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Impedance Synthesis of Plane Diffraction Vibrator Arrays

Yuriy M. Penkin, Victor A. Katrich, Mikhail V. Nesterenko*,
Sergey L. Berdnik, and Svetlana V. Pshenichnaya

Abstract—The problem of impedance synthesis of two-dimensional diffraction arrays of thin linear
vibrators, whose geometric centers are located at the nodes of a flat rectangular grid with double
periodicity is solved analytically. The problem is formulated as follows: the complex surface impedances
of the vibrators should be determined which allows to steer the diffraction radiation maximum of the
array to any predefined direction. The problem is solved under following assumptions: array is excited
by a polarized plane wave, and the radiation pattern (RP) of each vibrator element in the array coincides
with that of an isolated radiator. The correctness of the solution is verified by simulations using the
formulas for the vibrator impedances for the 5 by 5 antenna array.

1. INTRODUCTION

The main advantage of antenna arrays is related to electric scanning of its radiation pattern [1–3]. The
scanning can be continuous or discrete, depending on a control signal mode. Antenna arrays working in
a discrete-switching mode are called step scanning antennas. The scanning antennas array can also be
classified by an excitation mode of their elements. The analysis of antenna arrays with spatial excitation
of an optical type known as diffraction array is still important for modern practice.

Of course, the diffraction arrays with discrete-switching can be implemented by using different
types of elements, including impedance vibrators. In this case, there exists a possibility to use a
surface impedance of vibrator elements as additional factor to control the array RP by varying electrical
lengths of the vibrators and, therefore, the amplitude-phase distribution over the array aperture [4, 5].
From these positions, the authors studied the one-dimensional antenna dipole array in [6], where the
application of impedance synthesis for controlling scanning angles of the array RP maximum was
justified. Moreover, the problem of an equidistant linear antenna array with symmetric vibrator
excitation by delta voltage generators was solved analytically. This paper is aimed at generalization
of the analytical solution of the impedance synthesis problem to the case of two-dimensional plane
of diffraction vibrator arrays. In the first step, to illustrate the analytical approach, we will use the
simplified theory of antenna array without taking into account the mutual coupling between array
elements [7, 8].

2. FORMULATION OF THE IMPEDANCE SYNTHESIS PROBLEM

Let us consider a 2D diffraction array of impedance vibrators shown in Fig. 1. The array is located in
infinite medium with material parameters (ε1; μ1) in the plane (x0z) of Cartesian coordinate system
(x, y, z). The parameters of the diffraction array are: Nz is the number of rows, Nx the number of
vibrators in a row, dz the the distance between adjacent rows, and dx the distance vibrators in the row.
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Figure 1. The geometry of the diffraction antenna array.

Let us also introduce spherical coordinates (r, θ, ϕ), in which polar axis coincides with the axis {0z},
and angle ϕ is measured from the axis {0x}.

Without losing generality, we assume that the length of all N = Nz × Nx vibrators is 2L (rather
than dz > 2L), and the radius ρnm of the vibrator with indices nm (n ∈ [1, Nx], m ∈ [1, Ny])
satisfies the thin-wire approximation ρnm

2L � 1, ρnm
√

ε1μ1

λ � 1 (λ is the free space wavelength). Each
vibrator is characterized by the constant impedance Z̄nm normalized to the medium wave impedance
Z0 =

√
μ1/ε1Ω. Let us consider an array excitation by a monochromatic plane polarized wave

Ez = E0e
ik1y (k1 = k

√
ε1μ1, k = ω/c are wave numbers, and c ≈ 2.998 ·1010 cm/s) incident normally on

the array from a half-space y ≤ 0. If temporal dependence is given in the form eiωt where t is the time,
ω is the circular frequency, and the longitudinal electric currents Jnm(s) on the vibrator elements can
be represented by the zero approximation relative to the first degree of a natural small parameter α [5]

Jnm(s) = −αnm
iω

k1k̃nm

E0
cos k̃nms − cos k̃nmL

cos k̃nmL + αnmP s[k1ρnm, k1L]
, (1)

where
P s(k1ρnm, k1L) = cos k1L [2 ln 2 − γnm(L) − (1/2)Cin(2k1L) − (i/2)Si(4k1L)]

+ sin k1L [(1/2)Si(4k1L) − (i/2)Cin(4k1L)] ,

k̃2
nm (s) = k2

1

(
1 + i2αnm

k1ρnm
Z̄nm

)
= k2

1

(
1 + i2αnmβ̄nm

)
are coefficients; αnm = 1

2 ln[ρnm/(2L)] are the natural

small parameters; β̄nm = Z̄nm
k1ρnm

; γnm(L) = ln ρnm[2L+
√

4L2+ρ2
nm]

4L2 ; Si(x) and Cin(x) are sine and cosine
integrals of the complex argument, and

αnm

∫ L

−L

e−ik1

√
(L−s)2+ρ2

nm√
(L − s)2 + ρ2

nm

cos k̃nmsds ≈ αnm

∫ L

−L

e−ik1

√
(L−s)2+ρ2

nm√
(L − s)2 + ρ2

nm[
cos (k1s) − ik1Lsαnmβ̄nm sin (k1s)

]
ds ≈ αnm

∫ L

−L

e−ik1

√
(L−s)2+ρ2

nm√
(L − s)2 + ρ2

nm

cos (k1s) ds.
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Then the main component of the wave zone electric field reradiated by the vibrator can be written as

Eθ
nm =

60πi

λ
· e−ik1rnm

rnm
sin θ

∫ L

−L
Jnm(s)eisk1 cos θds = 120π

e−ik1rnm

λk2
1rnm

· 1
cos θ

· αnmωE0 sin θ

k̃2
nm − k2

1 cos2 θ

×
k1 cos θ sin

(
k̃nmL

)
cos (k1L cos θ)− k̃nm cos

(
k̃nmL

)
sin (k1L cos θ)

cos k̃nmL + αnmP s[k1ρnm, k1L]
. (2)

The components Eϕ and Er of the electric field diffracted at single vibrator in the coordinate system
(r, θ, ϕ) are equal to zero. If phases of fields arriving at the observation point C (r, θ, ϕ) are taken into
account, the total wave zone reradiation field of the diffraction array Eθ (r, θ, ϕ) is equal to the sum of
the secondary radiation fields of each vibrator. Therefore, we can write

Eθ (r, θ, ϕ) =
120πωE0 sin θ

λk2
1 cos θ

Nz∑
n=1

Nx∑
m=1

e−ik1rnm

rnm
· αnm

k̃2
nm − k2

1 cos2 θ

×
k1 cos θ sin

(
k̃nmL

)
cos (k1L cos θ) − k̃nm cos

(
k̃nmL

)
sin (k1L cos θ)

cos k̃nmL + αnmP s[k1ρnm, k1L]
. (3)

The impedance synthesis problem can be formulated as follows: for a given direction (θmax, ϕmax) of
the maximum of the secondary radiation field in the wave zone, the impedances Z̄nm of each vibrator
element can be determined based on Equation (3).

3. SOLUTION OF THE IMPEDANCE SYNTHESIS PROBLEM

First, let us convert Equation (2) defining the field of secondary field reradiated by an isolated vibrator [6]
taking into account the relations k̃nm ≈ k1

(
1 + iαnmβ̄nm

)
and k̃2

nm−k2
1 cos2 θ = k2

1

(
sin2 θ + 2iαnmβ̄nm

)
valid due to the smallness of the parameter α, and representations of trigonometric functions
sin

(
k̃mnL

)
≈ sin (k1L) + ik1Lαmmβ̄mm cos (k1L) and cos

(
k̃mnL

)
≈ cos (k1L) − ik1Lαmnβ̄nm sin (k1L)

valid up to terms of α2. Then we can write

Eθ
nm = 120π

e−ik1rnm

λk3
1rnm

· αnmωE0

cos θ sin3 θ

(
f1 (θ) sin2 θ + iαnmβ̄nm

[
f2 (θ) sin2 θ − 2f1 (θ)

])
, (4a)

where

f1 (θ) =
cos θ sin (k1L) cos (k1L cos θ) − cos (k1L) sin (k1L cos θ)

cos k̃nmL + αnmP s[k1ρnm, k1L]
,

f2 (θ) =
k1L cos θ cos (k1L) cos (k1L cos θ) + sin (k1L cos θ) [k1L sin (k1L) − cos (k1L)]

cos k̃nmL + αnmP s[k1ρnm, k1L]
.

After defining
Cnm = cos (k1L) + αnmRe (P s[k1ρnm, k1L]) ,

f̃1 (θ) = cos θ sin (k1L) cos (k1L cos θ) − cos (k1L) sin (k1L cos θ) ,

f̃2 (θ) = k1L cos θ cos (k1L) cos (k1L cos θ) + sin (k1L cos θ) [k1L sin (k1L) − cos (k1L)]

the expression for Eθ
nm can be written as

Eθ
nm = 120π

e−ik1rnm

λk3
1rnm

· αnmωE0

Cnm cos θ sin θ

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

f̃1 (θ) − iαnm
f̃1 (θ)
Cnm

Im (P s[k1ρnm, k1L])

+iαnmβ̄nm

[
f̃2 (θ) sin2 θ − 2f̃1 (θ)

sin2 θ
+

f̃1 (θ)
Cnm

k1L sin (k1L)

]
⎫⎪⎪⎪⎬
⎪⎪⎪⎭

.

(4b)
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Equation (4b) is more convenient for the analysis, since the first two terms in curly bracket
determine the RP of the isolated perfectly conducting vibrator, while the third term defines the field
variation due to the impedance coating of the vibrator.

If the difference of geometric path for the waves propagating from neighboring vibrators and
observation point C (r, θ, ϕ) is taken into account, the expression for the total secondary radiation
field in the wave zone can be presented based on Eq. (4b) as follows [4, 7, 8]

Eθ (θ, ϕ) =
120πωE0

k3
1λ cos θ sin θ

e−i(Nz+1)u/2e−i(Nx+1)v/2
Nz∑
n=1

Nx∑
m=1

αnm

Cnm
ei(nu+mv)

×

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

f̃1 (θ)− iαnm
f̃1 (θ)
Cnm

Im (P s[k1ρnm, k1L])

+iαnmβ̄nm

[
f̃2 (θ) sin2 θ − 2f̃1 (θ)

sin2 θ
+

f̃1 (θ)
Cnm

k1L sin (k1L)

]
⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(5)

where u = k1dz cos θ and ν = k1dx sin θ cos ϕ. If the array vibrators are perfectly conducting,
β̄nm = Z̄nm = 0, and amplitudes of all vibrator currents are equal to Jmn = J0 =
120παωE0

Ck3
1λ

[
1 − i α

C Im (P s [k1ρ, k1L])
]
, then αnm = α, ρnm = ρ, C = Cnm|αmn=α,pnm=ρ and Equation (5)

is reduced to

Eθ (θ, ϕ) = J0e
−i(Nz+1)u/2e−i(Nx+1)v/2 f̃1 (θ)

cos θ sin θ

Nz∑
n=1

Nx∑
m=1

ei(nu+mv). (6)

As can be seen, the RP maximum is directed along the axis {0y}(θ = π/2, ϕ = π/2) under condition
u = v = 0. One can also see that the common array factor in Equation (6) is a product of two
independent series describing the RP of the two linear vibrator arrays whose axes are directed along
axes {0x} and {0z}.

As known from the antenna array theory (for example, [7, 8]), the rotational displacement of the RP
in space can be realized by linear phase shifts between the currents of the vibrators. If the phase shift
between waves arriving at observation point from adjacent vibrator rows is Δu, and that from adjacent
vibrator in a row is Δv, the direction of the antenna array RP maximum (θmax;ϕmax) is determined by
the following relations

cos θmax = Δu/k1dz and sin θmax cos ϕmax = Δv/k1dx. (7)

Then Equation (6) can be rewritten as

Eθ (θ, ϕ) = J0e
−i(Nz+1)u/2e−i(Nx+1)v/2 f̃1 (θ)

cos θ sin θ

Nz∑
n=1

Nx∑
m=1

ei(nu+mv)e−i[(n−1)Δu+(m−1)Δv]. (8)

As can be seen from the above formulas, Equations (5) and (8) are identical if the following relations

e−ik1[(n−1)dzcosθ+(m−1)dx sin θ cos ϕ] − 1

= iαβ̄nm
Cf̃2 (θ) sin2 θ − f̃1 (θ)

[
2C − k1L sin (k1L) sin2 θ

]
f̃1 (θ) sin2 θ [C − iαIm (P s[k1ρ, k1L])]

∣∣∣∣∣
θ=θmax;ϕ=ϕmax

(9)

are valid for all indices n and m. The relations in Eq. (9) can be used as equations allowing to find the
unknowns

{
β̄nm

}
for any angle (θmax;ϕmax).

Let us denote χnm = [(n − 1)dz cos θmax + (m − 1)dx sin θmax cos ϕmax], as the phase parameter,

D =
Cf̃2(θ) sin2 θ−f̃1(θ)[2C−k1L sin(k1L) sin2 θ]

f̃1(θ) sin2 θ

∣∣∣∣
θ=θmax

as the functional multiplier, and Z̄nm = R̄nm + iX̄nm

as the complex impedance, where R̄nm and X̄nm are the real and imaginary parts of the impedance.
Then Equation (9) can be written in the following form

1 − e−ik1χnm = −iα
R̄nm + iX̄nm

k1ρ

D

C − iαIm (P s[k1ρ, k1L])
. (10)
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For lossless media, parameter α is real, and the relations in Equation (10) can be rewritten as

iαDR̄nm − αDX̄nm

k1ρ
= − [1 − cos (k1χnm) + i sin (k1χnm)] × [C − iαIm (P s[k1ρ, k1L])] . (11)

Substituting C defined in the relations of Equation (4a) into Equation (11), we obtain the identity

iαDR̄nm − αDX̄nm

k1ρ
− [1 − cos (k1χnm)]

× [cos (k1L) + αRe (P s[k1ρ, k1L])] − α sin (k1χnm) Im (P s[k1ρ, k1L])
−i sin (k1χnm) [cos (k1L) + αRe (P s[k1ρ, k1L])] + iαIm (P s[k1ρ, k1L]) [1 − cos (k1χnm)] , (12)

Denoting the real and imaginary parts of the functional P s[k1ρnm, k1L] defined in Eq. (1) as

Re (P s) = cos k1L [2 ln 2 − γnm(L) − (1/2)Cin(2k1L)] + (1/2)Si(4k1L) sin k1L,

Im (P s) = −(1/2) [Si(4k1L) cos k1L + Cin(4k1L) sin k1L] ,
(13)

we can represent the relation of Equation (12) in the form

iαDR̄nm − αDX̄nm

k1ρ
= − [1 − cos (k1χnm)] × [cos (k1L) + αRe (P s)] − α sin (k1χnm) Im (P s)

−i sin (k1χnm) [cos (k1L) + αRe (P s)] + iαIm (P s) [1 − cos (k1χnm)] , (14)

The final formulas for the real and imaginary parts of the surface impedance of the array vibrators
can be obtained based on Eq. (14), as

R̄nm =
k1ρ

αD

{
αIm (P s) [1 − cos (k1χnm)]
− sin (k1χnm) [cos (k1L) + αRe (P s)]

}
,

X̄nm =
k1ρ

αD

{
α sin (k1χnm) Im (P s)
+ [1 − cos (k1χnm)] × [cos (k1L) + αRe (P s)]

}
,

n = 1, 2 . . . Nx;m = 1, 2 . . . Ny. (15)

Equations (15) are valid for any number of vibrators in the array and arbitrary distances between the
vibrators. However, in the general case, the impedance Z̄nm = R̄nm + iX̄nm defined as effective physical
quantities does not guarantee that the condition R̄nm ≥ 0 can be always fulfilled. Since this condition,
put forward based on energy laws, determines the possibility of practical realization in the form of
vibrator intrinsic impedance, the fulfillment of the condition R̄Sn ≥ 0 should always be checked in the
course of numerical simulations.

The total field Eθ
Σ (r, θ, ϕ) in the upper half-space above the array can be represented as the sum of

the excitation and secondary radiation field, that is, the incident plane wave field and the field diffracted
by the antenna array. Therefore, we can write

Eθ
Σ (r, θ, ϕ) = E0e

−ik1r cos θ +
Nz∑
n=1

Nx∑
m=1

Eθ
nm, (16)

which states that the formation of the antenna RP in the wave zone is determined only by the diffraction
component.

4. NUMERICAL RESULTS

The electromagnetic wave incident at an obstacle, whose dimensions are commensurate with the
radiation field wavelength in the medium, is scattered in all directions. If the obstacle is characterized
by periodic variation of any parameter influencing the wave propagation, its energy is scattered in
discrete directions, known as diffraction orders. The main diffraction order in such structures can be
analyzed by using scattering matrices which include the energy reflection and transmission coefficients
[9]. However, the key stage is still the study of the diffraction characteristics of the structures that are
changed due to variation of the vibrator impedance. Therefore, the simulation of the antenna arrays
can be carried out based on the diffraction characteristics.
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As an example, consider the diffraction array consisting of N symmetric resonant impedance
vibrators (N = 25, Nx = 5, Nz = 5), whose length and radius are 2L = 0.4908λ and ρnm = L/75.
To solve the problem, the impedance of each vibrator should be found based on Equations (15) so
that the RP maximum is scanned in the direction defined by the angle (θmax;ϕmax). When the
procedure of impedances synthesis procedure is completed, the array RD should be computed by busing
Equation (16).

The simulation results are presented for the two impedance arrays with the geometric parameters:
dz = 0.5λ, dx = 0.5λ and dz = 0.5λ, dx = 0.25λ. The simulation results are shown as deviations of the
angle (θmax;ϕmax) symmetrical relative to the array normal (θ = 90◦;ϕ = 90◦), which corresponds to
the direction of the RP maxima of the array with perfectly conducting vibrators.

The cross sections of the normalized array RP plotted, based on Equation (16), as a function of
the RP maxima deviation in the plane θmax = 90◦ are shown in Fig. 2. The plots of the RP as functions
of the angular coordinates ϕ◦ and θ◦ are shown in Fig. 2(a) and Fig. 2(b).
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Figure 2. The array RPs in the plane θmax = 90◦ with dz = 0.5λ, dx = 0.5λ, and Δϕmax = 14.4775◦
as functions of: (a) the angle ϕ◦, (b) the angle θ◦.

Three curves plotted using parameter ϕmax equal to 90◦ − Δϕmax, 90◦, and 90◦ + Δϕmax

(Δϕmax = 14.4775◦) are shown in Fig. 2(a). The simulation results, that is, the impedance defined
by Equation (15) and current arguments in Equation (1) on the vibrators, are presented in Table 1 and
Table 2 for angles ϕmax = 104.4775◦ and ϕmax = 75.5225◦. The row and column indices in the tables,
n and m, correspond to the positions of the vibrator scatterer in the array structure (Fig. 1).

The simulation data presented in the tables confirm that the absolute value of R̄nm and X̄nm are far
less than that for active arrays when the vibrators are excited by concentrated electromotive forces [6].
As can be seen, if ϕmax = 75.5225◦, the negative values R̄nm and arg (Jnm) are observed simultaneously.

Table 1. Simulation results (θmax = 90◦; ϕmax = 104.4775◦).

R̄nm
X̄nm arg (Jnm) , [◦]

0 0.0056 0.00792 0.0056 0 0 0.00232 0.00792 0.01352 0.01584 0 45 90 135 180
0 0.0056 0.00792 0.0056 0 0 0.00232 0.00792 0.01352 0.01584 0 45 90 135 180
0 0.0056 0.00792 0.0056 0 0 0.00232 0.00792 0.01352 0.01584 0 45 90 135 180
0 0.0056 0.00792 0.0056 0 0 0.00232 0.00792 0.01352 0.01584 0 45 90 135 180
0 0.0056 0.00792 0.0056 0 0 0.00232 0.00792 0.01352 0.01584 0 45 90 135 180
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Table 2. Simulation results (θmax = 90◦; ϕmax = 75.5225◦).

R̄nm
X̄nm arg (Jnm) , [◦]

0 −0.0056 −0.00792 −0.0056 0 0 0.00232 0.00792 0.01352 0.01584 0 −45 −90 −135 −180
0 −0.0056 −0.00792 −0.0056 0 0 0.00232 0.00792 0.01352 0.01584 0 −45 −90 −135 −180
0 −0.0056 −0.00792 −0.0056 0 0 0.00232 0.00792 0.01352 0.01584 0 −45 −90 −135 −180
0 −0.0056 −0.00792 −0.0056 0 0 0.00232 0.00792 0.01352 0.01584 0 −45 −90 −135 −180
0 −0.0056 −0.00792 −0.0056 0 0 0.00232 0.00792 0.01352 0.01584 0 −45 −90 −135 −180

Thus, the physically correct values of the impedance R̄nm satisfying the conditions R̄nm ≥ 0 can be
obtained by changing in Equation (6) the direction of the vibrator’s currents on the opposite ones. Since
the proposed diffraction antenna array has no elements to control the vibrator currents, this requirement
cannot be fulfilled. In other words, if the vibrator array is interpreted from a functional point of view as
a thin dielectric layer with effective material parameters, the interval of refraction angles of the incident
field satisfying the condition R̄nm ≥ 0 determines the refraction angle zone for the material layer, while
the interval of angles corresponding to R̄nm < 0 defines an anomalous beam deflection observed, for
example, for metamaterials [10, 11].

We have found that the positive values of R̄nm are observed if the realizable phase difference
between the currents on the edge vibrator elements does not exceed 180◦. The maximal angle by which
the RP can deviate from the normal is defined by the formula

Δϕmax = arcsin
(

π

kdx(Nx − 1)

)
= arcsin

(
λ

2dx(Nx − 1)

)
(17)

or Δϕmax ≈ λ
2dx(Nx−1) · 180◦

π if the deviations are small. If we compare the value of Δϕmax defined

by Equation (17) with the width of the array RP at the half power level Δϕ0.5 ≈ λ
dx(Nx−1) · 51◦, the

theoretical level of the maximum deviations is Δϕmax ≈ ±0.56 · Δϕ0.5.
If angle ϕmax = 90◦, the condition (17) is transformed to

Δθmax = arcsin
(

λ

2dz(Nz − 1)

)
. (18)

In this case, the theoretical estimate Δθmax ≈ ±0.56 · Δθ0.5 is also valid.
Similar conclusions can be made by analyzing plots of the normalized array RPs defined by

Equation (16) if the maxima are deviated in the plane ϕmax = 90◦. The plots are shown in Fig. 3.
The cross sections of the normalized array RPs as functions of the angular coordinate ϕ◦ and θ◦ are

plotted in Fig. 3(a) and Fig. 3(b). Three curves corresponding to parameter θmax equal to 90◦−Δθmax,
90◦, and 90◦ + Δθmax (θmax = 14.4775◦) are shown in Fig. 3(b). The simulation results are presented
in Table 3 and Table 4 for angles θmax = 104.4775◦ and θmax = 75.5225◦ .

It is quite clear that the RP maximum of the proposed diffraction antenna array can be scanned in
any predefined directions including those lying in diagonal planes by means of varying the impedance
R̄nm of all vibrators. To confirm this conclusion, the main sections of the normalized RP obtained under

Table 3. Simulation results obtained for ϕmax = 90◦, θmax = 104.4775◦ .

R̄nm X̄nm arg (Jnm) , [◦]

0 0 0 0 0 0 0 0 0 0 −180 −180 −180 −180 −180

0.0056 0.0056 0.0056 0.0056 0.0056 0.00232 0.00232 0.00232 0.00232 0.00232 −135 −135 −135 −135 −135

0.00792 0.00792 0.00792 0.00792 0.00792 0.00792 0.00792 0.00792 0.00792 0.00792 −90 −90 −90 −90 −90

0.0056 0.0056 0.0056 0.0056 0.0056 0.01352 0.01352 0.01352 0.01352 0.01352 −45 −45 −45 −45 −45

0 0 0 0 0 0.01584 0.01584 0.01584 0.01584 0.01584 −0 −0 −0 −0 −0
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(a) (b)

Figure 3. The array RPs with dz = 0.5λ, dx = 0.5λ, ϕmax = 90◦, Δθmax = 14.4775◦ as functions of:
(a) the angle ϕ◦, (b) the angle θ◦.

Table 4. Simulation results obtained for ϕmax = 90◦, θmax = 75.5225◦.

R̄nm X̄nm arg (Jnm) , [◦]

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

−0.0056 −0.0056 −0.0056 −0.0056 −0.0056 0.00232 0.00232 0.00232 0.00232 0.00232 −45 −45 −45 −45 −45

−0.00792 −0.00792 −0.00792 −0.00792 −0.00792 0.00792 0.00792 0.00792 0.00792 0.00792 −90 −90 −90 −90 −90

−0.0056 −0.0056 −0.0056 −0.0056 −0.0056 0.01352 0.01352 0.01352 0.01352 0.01352 −135 −135 −135 −135 −135

−0 −0 −0 −0 −0 0.01584 0.01584 0.01584 0.01584 0.01584 −180 −180 −180 −180 −180

the condition ϕmax = θmax are shown in Fig. 4. We will not present here the corresponding table of the
impedances, but we simply indicate that the angular zone of the natural array refraction is within the
intervals 90◦ ≤ ϕmax, θmax ≤ 97◦.
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(a) (b)

Figure 4. The array RPs with dz = 0.5λ, dx = 0.5λ, ϕmax = θmax as functions of: (a) the angle ϕ◦,
(b) the angle θ◦.
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The relations in Eq. (17) allows us to state that the smaller is the ratio dx/λ, the wider is the
angular zone of natural refraction of the diffraction array in the plane θmax = 90◦. As parameter dx/λ
is decreased while dz/λ is constant (Fig. 1), the array RP gets more pronounced rectangular shape
asymmetrically extended in the plane of the smaller side of the diffraction apertures. The plots of the
normalized cross sections of the array RP with parameters dz = 0.5λ and dx = 0.25λ as functions of the
angular coordinate ϕ◦ and θ◦ are shown in Fig. 5(a) and Fig. 5(b). Three curves plotted for parameter
ϕmax equal to 60◦, 90◦, and 120◦ are shown in Fig. 5(a). The simulation results for angles ϕmax = 120◦
and ϕmax = 120◦ are also presented in Table 5 and Table 6.

In this case, the simulation results have shown that the real part of impedance Z̄nm is always
positive if angle θmax = 90◦, while angle ϕmax varies at interval ϕmax ∈ [90◦, 120◦]. When the direction
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Figure 5. The array RPs with dz = 0.5λ, dx = 0.25λ, and θmax = 90◦ as functions of: (a) the angle
ϕ◦, (b) the angle θ◦.

Table 5. Simulation results obtained for (ϕmax = 120◦; θmax = 90◦).

R̄nm X̄nm arg (Jnm) , [◦]
0 0.0056 0.00792 0.0056 0 0 0.00232 0.00792 0.01352 0.01584 0 45 90 135 180
0 0.0056 0.00792 0.0056 0 0 0.00232 0.00792 0.01352 0.01584 0 45 90 135 180
0 0.0056 0.00792 0.0056 0 0 0.00232 0.00792 0.01352 0.01584 0 45 90 135 180
0 0.0056 0.00792 0.0056 0 0 0.00232 0.00792 0.01352 0.01584 0 45 90 135 180
0 0.0056 0.00792 0.0056 0 0 0.00232 0.00792 0.01352 0.01584 0 45 90 135 180

Table 6. Simulation results obtained for (ϕmax = 60◦; θmax = 90◦).

R̄nm X̄nm arg (Jnm) , [◦]

0 −0.0056 −0.00792 −0.0056 0 0 0.00232 0.00792 0.01352 0.01584 0 −45 −90 −135 −180

0 −0.0056 −0.00792 −0.0056 0 0 0.00232 0.00792 0.01352 0.01584 0 −45 −90 −135 −180

0 −0.0056 −0.00792 −0.0056 0 0 0.00232 0.00792 0.01352 0.01584 0 −45 −90 −135 −180

0 −0.0056 −0.00792 −0.0056 0 0 0.00232 0.00792 0.01352 0.01584 0 −45 −90 −135 −180

0 −0.0056 −0.00792 −0.0056 0 0 0.00232 0.00792 0.01352 0.01584 0 −45 −90 −135 −180
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Figure 6. The array RPs with dz = 0.5λ, dx = 0.25λ, and ϕmax = θmax as functions of: (a) the angle
ϕ◦, (b) the angle θ◦.

of the RP maximum varies in the plane ϕmax = 90◦, the effects similar to those shown in Fig. 3(b) are
observed, that is, the angular zone of natural refraction of the diffraction array is 90◦ ≤ θmax ≤ 97◦. The
plots of the main sections of the normalized RPs obtained under the condition ϕmax = θmax are shown
in Fig. 6. The simulation results confirm that the sector of the angular zone of the natural refraction
for the array is in the range (90◦ ≤ ϕmax ≤ 120◦; 90◦ ≤ θmax ≤ 97◦).

5. CONCLUSION

A new method of impedance synthesis of the antenna array RP proposed earlier by the authors in [6]
for a linear array of symmetrical vibrators excited by concentrated voltage generators is generalized
for plane 2D diffraction arrays. The problem of impedance synthesis for an antenna array with double
periodicity is solved analytically under the condition of unilateral excitation by a plane wave incident
along the array normal. Formulas allowing direct calculation of the impedance value on each vibrator are
obtained which afford ground for steering the array secondary radiation maximum in a given direction.
These formulas can form the basis for the control algorithms of the scattering of diffraction antenna
array that are required in practice, for example, for the RD scanning.

Simulation of the antenna array consisting of twenty-five symmetric half-wave vibrators (N = 25,
Nx = 5, Nz = 5, L = λ/4) have confirmed the possibility of the RP beam scanning in front half-space
by varying the complex impedances of the vibrators. The physical realizability to ensure that the
condition R̄nm ≥ 0 holds is analyzed. The limits of the angular zones of natural refraction are defined
for the diffraction array with periods (dz = 0.5λ; dx = 0.5λ) and (dz = 0.5λ; dx = 0.25λ). Taking into
account the reciprocity principle valid for all antenna structures without nonlinear elements, we may
state that the results obtained in the work can be used to simulate feed-through diffraction arrays which
transform obliquely incident electromagnetic fields into a plane wave propagating in the direction to the
array normal.
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