance from different perspectives [9–11]. In [9] and [10], the
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robustness of STAP algorithm is improved by reconstructing signal covariance in different ways. A
proportion differentiation algorithm is proposed to control time taps so that the interferences can be
suppressed more effectively [11].

However, it is known that the STAP algorithm has a large amount of computation due to calculating
the inverse of the covariance matrix, so that the low-complexity sub-optimal solution space-frequency
adaptive processing (SFAP) algorithm has been extensively studied as well [12]. The core idea of
the SFAP algorithm is to convert received GPS signals into the frequency domain by fast Fourier
transform (FFT) so as to perform sub-band decomposition, then the adaptive weights are calculated on
each sub-band, respectively, thereby the dimensionality reduction processing of the covariance matrix
is realized [13]. Some achievements have been made in the research and improvement of the SFAP
algorithm [14–17]. [14] and [15] detail the application of SFAP in GPS and spread spectrum stations. On
this basis, for the application of SFAP in GNSS, some progress have been made in the researches on the
robustness [16] and the estimation of antenna induced biases [17]. These studies include improvements
to the performance of SFAP algorithms and error correction in applications. Nonetheless, the discussion
of the computational complexity of the SFAP algorithm is limited in published literature. In order to
further reduce the computational complexity, this paper proposes an SFAP algorithm based on sub-
band energy detection (SF-SED). The algorithm uses threshold decision to classify all sub-bands so as
to only adaptively filters the sub-bands with interference. Static weight vector is used to process the
sub-band without interference. Simulation results show that the proposed algorithm can achieve good
anti-interference performance with low computational complexity.

The rest of the paper is organized as follows. Section 2 introduces the system model. The theoretical
expression of the algorithm proposed is introduced, and the complexity of the algorithm is compared
with others in Section 3. Then Section 4 shows simulation results. Finally, the conclusion is summarized
in Section 5.

Notation : throughout this paper, the bold font variables are used to represent matrices and
vectors. (·)H denotes conjugate transposition. (·)T represents matrix transposition. E [·] denotes the
expectation.

2. SYSTEM MODEL

The receive array model of the space-frequency adaptive processing can be regarded as a special
case of sub-band adaptive processing, in which the transform domain is the frequency domain, and
the transform vector of the sub-band is the Fourier basis vector. An integrated model of sub-band
decomposition based on array antenna is given in Fig. 1, where FFT and IFFT (inveres FFT) represent
the Fourier transform and inverse transform, respectively. SD indicates sub-band decomposition of the
input signal [18].

Consider an SFAP array receiving model utilizing M elements uniform linear array spaced d apart.
Generally, the spacing of the array antenna d is half the wavelength of the electromagnetic wave, i.e.,
d = 1/2λ, where λ denotes the wavelength of the signals. In this model, θ stands for the angles with

θ

Figure 1. Sub-band decomposition synthesis model.
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which the signals enter the array. The data received on the m-th array element can be expressed as:

xm(t) =
L∑

i=1

am(θi)si(t) + nm(t) (1)

where t = 1, . . . , N . On each antenna, there are N − 1 delay units to perform N points FFT. Assuming
that the received signals contain L independent signals, the received data x(t) can be written in vector
form as

x(t) = A(θ)s(t) + n(t) (2)

where A(θ) = [a(θ1), . . . ,a(θL)]T represents the steering vector matrix; s(t) = [s1(t), . . . , sL(t)]T defines
signal vector; and n(t) = [n1(t), . . . , nM (t)]T denotes the noise vector.

In the SFAP model, the antenna array obtains N samples through A/D sampling, when the GNSS
signal is incident on it. The received data on the m-th array element can be expressed as

xm = [xm(1), . . . , xm(t), . . . , xm(N)]T (3)

When performing space-frequency adaptive processing, the process of adaptive signal processing is
performed in the frequency domain. FFT is applied to the received signals of each array element to
obtain the corresponding signals in frequency domain, which can be expressed as

x̃m(k) =
N∑

n=1

Znxm(n)e−j
2π
N (n−1)(k−1) (4)

where xm(n) means the n-th sample value received by the m-the array element, which represents the time
domain sample value. Since there is spectrum leakage in the Fourier transform, windowing processing
is required to suppress the spectrum leakage phenomenon. Zn stands for the n-th coefficient of the time
domain window function, and xm(n) represents the n-th sample value after the m-th array element in
the frequency domain. Rewriting Eq. (4) to vector form can be expressed as x̃m(K) = fHxm, where

f(K) =
[
Z1, Z1e

j
2π
N (k−1), . . . , ZNej

2π
N (N−1)(k−1)

]
.

3. PRINCIPLE OF SF-SED ALGORITHM

In this section, the specific content of SF-SED algorithm will be divided into three subsections for
detailed discussion. The feasibility and computational complexity of the proposed algorithm are also
discussed in this section.

3.1. Space-Frequency Domain Sub-Band Processing

Rewriting Eq. (4) into a vector form, the vector composed of M array elements for the k-th frequency
point can be expressed as

x̃(k) = [x̃1(k), x̃2(k), . . . , x̃M (k)]T . (5)

The covariance matrix of the frequency domain signals can be given at each frequency point as

R̃(k) = E
[
x̃(k)x̃H(k)

]
(6)

There are N covariance matrices as shown in Eq. (6) for the received data of the entire array. In
practical applications, the expected estimate of the covariance matrix can be obtained by averaging
multiple snapshots. Each frequency point data can be obtained in two ways, which are time domain
block receiving data and time domain sliding receiving data. In the simulation analysis of this paper,
the method of time domain block receiving data is adopted. Assuming that the number of FFT points
is N and that the number of snapshots in the frequency domain is J , the data of one array element are
taken as an example. For the sliding receiving data mode, the received data of the m-th array element
can be expressed as

xm = [xm(1), . . . , xm(N), . . . , xm(J + N − 1)]T (7)
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The input data required for the FFT operation is

[xm(1), . . . , xm(N)|xm(2), . . . , xm(N + 1)| . . . |xm(J), . . . , xm(J + N − 1)] (8)

After sub-band division, each sub-band still contains J frequency domain snapshots. There is no
significant difference between the above two methods when dealing with stationary signals. In order
to obtain the weight vector, the number of received data required is M × (J + N − 1). Therefore, the
covariance matrix in Eq. (6) can be solved as the following formula

R̃(k) =
1
J

J∑
j=1

x̃(k)x̃H(k) (9)

Assuming that the received signals and noise are statistically independent and that the mean is
zero, the covariance matrix of the array can be decomposed into mutually independent interference
covariance matrices, noise covariance matrices, and expected signal covariance matrices. The weight
solving problem of each frequency point, according to the linear constraint minimum variance criterion,
can be described as the following optimization problem after finding the covariance matrix of each
frequency point: ⎧⎨

⎩
min

w
wH(k)R̃(k)w(k)

s.t.w(k)Hh(k) = Pk

(10)

where w(k) indicates the weight corresponding to the k-th frequency point on each array element, h(k)
a specific constraint condition, and Pk a response corresponding to the constraint condition. Consider
that the GNSS signal power is weak, and lower than the noise power. In order to make the power
spectrum flat, the constraint response can be set to a constant. For all frequency points, Pk = 1
is set. According to the Lagrange Multiplier, the law determines that the stability weight coefficient
corresponding to the first frequency point on each array element can be expressed as follows

w̃(K) =
R̃−1h(k)

hHR̃−1(k)h(k)
, k = 1, 2, . . . , N (11)

Therefore, the processed output of the data of the k-th frequency point can be expressed as follows

ỹ(k) =
M∑

m=1

w̃∗
m(k)x̃(k) = w̃H(k)x̃, (12)

After obtaining the frequency domain output at each frequency point, the inverse time domain output
y(n) = IFFT [ỹ(k)] k, n = 1, 2, . . . , N .

3.2. Sub-Band Energy Detection and Threshold Structure

In order to reduce the complexity, the SF-SED algorithm constructs a detection statistic in each sub-
band to estimate the power level of each sub-band signal and determines whether each sub-band contains
an interference signal through a preset decision threshold. Assuming the FFT operation, the input data
of the k-th sub-band can be expressed as follows

x̃k =
[
x̃k

1 , x̃
k
2 , . . . , x̃

k
M

]T
(13)

where x̃k
1 , x̃

k
2 , . . . , x̃

k
M represent the frequency domain data of the k-th requency point on the first to

m-th array elements, which contain J snapshots. The frequency domain data of the m-th array element
of the k-th frequency point can be expressed as

x̃k
m =

[
x̃k

m(1), x̃k
m(2), . . . , x̃k

m(J)
]T

(14)

According to Eq. (14), the detection statistic of each sub-band is taken as the signal power of the
sub-band, which is denoted as ηk, k = 1, 2, . . . , N . For each single frequency band, the energy levels
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are consistent because the data difference among array elements is only phase difference caused by the
difference of the wave-path. Therefore, the detection statistics only need to use the data of the first
array element, which can be expressed as

ηk =
i

J

J∑
j=1

[
x̃k

1(j)
]2

(15)

Considering that the GNSS signal received by the receiver is very weak, its power is much lower
than the noise power. When the number of interference signals is limited, and the interference is
narrowband, the detection statistics constructed in this paper will be larger in the frequency band
where the interference exists. Therefore, by selecting an appropriate threshold value to judge the
detection statistic at each frequency point, all frequency bands can be divided into frequency bands
with interference and frequency bands without interference. Then weight adjustment and control are
respectively performed on each subband. Since the suppressed interference power is significantly higher
than the noise power, the threshold can be selected as the average power of the full frequency band
after the n-point FFT operation, which can be expressed as

σ̄2 =
1
N

N∑
n=1

x̃2
1(n) (16)

Since only part of the frequency band contains interference, and the satellite signal power is lower than
the noise power, the FFT-converted noise power is recorded as σ2

n. It is known that the average power
is about σ̄2

n.
At frequencies containing suppressed interference, the average power will be much larger than σ2

n.
Assuming that each narrowband suppressed interference power level is approximately equal, the power
of one interference signal can be denoted as σ2

j , where σ2
n < σ̄2 < σj . Each sub-frequency point can be

divided into an interference-containing sub-band and an interference-free sub-band by a threshold σ̄2.

3.3. Weight Calculation and Complexity Analysis

Although the SFAP algorithm can reduce the partial computation compared with the STAP algorithm,
it still needs to calculate the adaptive weight on each sub-band. However, the proposed algorithm
classifies each sub-band by the threshold, and the weight will be determined in a targeted manner. For
interference-free frequency bands, adaptive interference suppression does not need to be performed. We
can perform matched filtering based on the desired signal direction information and only need to give
static weights.

For the frequency band with interference, the adaptive processing algorithm needs to be adopted
for adaptive interference suppression, then the weight vector of each sub-band can be expressed as⎧⎪⎨

⎪⎩
w̃(k) = a(θ0), ηk ≤ σ̄2

w̃(k) =
R̃−1(k)h(k)

hH(k)R̃−1(k)h(k)
, ηk > σ̄2

(17)

where a(θ0) is the space steering vector of the desired signal. θ0 stands for the desired signal arrival
direction, which can be calculated by the satellite trajectory. The used adaptive processing algorithm
is the PI algorithm, and the constraint vector h = [1, 0, . . . , 0]T.

In summary, the steps of the SF-SED algorithm can be summarized as in Table 1. Moreover, the
specific algorithm flowchart of the proposed method is shown in Fig. 2.

Furthermore, the computational complexity of the SF-SED algorithm and the conventional SFAP
algorithm, taking SF-MVDR algorithm as an example, is analyzed in Table 2. According to Table 1,
the calculation of the proposed algorithm can be summarized as: FFT, energy detection, CCM
(clutter covariance matrix) inversion, weight calculation, and IFFT. As can be seen from Table 2, the
computational complexity differences between the proposed method and SF-MVDR algorithm mainly
include: (1) The SF-SED method adds energy detection function, whose specific content is shown as
Step 2 and Step 4 in Table 1. The computational complexity of average power on the first array element
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Table 1. Algorithm steps.

Step1. The array antenna is used for data buffer sampling for a period of time, and the sampled

data is subjected to FFT processing to obtain frequency domain data x̃;

Step2. Take the output data of an N-point FFT on the first array element, calculate its average

power, and record it as σ̄2 = 1
N

∑N
n=1 x̃2

1(n);

Step3. The FFT-transformed frequency domain data is rearranged to obtain data of N sub-bands,

wherein the data of the kth sub-band is recorded as x̃k
m =

[
x̃k

m(1), x̃k
m(2), . . . , x̃k

m(J)
]T;

Step4. Calculate the power value of the k-th sub-frequency point as the detection statistic

ηk = 1
J

∑J
j=1

[
x̃k

i (j)
]2;

Step5. Calculate the weight vector of each sub-frequency point according to Equation (20);

Step6. Calculate the frequency domain output of each subband as ỹ(k) = w̃H(k)x̃(k), k = 1, 2,

. . . , N , and the IFFT transform is performed on the frequency domain output to obtain

the time domain output y(n).

Table 2. Comparison of the computational complexity of the SF-SED algorithm with the SF-MVDR
algorithm.

Algorithm FFT Energy detection CCM inversion Weight calculation IFFT

SF-SED MN log N (J + 2)N + 1 LM3 L(M2 + M + 1) MN log N

SF-MVDR MN log N without NM3 N(M2 + M + 1) MN log N

and the power value of all sub-frequency bands are, respectively, N + 1 and N(J + 1). (2) For CCM
inversion and weight calculation, the conventional SF-MVDR method needs to calculate CCM inversion
and weight for all N sub-frequency bands, whose calculational complexity are, respectively, NM3 and
N(M2 +M +1), while for the SF-SED algorithm, only CMM inversions and weights of L sub-frequency
bands need to be calculated so that the calculational complexities are LM3 and L(M2 + M + 1),
respectively. In practice, L � N , L < 5 normally when N = 512. Taking M = 4, N = 512, L = 5
as an example, the added computation for the SF-SED algorithm is less than the computational cost
which saves in CCM inversion and weight calculation parts when J < 83 approximately. In other words,
the calculational complexity of the SF-SED method is less than that of the SF-MVDR method when
J < 83. In the meantime, the difference of calculation amount may vary more when the number of
antenna M increases. To sum up, compared with conventional SFAP, the proposed algorithm has lower
computational complexity.

4. SIMULATION AND ANALYSIS

In this section, simulation results are provided to illustrate the performance of the proposed method.
Consider that there is a uniform linear array with 4 antenna elements equispaced by d = 1/2λ. Taking
GPS as an example, the L1 frequency is 1.575 × 109 Hz, so d is set as 0.095 m in the simulation. The
sampling frequency fs = 4fc where fc denotes the center frequency of GPS signal. Assume that there
are four far-field signals impinging on the antenna array. One of them is a GPS signal, and the other
three are narrowband suppressed jamming signals. The DOA of GPS signal is 0◦. Assume that the
central frequency of the GPS signal is 1 and that the rest of the signal is normalized according to it, then
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Figure 2. The algorithm flow chart.

the frequencies of the remaining signals are 0.9, 1, and 1.1, respectively. The DOAs of the other three
signals are −45◦, 25◦, and 0◦. The signal-to-noise ratio (SNR) of the GPS signal and the other three
interfering signals are −20 dB, 40 dB, 45 dB, and 40 dB. On this basis, the space frequency response of
SF-SED algorithm is simulated, as shown in Fig. 3. In order to further verify the effectiveness of the
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Figure 3. Array pattern of SF-SED algorithm. Figure 4. Spatial response of SF-SED algorithm.
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Figure 5. ISRout versus input ISR.

40 45 50 55 60 65 70 75 80

40

45

50

55

60

65

70

75

80

85

90

95

ISR
input

(dB)

S
IN

R
 v

ar
ia

tio
n(

dB
)

 

 

SF-SED
SF-PI
SF-MVDR

Figure 6. SINRout versus input ISR.

algorithm, another set of interference signals information is used for simulation in Fig. 4. The DOAs
of interferences are −45◦, −25◦, and 20◦, and the normalized frequencies are 0.98, 1.03, and 1. Other
experiments are carried out under the same basic simulation conditions as Fig. 3.

For the simulation parameters of Fig. 3, Fig. 4, Fig. 5, and Fig. 6, the number of points for an FFT
operation is 512. The frequency domain snapshot is 64. In particular, the number of FFT points varies
from 8 to 1024 for Fig. 7. For Fig. 8, the snapshot number varies from 5 to 80.

Figures 3 and 4 show the three-dimensional mesh diagram for space-frequency response of the
SF-SED algorithm. As shown in the figures, the proposed algorithm forms deep nulls in the direction
and frequency corresponding to the interference signal, which can effectively suppress the interference.
Since the proposed algorithm performs sub-band classification, static weights are assigned to sub-bands
without interference, so the filter response is flat at most frequencies. It can be found that when
the normalized frequencies of the interference signals are close to or even the same as the expected
signal frequency, the algorithm still has good anti-interference effect. This is an inherent property
of space-frequency two-dimensional adaptive processing. When the information of some dimension of
the interference signal is the same as or close to the expected signal, the two-dimensional joint anti-
interference algorithm can suppress the interference signal according to the information of another
dimension.



Progress In Electromagnetics Research M, Vol. 83, 2019 81

-10

-8

-6

-4

-2

0

2

4

6

8

8 16 32 64 128 256 512 1024
FFT point number

 

 

O
ut

pu
t S

IN
R

 (
dB

)

SF-SED
SF-PI
SF-MVDR

Figure 7. SINRout versus FFT point number.

0 10 20 30 40 50 60 70 80
-2

-1

0

1

2

3

4

5

6

Frequency domain snapshot

O
ut

pu
t S

IN
R

 (
dB

)

 

 

SF-SED
SF-PI
SF-MVDR

Figure 8. SINRout versus snapshot number.

Figures 5 and 6 are the output interference-to-signal-ratio (ISR) and SINR changes versus input
ISR, respectively. The ordinate in Fig. 5 is the change in ISR, that is, the absolute value of the difference
between the output ISR and input ISR. In the same way, the ordinate in Fig. 6 is the absolute value of
the difference between output SINR and input SINR. The two above parameters can be used to represent
the influence of the algorithm on the GNSS signals, interference signals, and noise. The two figures
show that compared with SF-PI algorithm and SF-MVDR algorithm, the proposed algorithm has larger
variation of SINR and ISR. Therefore, the SF-SED algorithm has better anti-jamming performance than
the other two algorithms. In addition, according to the simulation result, the output SINR varies with
the input ISR, which is because the algorithms solve the weight vectors according to the covariance
matrix of input signals. The algorithms have greater suppression of interference reception when the
interference power increases.

Figure 7 shows the output signal-to-interference-and-noise ratio (SINR) curve of the proposed
algorithm and related algorithms with the change of FFT points. As shown in the figure, the output
SINR of the three algorithms increases with the change of FFT points, and the proposed algorithm
improves faster. It is because as the number of FFT points increases, the frequency resolution is stronger,
and it is possible to suppress the interference frequency more accurately. The SF-SED algorithm uses
a static weight vector to process the interference-free frequency band, thereby it forms a main lobe in
the desired signal direction and guarantees the satellite signal power. Therefore, it has a higher output
SINR than the other two algorithms.

Figure 8 shows the output SINR curve of the proposed algorithm and related algorithms with the
change of Frequency domain snapshot. Fig. 8 shows that with the increase of the frequency domain
snapshot, the output parameters of the SF-PI and SP-MVDR algorithms are relatively stable, while the
SF-SED algorithm is more affected by the frequency domain snapshot. Since the SF-SED algorithm
needs to calculate the average power of each frequency point by using the frequency domain snapshot
number, the calculated average power is more accurate as the frequency domain snapshot number
increases, so the judgment of whether the sub-frequency point contains interference is also more precise.
Combined with the simulation results, it can be seen that when the frequency domain snapshot is more
than 20, the SF-SED algorithm basically reaches a steady state.

5. CONCLUSION

This paper proposes an SFAP algorithm based on sub-band energy detection. The algorithm classifies
all frequency domain sub-bands through preset decision thresholds and adaptively processes only the
sub-bands with interference, which has low computational complexity. The simulation results show that
the algorithm also has better anti-interference performance.
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