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Analysis of “False Non Reciprocity” in 2-Port VNA Measurements
of Reciprocal Devices

Leonardo Zappelli*

Abstract—The effect of measurement errors in the S-matrix of a reciprocal 2-port device is recognized
in the (usually low) difference between S12 and S21, as the device is nonreciprocal. This “false non-
reciprocity” is analyzed in this paper, and it is verified that, for low loss device, the difference acts
principally on the phases of S12 and S21. This anomaly can be removed if a numerical correction is
applied to the experimental S-matrix. In doing so, it is proved that the residual measurement errors
have comparable amplitudes on all scattering parameters.

1. INTRODUCTION

Reciprocal devices are characterized by symmetric matrices representing relationships between electrical
quantities at input and output sections. When a reciprocal device is analyzed by means of a theoretical
approach or with the simulation performed by numerical approaches or commercial softwares, the
reciprocity of such a device is always reflected in the symmetry of its matrices S/Z/Y . Unfortunately,
the symmetry is not completely ensured when experimental measurements are performed on the same
reciprocal device that has been previously analyzed with a theoretical approach or with a software. In
fact, in this case, several scenarios can alter the measurements and produce a low “false non-reciprocity”
even if the measured device is reciprocal. Typical measurement errors are related to the bandwidth used
during the experimental test, to the matched/short loads used during calibration and to the evaluation
of the calibration factors that can alter the measurement of the off diagonal values of the S-matrix,
producing different values for S12 and S21. The difference S12 − S21 can be maintained lower than one
part per thousands but could increase up to one part per hundreds if the VNA IF bandwidth is not
properly chosen. This difference can be neglected if we need a comparison between theoretical and
experimental results. In fact, in this case, it does not alter the judgment about the correspondence
between theoretical and experimental results. On the contrary, if we need to identify an equivalent
circuit for the real reciprocal device, the difference between S12 and S21 introduces unwanted gyrators
in the circuit that should not appear in the correct version. Another case where high measurement
precision is required on Sij is the use of 2-port measurements to evaluate equivalent circuits for lossy
2-port reciprocal devices [1] or the scattering parameters of n-port reciprocal devices. In this case, the
measure of the overall S-matrix can be obtained by means of S-matrix reconstruction transforms based
on 2-port measurements [2] or with the use of equivalent circuits [3].

If a symmetric S-matrix is required, the usual choice of a researcher to correct the low discrepancy
between S12 and S21 is one of the following options: (a) S12 = S21, (b) S21 = S12, or (c) define new off
diagonal terms S̄12 = S̄21 = S12+S21

2 . Hence, at this stage, the question is to choose the best solution.
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Moreover, another problem should be discussed: if “false non-reciprocity” is present in the
experimental values of S12, S21, how are S11 and S22 affected by errors similar to those occurring in
S12, S21? Hence, should we also correct the values of S11, S22?

In this paper, the best choice to correct the values of S12, S21 is discussed together with the effect of
that correction on S11, S22. As we could expect from the experimental practice, the best choice will be
to define new off diagonal terms S̄12 = S̄21 = S12+S21

2 , in order to obtain the same uncertainty affecting
the measurement of S11, S22.

2. THEORY

The starting point of the analysis of the addressed problem is represented by the fundamental papers that
Carlin and Youla wrote in the ’50s–’60s [4–10]. They discussed and proved that a nonreciprocal lossy
device can be identified with a proper network made by linear components as capacitors, inductors,
real/complex transformers, positive/negative resistors, and gyrators. The key point is that a lossy
nonreciprocal device can be represented by a nonsymmetric normalized impedance matrix ζ that can
be decomposed in two parts connected in series, the first being relative to the lossy nonreciprocal part
and the second to the lossless nonreciprocal part

ζ = ζ lossy + ζ lossless (1)
with († represents transpose and conjugate)

ζ lossy =
ζ + ζ†

2
ζ lossless =

ζ − ζ†

2
(2)

For a 2-port device, it can be shown that Eq. (2) can be written as

ζ lossy =
[

r11 r12 + jξ

r12 − jξ r22

]
(3)

ζ lossless =
[

jx11 jx12 + χ

jx12 − χ jx22

]
(4)

The matrix in Eq. (3) is an “Hermitian” matrix relative to the lossy part of the device because its
elements are purely real except for the off diagonal terms containing also two imaginary and opposite
values representing the non-reciprocity, via a gyrator with amplitude jξ.

The matrix in Eq. (4) is a “skew-Hermitian” matrix relative to the lossless part of the device
because its elements are purely imaginary except for the off diagonal terms that contain also two real
and opposite values representing the non-reciprocity, via a gyrator with amplitude χ. Carlin and Youla
proved that any 2-port device can be reduced to the series of Eqs. (3) and (4) and that a physical
realization of Eqs. (3)–(4) can be obtained, even if the procedure to synthesize the “Hermitian” part in
Eq. (3) is more involved than the “skew-Hermitian” part in Eq. (4). A recent synthesis procedure has
been analyzed in [11], but it is not reported here, because the goal of the paper is to evaluate how to
correct the “false non-reciprocity” due to experimental measurements.

In order to solve our problem, we transform Eqs. (3)–(4) in terms of the scattering matrix of the
device, obtaining:

S =
[

S11 S12

S21 S22

]
=

⎡
⎢⎣

N11

D

N12

D
N21

D

N22

D

⎤
⎥⎦ (5)

with
N11 = −1 − r2

12 − r22 + r11(1 + r22) − x11x22 + x2
12 + j [x11 (1 + r22) − 2r12x12 + x22 (r11 − 1)]

+(χ + jξ)2 = N rec
11 + (χ + jξ)2 (6)

N12 = 2 [r12 + ξ + j(x12 + χ)] = N rec
12 + 2(χ + jξ) (7)

N21 = 2 [r12 − ξ + j(x12 − χ)] = N rec
12 − 2(χ + jξ) (8)

N22 = −1 − r2
12 − r11 + r22(1 + r11) − x11x22 + x2

12 + j [x22 (1 + r11) − 2r12x12 + x11 (r22 − 1)]
+(χ + jξ)2 = N rec

22 + (χ + jξ)2 (9)



Progress In Electromagnetics Research M, Vol. 90, 2020 3

D = 1 − r2
12 + r22 + r11(1 + r22) + x2

12 − x11x22 + j [x22(1 + r11) + x11(1 + r22) − 2r12x12]
+(χ + jξ)2 = Drec + (χ + jξ)2 (10)

The main remark on Eqs. (5)–(10) is that any term can be written as the sum of the corresponding
reciprocal term (N rec

ij ,Drec) plus nonreciprocal terms related to the gyrators amplitude, χ, ξ, and that
the non-reciprocity acts with different effects on the numerators Nij and denominator D of Sij . In fact,
D,N11 and N22 contain the gyrators amplitude, χ, ξ, as square of their sum (χ + jξ)2, while N12 and
N21 contain the sum χ + jξ at the first degree.

If we expand Eq. (5) in series with respect to the second order of χ, ξ, which are usually small
quantities for low loss devices, we obtain

S ≈ Srec + δS (11)

Srec =

⎡
⎢⎣

N rec
11

Drec

N rec
12

Drec

N rec
12

Drec

N rec
22

Drec

⎤
⎥⎦ =

[
Srec

11 Srec
12

Srec
12 Srec

22

]
(12)

δS =

⎡
⎢⎢⎣

(1 − Srec
11 ) (χ + jξ)2

Drec

2(χ + jξ) − Srec
12 (χ + jξ)2

Drec

−2(χ + jξ) − Srec
12 (χ + jξ)2

Drec

(1 − Srec
22 ) (χ + jξ)2

Drec

⎤
⎥⎥⎦ + o(ξ3, ξ2χ, ξχ2, χ3) (13)

and we can observe that the errors in Eq. (13) are proportional to (χ + jξ)2 for S11, S22 and to χ + jξ
for S12, S21, where the effect of (χ + jξ)2 is lower than χ + jξ. Hence, the effect of the nonreciprocal
gyrators is greater on S12, S21 than on S11, S22.

Another interesting information can be obtained if we evaluate the difference between the
amplitudes and phases of the measured S12 and S21. In fact, from Eqs. (7), (8), (10), and (12),
the series expansions in terms of χ, ξ at the first degree give:

|S12| − |S21| ≈ 2|Srec
12 |r12ξ + x12χ

r2
12 + x2

12

+ o(ξ2, ξχ, χ2) (14)

Φ12 − Φ21 ≈ r12χ − x12ξ

r2
12 + x2

12

+ o(ξ2, ξχ, χ2) (15)

where Φij is the phase of Sij. If the device is lossless, ζ lossy in Eq. (2) is zero, with r12 = 0 and χ = 0,
and from Eq. (14), |S12| − |S21| ≈ 0 and the error due to the “false non reciprocity” affects only the
phase difference in Eq. (15). Similarly, for a low lossy device we can expect that the error on |S12|−|S21|
is lower than the error on Φ12 − Φ21.

From Eqs. (7), (8), and (11)–(13), it is clear that the best choice to reduce the “false non-reciprocity”
due to measurement errors is to evaluate a new symmetric value of S12, i.e.,

S̄12 = S̄21 =
S12 + S21

2
=

2 (r12 + jx12)
D

=
N rec

12

D
≈ Srec

12

[
1 − (χ + jξ)2

Drec

]
+ o(ξ3, ξ2χ, ξχ2, χ3) (16)

The new definition of S̄12 has an error Srec
12

(χ+jξ)2

Drec that is about the same amplitude of the error
affecting S11, S22 in Eq. (13). Hence, even if measurement errors are yet contained in S11, S22, S̄12, we
have obtained a reciprocal S-matrix by means of Eq. (16).

The other choices, i.e., to set S21 = S12 or S12 = S21, are not recommended because the error due
to the “false non-reciprocity” is still proportional to χ + jξ.

Now we could discuss the effect of the gyrators χ, ξ on the errors contained in S11, S22, S̄12. From
Eqs. (11)–(13),

S12 − S21 ≈ 2
χ + jξ

Drec
(17)

and we can expect that

10−2 ≤ Re
{

χ + jξ

Drec

}
, Im

{
χ + jξ

Drec

}
≤ 10−3 (18)
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because the “false non-reciprocity” of the measured S-matrix usually alters the second or third decimal
digit of S12, S21. From Eqs. (13) and (16), it can be seen that the gyrators amplitudes act on S11, S22, S̄12

proportionally to (χ+ jξ)2. Hence, from Eq. (18) we can deduce that the error on S11, S22, S̄12 is in the
following range

10−4 ≤ Re

{
(χ + jξ)2

Drec

}
, Im

{
(χ + jξ)2

Drec

}
≤ 10−6 (19)

Therefore, we can state that the “false non-reciprocity” produces a very low error on S11 and S22,
proportional to Eq. (19), which is of the same amplitude of the error affecting S̄12. Hence, we can
use the measured S11 and S22, without further corrections, and S̄12 to obtain a scattering matrix with
similar measurement errors on all its elements.

Obviously, we can completely delete the “false experimental non-reciprocity” effects evaluating
the amplitudes of χ and ξ by the measured S-matrix, performing the steps discussed in [4–11] that
consist in evaluating the impedance matrices in Eq. (2) and from Eqs. (3) and (4), the actual values
of χ, ξ, rij , and xij . To delete the effect of the “false” experimental non-reciprocity, it is sufficient to
reconstruct the reciprocal S-matrix from Eqs. (3), (4) with χ = ξ = 0 and the actual values of rij , xij .
Obviously, this procedure requires to implement a proper numerical code that must be evaluated for
each frequency point of the measured S-matrix, and this implementation is surely more involved than
the simple correction proposed in Eq. (16). Anyway, the values of χ and ξ are very low and are related
to the VNA bandwidth chosen during the measurements, as will be shown in the Results.

3. RESULTS

In order to verify the possibility to correct the “false non-reciprocity” of a reciprocal device due to
experimental errors, a lossy device is arranged, as shown in Fig. 1. It is made by a thick capacitive
window in aluminum WR90 (aperture 22.86 × 5.26 mm2, thickness 4.98 mm) sandwiched between two
Maury WR90 waveguides (L = 152.75 mm) and connected to aluminum coax-waveguide adapters. All
components are reciprocal. The measurements have been made in coaxial cable to calibrate the VNA
with 85052B Agilent coax calibration set. The scattering parameters of the lossy device have been
measured with FieldFox N9928A Agilent VNA, with bandwidth set to 1000 Hz, and they are shown in
Fig. 2(a). It can be verified that the difference |S12| − |S21| is very low, between −0.009 and 0.004, as
shown in Fig. 2(b) (blue dotted line), while the difference |S12 − S21| is less than 0.045 as shown in the
same figure (black continuous line). This discrepancy between the values of |S12 −S21| and |S12| − |S21|
could cause perplexity, but this is related to the effects of the non-reciprocity induced on S12, S21 that
act principally on their phases Φ12,Φ21 (red starred line in Fig. 2(b)) and, with less impact, on their
amplitudes |S12|, |S21|, as reported in Eqs. (14), (15), and (17). In fact, Φ12 −Φ21 lies in a range about
±3◦. On the contrary, |S12 − S21| is related to the real and imaginary parts of S12, S21 that take into
account the amplitudes and phases of S12, S21 at the same time, as shown in Fig. 2(c). The real and
imaginary parts of the difference S12 − S21 are in a range about ±0.05 and have similar behaviors.

Figure 1. The device under test.

Just for an example, at f = 11.98 GHz, the values of S12, S21, |S12|, |S21|,Φ12 and Φ21 are
• S12 = 0.387 − j0.811, S21 = 0.430 − j0.798
• |S12| = 0.898,Φ12 = −64.464◦

• |S21| = 0.907,Φ21 = −61.679◦

• |S12 − S21| = |−0.043 − j0.013| = 0.045
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Figure 2. (a) The scattering parameters of the device under test and (b), (c) the difference between
S12 and S21.

• |S12| − |S21| = −0.009
• Φ12 − Φ21 = −2.78◦

As previously discussed, |S12| and |S21| are very similar while the difference between Φ12 and Φ21 is about
4.4%. This percentage difference can be recognized also in

∣∣∣S12−S21
S12

∣∣∣ ≈ 4.99% and
∣∣∣S12−S21

S21

∣∣∣ ≈ 4.95%.

To delete the “false non-reciprocity” we can apply the definition in Eq. (16), obtaining S̄12 = S̄21 =
0.408 − j0.804, i.e.,

∣∣S̄12

∣∣ =
∣∣S̄21

∣∣ = 0.902, arg
(
S̄12

)
= arg

(
S̄21

)
= −63.065◦.

In doing so, the obtained S-matrix is symmetric, and S11, S12, S̄12 contain measurement errors of
comparable amplitudes, as described in Eq. (19). To verify the entity of the actual errors, we can
evaluate the amplitude of the gyrators amplitudes, shown in Figs. 3(a)–3(b) for different values of VNA
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Figure 3. Amplitudes of the gyrators introduced by VNA measurement errors for different VNA IF
bandwidth.

IF bandwidth [4–11]. The obtained values for χ, ξ confirm that the “false non-reciprocity” for the
lossless part, χ, is greater than that of the lossy part, ξ, because the losses of the analyzed device are
low. Moreover, as expected, χ and ξ decrease with VNA IF bandwidth.

We can also evaluate the actual values of rij, xij of the lossy and lossless parts of the ζ-matrix [11],
here not shown for brevity, and reconstruct the “reciprocal” S-matrix in Eq. (12), Srec, from Eqs. (2)–
(4) with χ = ξ = 0 and the obtained values of rij, xij . The differences between Srec and the measured
S11, S12, S22 and the approximated S̄12 are shown in Fig. 4. This figure confirms the previous discussion
about the errors amplitude in Eq. (19). In fact, from Fig. 4 it is evident that the greatest error between
the reconstructed reciprocal Srec and the experimental values occurs for |S12 − Srec

12 | (red curve) and
|S21 − Srec

21 | (dashed blue with dots curve) that are almost the same, lying in the range 8 ·10−4÷2 ·10−2,
and are proportional to χ + jξ.

The errors |S11 − Srec
11 | (black curve) and |S22 − Srec

22 | (dashed green with stars curve) are almost
the same, lie in the range 10−7 ÷ 10−3, and are proportional to (χ+ jξ)2 as previously discussed. These
errors are comparable with the VNA measurement errors in the X band: ±0.009 dB for |Sij| and ±0.7
degrees for Φij [12]. Finally, the definition of S̄12 = S̄21, Eq. (16), permits to obtain an error for∣∣S̄12 − Srec

12

∣∣ lower than |S12 − Srec
12 |, as shown in Fig. 4 with the dashed blue curve. This error has an

amplitude similar to the errors affecting S11 and S22, as previously discussed. Hence, the use of S̄12

evaluated with Eq. (16) permits to reproduce the reciprocal S matrix of the device with an error of the
same amplitude on all scattering parameters. Clearly, the precision of the experimental values of S can
be increased by decreasing VNA IF bandwidth, and consequently, the errors shown in Fig. 4 become
even lower.

A second example is based on a standard waveguide of length Lwr = 14.458 ± 0.03 mm, contained
in a Flann WR90 calibration kit. The scattering matrix has been measured with the same VNA, and
the symmetric S̄12 has been evaluated together with the reciprocal matrix, obtained with the procedure
previously discussed. The differences between Srec and the measured S12, S21 and the approximated
S̄12 are shown in Fig. 5. The lowest error is

∣∣S̄12 − Srec
12

∣∣, as expected by previous discussion. S11 and
S22 are not reported because they are negligible.

As a final remark, it should be noted that the reconstructed reciprocal scattering matrix, Srec,
contains measurement errors that decrease with the VNA IF bandwidth.
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4. CONCLUSION

A simplified model of the effects of the measurement errors in the scattering parameters of 2-port
reciprocal lossy device have been discussed, and it has been proved that the experimental errors affect
principally the phase of S12, S21 and, with less impact, their amplitude.

A simple correction on the off-diagonal terms S12, S21 has been analyzed to obtain scattering
parameters that contain errors of comparable amplitude.
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