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Multistatic Airborne Passive Synthetic Aperture Radar Imaging
Based on Two-Level Block Sparsity

Lele Qu* and Yu Liu

Abstract—Available multiple illuminators in a multistatic airborne passive synthetic aperture radar
(SAR) system can enhance SAR imaging quality. In this paper, a new imaging algorithm based on two-
level block sparsity for a multistatic airborne passive SAR system is proposed. The proposed imaging
algorithm named by two-level block matching pursuit (BMP) algorithm utilizes both the spatially
clustered property of observed targets and joint sparsity of the multistatic observation, i.e., two-level
block sparsity to achieve the imaging reconstruction of an observed scene. The simulation results show
that the proposed two-level BMP imaging algorithm for the multistatic airborne passive SAR system
can reduce imaging reconstruction time and provide enhanced imaging reconstruction quality compared
to the state-of-the-art structured sparse imaging algorithm.

1. INTRODUCTION

Passive radar which exploits an existing commercial transmitter as an illuminator of opportunity has
proven to be a promising technology for target imaging, detection, and tracking [1]. Compared to
a traditional active radar system, a passive radar system has the advantages of stealth operation,
strong survivability, relative simplicity, and low cost. The available illuminators of opportunity include
external sources include FM radio, Digital Video Broadcasting-Terrestrial (DVB-T), China Mobile
Multimedia Broadcasting (CMMB), Global Navigation Satellite System (GNSS), and Wi-Fi signal [2–
4]. While many passive radar systems are focused on the detection of targets with stationary ground-
based receivers, the passive radar systems mounted on the moving airborne platform have received
substantial attention in recent years [5–7]. Airborne passive synthetic aperture radar (SAR) can allow
two-dimensional images of the ground surface to be imaged while providing the advantage of an increased
target detection range and a reduced terrain masking effect [8–12].

Passive radar suffers from narrow signal bandwidth and low carrier frequency. As such, it is
important to exploit multiple available illuminators for multistatic operation to enhance the imaging
quality. The availability of multiple spatially separated illuminators of opportunity provides a way
to achieve multistatic diversity and overall signal enhancement. In recent years, a sparsity-driven
optimization technique based on compressive sensing has shown effectiveness in high-resolution passive
radar imaging [13–16]. Two types of block sparsity properties are satisfied in a multistatic airborne
passive SAR imaging scenario. Firstly, most targets extend over a set of pixels, and nonzero pixels of
the reconstructed image occur in clusters. This clustering property of targets is referred to as block
sparsity in the spatial domain. On the other hand, the reflection coefficients of underlying targets
vary dependently for bistatic pairs associated with different illuminators. As a result, the locations of
dominant pixels with nonzero values are common to all the images for different bistatic pairs, but the
values of dominant pixels are different. This signal structure is called block sparsity in the observational
dimensionality. In [17], a structured Bayesian compressive sensing (BCS) algorithm which utilizes two
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types of block sparsity introduced by a clustering target and multistatic observation has been proposed
to deal with multistatic airborne passive SAR imaging. However, the structured BCS imaging algorithm
has huge computational complexity, and there are some unknown parameters that need to be manually
tuned, which is not practical to the multistatic airborne passive SAR imaging.

To solve the above problem, we develop a new multistatic airborne passive SAR imaging algorithm
using a two-level block matching pursuit (BMP) technique in this paper. As a greedy algorithm, the two-
level BMP method is computationally efficient and easy to implement in practice. Inspired by the work
in [18], the proposed two-level BMP method combines the probabilistic graph model (PGM) [19, 20]
and greedy pursuit framework [21] to describe the clustered characteristic of targets for each illuminator
of opportunity and the joint sparsity property for all the illuminators of opportunity. The simulation
results show that the proposed two-level BMP imaging algorithm for the multistatic airborne passive
SAR system can reduce reconstruction time and provide enhanced imaging reconstruction quality.

The remainder of this paper is organized as follows. In Section 2, the signal model of multistatic
airborne passive SAR system is formulated. The proposed two-level BMP imaging algorithm for the
multistatic airborne passive SAR system is proposed in Section 3. Simulation experiments are provided
in Section 4 to validate the proposed imaging approach. Conclusions are given in Section 5.

2. MULTISTATIC AIRBORNE PASSIVE SAR SIGNAL MODEL

Consider a multistatic airborne passive SAR system consisting of Q stationary illuminators of
opportunity and a moving airborne receiver which flies along a linear trajectory Γ. It is supposed
that Q transmitters of opportunity located at known stationary position a(q) (q = 1, 2, . . . , Q) transmit
waveforms in non-overlapping frequency bands which are respectively centered at f (q). At the nth
(n = 1, 2, . . . , N) azimuth location of the moving airborne receiver Pn, the direct path signal received
from the qth (q = 1, 2, . . . , Q) transmitter is expressed as

d(q)
n (t) = u(q)

(
t − τ

(q)
dn

)
exp

[
j2πf (q)

(
t − τ

(q)
dn

)]
(1)

where u(q)(t) is the complex envelope of the signal transmitted by the qth illuminator; τ
(q)
dn = R

(q)
dn /c

is the time delay related to direct path signal; R
(q)
dn = |a(q)−Pn| represents the distance between the

qth transmitter and the nth receiver position; c is the speed of wave propagation. It is assumed that
the direct path signal transmitted from each illuminator is perfectly reconstructed at the receiver after
demodulation and forward error correction.

For the qth illuminator, the surveillance signal reflected from the targets received at the nth azimuth
location is given by
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where θ(q)(ρ,Pn) is the reflection coefficient of target corresponding to the qth illuminator at the position
ρ when the receiver is positioned at Pn; τ

(q)
pn (ρ) = R

(q)
pn /c is the bistatic time delay related to the qth

illuminator; R
(q)
pn = |ρ − a(q)| + |ρ − Pn| is the bistatic range between the qth illuminator, the target,

and the nth receiver position.
After demodulation, we perform a complex correlation operation on the baseband signals of direct

path and surveillance channels and obtain
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where ⊗ denotes the complex correlation operation. U (q)(f) and Z
(q)
n (f) are the Fourier transforms of

u(q)(t) and z
(q)
n (t), respectively. Then Eq. (3) can be transformed into the frequency domain as
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where f ∈ (−B(q)/2, B(q)/2), B(q) is the bandwidth of baseband signal of the qth illuminator. Defining
the filter factor G(f) = [U (q)(f)][U (q)(f)]∗ and performing filtering operation in the frequency domain,
Eq. (4) can be reformulated as

y(q)
n (f) =

∫
θ(q)(ρ,Pn)exp

[
−j2π

(
f + f (q)

) (
τ (q)
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(q)
dn

)]
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where y
(q)
n (f) = Z

(q)
n (f)/G(f).

By discretizing the observed scene into Px × Py pixels, Eq. (5) can be represented as the matrix-
vector form

y(q)
n = Ψ(q)

n θ(q) + ε(q)
n (6)

where θ(q) is the PxPy × 1 scene reflectivity vector related to the qth bistatic pair; y(q)
n =

[y(q)
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dictionary matrix; and the mth (m = 1, 2, . . . ,M) element of the lth (l = 1, . . . , PxPy) column of Ψ(q)
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where ρl is the spatial location vector representing the spatial location of the lth pixel.
Stacking the frequency measurements from all N azimuth locations, we have the following MMV

problem
y(q) = Ψ(q)θ(q) + ε(q) (8)

where y(q) = [y(q)T

1 , . . . ,y(q)T

N ]T , Ψ(q) = [Ψ(q)T

1 , . . . ,Ψ(q)T

N ]T , and ε(q) = [ε(q)T

1 , . . . , ε
(q)T

N ]T . It is noted
that for each illuminator, θ(q) have a block sparsity feature due to the spatially clustering characteristics
of observed targets. On the other hand, the non-zero reflection coefficients of targets have common
support for multiple illuminators; however, their exact values are different. Thus, θ(q) have joint sparsity
pattern for multiple illuminators. Therefore, θ(q) have two classes of structure block sparsity, and the
multistatic airborne passive SAR imaging reconstruction can be formulated as the recovery of θ(q) with
two-level block sparsity.

3. TWO-LEVEL BMP ALGORITHM

3.1. Probabilistic Graph Model

Firstly, we define the support set Λ(q) corresponding to target area as the set of indices corresponding
to the dominant coefficients in θ(q). The complementary set of Λ(q) is Λ̄(q), which is related to the
artifact area in θ(q). The support area s is denoted by a vector composed of 1 and −1, where sΛ(q)

= 1
and sΛ̄(q)

= −1. The support area s can be described by the second-order Markov random field, where
each pixel interacts only with its neighbors. The contribution of the interaction between a pixel and its
neighbors can be described by

p(si|sNi) = exp

⎛
⎝ ∑

i′∈Ni

sisi′

⎞
⎠ /Z(sNi) (9)

where Ni is the set of all neighbors of pixel i, and Z(sNi) is the normalizing function of the conditional
probability density function (PDF).

Figure 1 shows the PGM model for describing the two-level block sparsity. The support vertex
si is related to its neighbors sNi according to the cluster property. The value of si determines
whether the values of {θ(1)

i , θ
(2)
i , . . . , θ

(Q)
i } are zero according to the joint sparsity pattern. By
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Figure 1. PGM model for describing the two-level block sparsity.

assuming the independence of the measurement data for different illuminators, the reflection coefficients
θ
(1)
i , θ
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(Q)
i are independent values, and their common support area is given by
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It is noted that θ
(q)
i is the dominant nonzero coefficient with the high probability when si = 1. On

the contrary, θ
(q)
i is the zero value with the high probability when si = −1. According to [22], the joint

PDF of vertices in Fig. 1 is given by
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where J(si) is the function depends on si, and si is estimated by maximizing the joint PDF in Eq. (11)
as follows

ŝi = arg max
si∈{−1,1}

J(si) (12)

It is worth mentioning that the value of si is determined by two factors in Eq. (12). By maximizing
the first term p(si|sNi), we can preserve the spatially clustered property of targets. The joint sparsity
pattern is kept for all the measurement data for multiple illuminators of opportunity by maximizing

the second term
Q∏

q=1
p(θ(q)

i |si). The solution to Eq. (12) is given by

{
ŝi = 1, when Δ> 0
ŝi = −1, when Δ ≤ 0 (13)

where Δ = 2
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The geometrical approximation [20] can be utilized to determine the PDFs p(θ(q)
i |si = 1) and

p(θ(q)
i |si = −1). The geometrical approximation of PDFs is illustrated in Fig. 2. We can use the piece-

constant function to determine the PDFs p(θ(q)
i |si = 1) and p(θ(q)

i |si = −1) as respectively illustrated
in Figs. 2(a) and (b).

Accordingly, p(θ(q)
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i |si = −1) is determined by as shown in Fig. 2(c)
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Figure 2. Geometrical approximation of PDFs.

where τ is the threshold value. We define the indicator function

I(x) =
{

1 |x| ≥ τ

0 |x| < τ
(15)

Then we have
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Assuming that ε4/ε1 = δ and ε3/ε2 = 1/δ (0 < δ < 1), Eq. (16) can be reformulated as
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3.2. Two-Level BMP Algorithm

Two-level BMP algorithm uses PGM model to combine the multistatic illuminating group sparsity and
spatially clustered sparsity, i.e., the two-level block sparsity to achieve imaging reconstruction. Before
the introduction of two-level BMP algorithm, we first predefine three functions as follows.

(1) max ind(x,K) � {the set of indices corresponding to the K largest amplitude components of x}
(2) add (x,Λ) � {∀ ∈ Λ, perform xi = xi + 1}
(3) Λvote = majority − vote({Λ(q)|q = 1, 2, . . . , Q}): (a) Set n = 0PxPy×1; (b) n = add(n,Λ(q)) for

q = 1, 2, . . . , Q; (c) Λvote = max ind(n,K).

The detailed procedures of the two-level BMP algorithm are summarized in Table 1.
It is worth mentioning that the proposed two-level BMP algorithm requires the sparsity level K

of observed scene as a part of its input to achieve an accurate imaging reconstruction. The sparsity
level can be determined by running the two-level BMP algorithm within a range of sparsity level, which
leads to an increase of computational cost of the proposed algorithm. If the change of the recover error
is no longer significant with the increase of the value of K, the current value of K can be used as the
input parameter of the proposed two-level BMP algorithm. The cross validation technique [23, 24] can
also be an alternative way to estimate the appropriate sparsity level of observed scene.
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Table 1. The detailed procedures of the two-level BMP algorithm.

Input: {y(q),Ψ(q)|q = 1, 2, . . . , Q}, the sparsity level K, {ε1, ε2, ε3, ε4}.
Initialization: r(q,old) = y(q) for q = 1, 2, . . . , Q; θ̂(q,old) = 0PxPy×1 for q = 1, 2, . . . , Q;
s = −1PxPy×1.
Repeat:

1. θ̆(q) = (Ψ(q))Hr(q,old) + θ̂(q,old) for q = 1, 2, . . . , Q.

2. Λ(q) = max ind(θ̆(q),K) for q = 1, 2, . . . , Q.

3. Λvote = majority − vote({Λ(q)|q = 1, 2, . . . , Q}), then set sΛvote = 1, sΛ̄vote
= −1.

4. For each i ∈ {1, 2, . . . , PxPy}, compute (16) by utilizing {θ̆(1)
i , θ̆

(2)
i , . . . , θ̆

(Q)
i }and sNi ; if Δ > 0,

ŝi = 1, else ŝi = −1.
5. Λesti = {the set of indices which correspond to the locations of ‘1’ in ŝ}.
6. θ̂

(q,new)
Λesti

= (Ψ(q)
Λesti

)+y(q), then the smallest PxPy −K coefficients of θ̂(q,new) are set to be zeros
for q = 1, 2, . . . , Q.

7. r(q,new) = y(q) − Ψ(q)θ̂(q,new) for q = 1, 2, . . . , Q.

8. If
Q∑

q=1
||r(q,old)||22 >

Q∑
q=1

||r(q,new)||22, then r(q,old) = r(q,new), θ̂(q,old) = θ̂(q,new), return to step 1.

Else
Stop the iteration.

End if

Output:
Q∑

q=1
|θ̂(q,old)|

4. SIMULATION EXPERIMENTS AND ANALYSIS

In this section, we evaluate the performance of the proposed two-level BMP algorithm for the multistatic
airborne passive SAR system using synthetic data. The simulation scene is illustrated in Fig. 3. The
Chinese mobile multimedia broadcast signal (CMMB) [2] whose bandwidth is 8 MHz is used as the
transmission signal of opportunity. The positions of three illuminator are respectively (5,−5, 6) km,
(5, 5, 6) km, and (8, 0, 6) km. The initial position of the airborne passive SAR receiver is [8,−1.2, 6] km,
and it flies along a linear trajectory with a height of 6 km and a constant velocity of [200, 0, 0] m/s.
The observed scene to be imaged is chosen to be 96 m × 96 m and discretized into 16 × 16 pixels. We
consider two squared continuous targets in the scene. Each target is composed of four pixels. Due
to the illumination of multiple transmitters, it is assumed that the complex reflection coefficients of
targets are assumed invariant for each transmitter whereas they vary for different transmitters due to
the distinct aspect angles. The complex reflection coefficients of each target corresponding to three
illuminators are set to 0.1+0.1j, 0.2+0.2j, and 0.3+0.3j, respectively. Gaussian white noise is added to
the received signal with a signal-to-noise ratio (SNR) of 25 dB. There are 60 azimuth positions along the
flight trajectory, and the azimuthal sampling frequency is 5 Hz. At each azimuth location, a total of 21
frequency samples within 8 MHz bandwidth for each illuminator are utilized for imaging reconstruction.

The imaging result of the proposed two-level BMP algorithm is compared with that of the structured
BCS algorithm in Fig. 4. The images in Fig. 4 are normalized to their own maxima and shown on
[−20 0] dB scale. It is observed from Fig. 4(b) that the proposed two-level BMP algorithm can accurately
recover the continuous structure of two targets. However, it is shown in Fig. 4(c) that the structured
BCS algorithm is unable to preserve the clustered structure of two targets with many spurious pixels.

In order to quantitatively evaluate the imaging reconstruction performance of two algorithms, the
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Figure 3. Geometry of multistatic airborne passive SAR system.
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Figure 4. The original scene and corresponding imaging results. (a) Normalized magnitude of fused
reflection coefficients of the original scene. (b) Image obtained by the proposed two-level BMP algorithm.
(c) Image obtained by the structured BCS algorithm.
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target-to-clutter ratio (TCR) [25] is adopted to measure the imaging performance. The definition of
TCR is given by

TCR = 10 lg
(1/NB)

∑
(x,y)∈B |I(x, y)|2

(1/NC)
∑

(x,y)∈C |I(x, y)|2 (18)

where B is the target area, NB the number of pixels in the target area B, C the non-target area, NC

the number of pixels in the non-target area C, and I(x, y) the pixel value corresponding to the pixel in
the image (x, y).

In order to evaluate the robustness of the proposed approach in the noisy environment, the
reconstructed images are obtained by varying the SNR levels. Fig. 5 illustrates the TCR versus different
SNR levels. The average TCR is calculated over 30 Monte Carlo runs for each noise level. It is shown
from Fig. 5 that the proposed two-level BMP algorithm outperforms structured BCS algorithm in
terms of TCR, which implies that the two-level BMP algorithm has better performance in recovering
the clustered dominant pixels and suppressing the artificial pixels.
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Figure 5. Average TCR comparison as a function of SNR.

Table 2 lists the computation complexity and computation time of two imaging algorithms.
The computation complexity of two-level BMP algorithm is O(K(PxPy + K2)MNQ), whereas the
computation complexity of structured BCS algorithm is O(T (PxPy)3), where T is the number of
iterations of Markov Chain Monte Carlo (MCMC) sampling. The computational platform is a personal
computer with the configuration of 8GB random access memory, I5-3470 central processing unit, and a
MATLAB (R2014a) environment. It can be found that the computation time of the proposed two-level
BMP algorithm is dramatically less than that of the structured BCS algorithm. By utilizing the greedy
pursuit framework, the two-level BMP algorithm is more computationally efficient than the structured
BCS algorithm.

Table 2. Comparison of the computation complexity and time.

Algorithms Computation complexity Computation time(s)

Proposed two-level BMP algorithm O(K(PxPy + K2)MNQ) 0.467

Structured BCS algorithm O(T (PxPy)3) 74.387
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5. CONCLUSION

In this paper, we have proposed a two-level BMP imaging algorithm for a multistatic passive airborne
passive SAR system. The proposed two-level BMP imaging algorithm exploits the underlying target
clustered structure and joint sparsity pattern in the context of multistatic airborne passive SAR system.
The proposed two-level BMP imaging algorithm which allows the effective consideration of illuminator-
dependent reflection coefficients of the spatially clustered targets exploits the PGM and greedy pursuit
framework to implement the imaging reconstruction. Compared to the state-of-the-art structure-aware
BCS algorithm, the proposed imaging algorithm provides enhanced imaging quality with higher TCR
and less computation time.
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