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Logarithmic Similarity Measure Based Cooperative Spectrum
Sensing under Impulsive Noise

Wenkai Zhang1, Changqing Zhang2, *, Gang An1, and Jin Li3

Abstract—Spectrum sensing is one of the key functionalities in cognitive radios which enables
opportunistic spectrum access. In this paper, a cooperative spectrum sensing (CSS) algorithm is
developed to alleviate the problems of hidden terminals under impulsive noise environments. Firstly,
the logarithmic similarity measure detector (LSMD) is constructed to solve the problem of outliers
caused by impulsive noise. On the one hand, LSMD contains no free parameters, which is easy to
implement. On the other hand, logarithmic similarity measure (LSM) converts logarithmic operations
into multiplication operations, and then the computational cost can be greatly reduced. Moreover,
original data fusion strategy is designed to reduce the amount of computation of CSS, while the accuracy
of CSS is noticeably improved compared with the “OR” rule CSS. Besides, the solution of the unknown
parameter of LSMD is directly given by theoretical analysis, and then the CSS exhibits higher efficiency.
Simulation results show that the proposed method achieves much higher detection probability than the
existing techniques under various scenarios.

1. INTRODUCTION

Cognitive radio (CR) has been recognized as an important methodology for dealing with the scarcity
of the radio spectrum [1]. The fundamental idea of CR technology lies in enabling unused bands to
be utilized opportunistically by unlicensed users, namely secondary users (SUs), when no primary user
(PU) exists in their vicinity. One open problem of CR is how to accurately detect existing idle bands
for opportunistic usage and vacate the occupied bands when a PU starts its transmission [2]. Spectrum
sensing (SS) is considered as the most promising approach to solve this problem.

Many spectrum sensing schemes have been presented in recent decades. Based on Gaussian
assumption, energy detection (ED) and linear matched filter (LMF) are two of the most classical
spectrum sensing schemes. Energy detector is one of the most practical spectrum sensing schemes
due to its simplicity and the ease of implementation [3]. LMF has been proven to be optimal in additive
white Gaussian noise environments [4]. However, the ambient noise in many physical channels is proven
to be non-Gaussian through experimental measurements [5], but possesses typical impulsive nature,
such as man-made noise, low frequency atmospheric noise, and switching transients. Unfortunately,
in the impulsive noise environment, the Gaussian assumption based SS schemes suffer drastically from
accuracy degradation [6] and cause false alarms. Besides, in some specific environment, multi-path
fading and shadowing may cause the disability of secondary users to detect a primary user, i.e., missed
detection (hidden terminals) [7].

On the one hand, similarity measure schemes are developed to cope with impulsive noise. To
be specific, this kind of schemes includes kernelized energy detection (KED) [8], correntropy matched
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filter (CMF) [9], weighted correntropy spectral density (WCSD) [10], etc. All these methods map the
infinite Euclidean distance to a finite value of kernel function, namely correntropy, through the Gauss
kernel function (GKF). Then, the value of kernel function tends to zero when the similarity between the
transmitted and receive signals is low, which corresponds to an infinite Euclidean distance. Thus the
GKF can handle the impulsive noise robustly for the low similarity. However, the performance of this
kind of methods may be greatly affected by the kernel size that is difficult to determine. Although the
WCSD gives the kernel size by Silverman’s rule of thumb [11], it may be not optimal in the impulsive
noise environment. Moreover, the exponential operation of GKF noticeably increases computational
complexity.

On the other hand, several secondary users can cooperate with each other, i.e., CSS, and then it
possesses the ability to overcome the wireless impairments of shadowing, fading, and hidden terminals,
thus improving the sensing reliability [12]. In CSS, SUs report hard or soft decisions to a fusion center
(FC). The hard combination rules [13] (e.g., an OR rule and an n-out-of-K rule) are easy to implement,
but they may result in great computation consumption and a lower sensing accuracy compared to soft
ones. In contrast, the soft combination rule increases [14] the sensing accuracy at the expense of the
reporting bandwidth and incrassation of the implementation difficulty. According to the analyses above,
these methods still have shortcomings and deficiencies, and there are few works to solve both problems
at the same time. Hence, it is necessary to study more efficient CSS algorithms to combat the impulsive
noise and hidden terminals.

In this article, we introduce similarity measure scheme into cooperative spectrum sensing to improve
missed detections as well as to reduce false alarms. To the best of our knowledge, this is an innovative
work focusing on cooperative spectrum sensing under impulsive noise. We formulate a logarithmic
similarity measure for CSS to combat impulsive noise. The LSM contains no free parameters, which is
easy to implementation. Moreover, LSM converts logarithmic operations into multiplication operations,
and then the computational cost is reduced noticeably. We also design original data fusion strategy
to reduce the amount of computation of CSS with the accuracy of CSS maintained. Furthermore, the
optimal solution of LSM is directly given by theoretical analysis, thus the computational volume is
greatly reduced, and the CSS can be quickly realized. Finally, simulation studies are carried out to
illustrate the higher detection probability of the proposed algorithm under various scenarios.

2. SYSTEM MODEL AND PROBLEM DESCRIPTION

As shown in Fig. 1, this work considers a cooperative spectrum sensing scenario with one PU, M SUs,
and one FC. Each SU, PU, and FC contains only one antenna. Each SU performs the PU’s signal
acquisition task individually and sends its acquired signal to the FC. Then the FC fuses the collected
signals and gives the final decision. Assume that the m = 1, 2, · · · ,M denotes the secondary user index
and n = 1, 2, · · · , N the sample index, the acquired signal xm(n) for each SU is represented by the
following binary hypotheses{

H0 : xm (n) = vm (n)
H1 : xm (n) = ams (n) + vm (n)

m = 1, 2, · · · ,M. (1)

Here, H0 and H1 indicate the hypothesis related to the absence and presence of the PU. am and
vm(n) are the channel coefficient and the additive noise corresponding to the mth SU, respectively.
s = [s(1), s(2), · · · , s(N)]T represents the PU’s signal sequence. Throughout this paper, the additive
noise is modeled as non-Gaussian distributions. In particular, alpha-stable distribution Sα(a, β, γ) is
used to take impulsive nature of the noise into account, where α(0 < α ≤ 2) is the characteristic
exponent that determines the thickness of the tails of the distribution. The smaller the parameter α
is, the thicker the tails are. γ(γ > 0) is the dispersion parameter which determines the spread of the
distribution around a. a and β are the location and symmetry parameter, respectively. Please refer
to [15] for details of alpha-stable distribution.

In the cooperative spectrum sensing scenario, the channel status information (CSI) is assumed to
be available [16]. Without loss of generality, suppose that am equals 1 for all m = 1, 2, · · · ,M , and then
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Figure 1. Frame structure of cooperative spectrum sensing.

the acquired signal xm(n) for each SU can be expressed as{
H0 : xm (n) = vm (n)
H1 : xm (n) = s (n) + vm (n)

m = 1, 2, · · · ,M. (2)

It is worth noting that the received signal xm(n) may be vm(n) when the PU transmits signal s(n) in the
case of hidden terminals. If we assume that the blocked probability of the mth path is pb, Equation (2)
is modified as ⎧⎨

⎩
H0 : xm (n) = vm (n)

H1 : xm (n) =
{

s (n) + vm (n) with probability 1 − pb

vm (n) with probability pb

. (3)

Let x(n) = [x1(n), x2(n), · · · , xM (n)]T denote the received signal of all the SUs for time n. The presence
or absence of the primary user can be decided by the FC according to soft combination rule, i.e.,{

H0 : f (X, s) < η

H1 : f (X, s) > η
, (4)

where X = [x(1), x(2), · · · , x(N)] and s = [s(1), s(2), · · · , s(N)]T (N is the number of samples
available), f(X, s) is test statistic function associated with X and s, and η is the threshold to be
determined.

3. LOGARITHMIC SIMILARITY MEASURE DETECTOR

In this section, we propose a new spectrum sensing scheme, namely logarithmic similarity measure
detector (LSMD) for the cognitive radio network. Adopted practical methodology is presented in
Subsection 3.1.

3.1. Similarity Measures

Similarity measures are assessment criteria which can be thought as difference degree between two
or more quantities. Euclidean distance and weighted Euclidean distance [17] are the two classical
similarity measures. The smaller the distance is, the higher the similarity is. However, these two
methods fail under impulse noise. To overcome this problem, some researchers have explored kernel
methods [18, 19]. In kernel methods, raw data x are mapped into a feature space using a nonlinear feature
map as Φ : x → Φ(x). Then the similarity of x and y can be thought as inner product 〈Φ(x),Φ(y)〉
in their feature space. Kernel scheme is referred to the process of substituting the inner product with
an equivalent kernel function through which kernel methods are used without explicitly knowing the
feature mapping, and the kernel function provides sufficient information about the similarity of x and y.
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In SS, Gaussian kernel function is the most popular one to measure the similarity between the received
signals and transmitted signals under impulsive noise, such as CMF and WCSD. GKF can be expressed
as

K (xm (n) , s (n)) = exp

(
−(xm (n) − s (n))2

2σ2

)
, (5)

where σ is the kernel width. If the value of K(xm(n), s(n)) is larger than the threshold, it
can be considered that the PU is present, or the PU is absent. When N samples xm =
[xm(1), xm(2), · · · , xm(N)]T are available, CMF/WCSD detector can be rewritten as

K (xm, s) =
1
N

N∑
n=1

K (xm (n) , s (n)). (6)

Although the GKF can determine the similarity between the received signals and transmitted signals
under impulsive noise, it has the following shortcomings: (1) the kernel width σ significantly affects the
performance SS [20]. If the value of σ is too large, a desired similarity assessment fails to be achieved. On
the other hand, if a too small σ value is used, the algorithm attempts to impose an overly tight control
on the size of GKF and hence may fail to achieve its goal. (2) For each sample xm(n), one exponential
operation is required. Moreover, to improve the detection performance, the sample number N may be
large. Hence, the computational cost and implementation burden of this method are overwhelming.

In the subsequent sections, the LSMD spectrum sensing method is proposed based on the
fundamental concepts of similarity measure. Indeed, our LSMD sensing scheme deals with data
samples using logarithmic similarity measure to achieve an efficient spectrum sensing in the presence of
complicated impulsive noises.

3.2. Proposed Logarithmic Similarity Measure Detector Scheme

The LSMD can be interpreted as an algorithm that employs the similarity between the received
signal samples and transmitted signal symbols for the spectrum sensing task. The test statistic of
the conventional similarity measure [17] is defined as

SM(xm, s) =
1
N

N∑
n=1

(xm (n) − s (n))2, (7)

where xm represents the received data for the mth SU, and s is the transmitted signal sequence of
PU, as defined in Section 2, which paves the way for the promotion of the LSMD. It is seen that
the conventional similarity measure is employed in the sensing task using Eq. (7), while the similarity
measure in Eq. (7) does not take the effects of impulsive noise into account. Because a large noise
sample will cause the value (xm(n) − s(n))2 very large whether the PU is present or absent, while the
other small noise samples correspond to a small value of (xm(n) − s(n))2 when the PU is present, the
value of SM(xm, s) may be large due to the large noise samples even when the PU exists. Thus, this
method will lead to a big probability of missed detection.

In order to suppress the effect of impulse noise, the similarity measure function should satisfy the
following two requirements: (1) the value of the similarity measure function greatly depends on the
sample corresponding to the small noise, i.e., different small errors e(n) = xm(n) − s(n) corresponding
to obviously different function values. (2) the value of the CF is almost unchanged, when error e(n) is
very large, which corresponds to impulse noise. Based on the above analysis, a more improved LSM
test statistic than Eq. (7) is proposed as

LSM(xm, s) =
1
N

N∑
n=1

ln
(

c1

(xm (n) − s (n))2 + c2

+ c3

)
(8)

Here, c2 is a small constant to prevent denominator from being 0 and can be trivially set as 1, and c1

and c3 can be any positive constant.
Remark 1 : It is clear that the proposed LSMD test statistic LSM(xm, s) is nearly unchanged when

error xm(n) − s(n) is large due to introducing c3. This means that the proposed algorithm is scarcely
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affected by the large noise. On the contrary, the function value will change noticeably associated with
small error xm(n)−s(n), then the proposed algorithm can effectively detect the similarity of xm(n)−s(n)
based on the samples contaminated by small noise, whenever the noise is Gaussian or impulsive. Hence,
the logarithmic similarity measure LSM(xm, s) can be applied to both Gaussian and impulsive noise
scenarios.

In order to facilitate subsequent analysis process, we take the maximum value of LSM(xm, s) to be
1 and specialize the LSMD test statistic as

LSM(xm, s) =
1
N

N∑
n=1

ln
(

e − 1
(xm (n) − s (n))2 + 1

+ 1
)

(9)

It is clear that the maximum value of LSM(xm, s) is 1, and the minimum value is 0, thus the function
LSM(xm, s) is convenient for numerical analysis.

According to the properties of logarithm operation, the LSM(xm, s) can be rewritten as

LSM(xm, s) =
1
N

ln
N∏

n=1

(
e − 1

(xm (n) − s (n))2 + 1
+ 1
)

. (10)

Compared with the test statistic K(xm, s), LSM(xm, s) has the following advantages: (1) LSM(xm, s)
converts logarithm operation into product operation, and the computational volume is greatly reduced,
especially in the case of large number of samples. (2) There is no variable parameters in LSM(xm, s),
thus the proposed LSMD is easy to implement and has a stable detection performance. (3) K(xm, s)
suppresses the influence of impulsive noise though making K(xm, s) to be 0, while LSM(xm, s) suppress
the influence of impulsive noise though making e−1

(xm(n)−s(n))2+1
to be 0 and introducing c3 = 1. The

term c3 will greatly weaken the influence of e−1
(xm(n)−s(n))2+1

when it is close to 0 ( e−1
(xm(n)−s(n))2+1

≈ 0
indicates that the corresponding xm(n) contains impulsive noise). Hence the LSM(xm, s) should have
more superior performance in suppressing impulsive noise.

3.3. Logarithmic Similarity Measure Based Cooperative Spectrum Sensing

To overcome the problem of hidden terminal, the soft combination rule is adopted to implement the CSS.
According to the CSS model described in Section 2, we should construct the test statistic f(X, s) and
determine the detection threshold η of CSS in Equation (4). In the following part, we firstly construct
the test statistic f(X, s) and then decide η based on the test statistic f(X, s).

If OR rule is used to realize CSS, the test statistic can be equivalently considered as

f (X, s) = max
m

1
N

ln
N∏

n=1

(
e − 1

(xm (n) − s (n))2 + 1
+ 1
)

. (11)

Inspired by the OR rule, we propose a novel test statistic based on LSM for CSS. If at least one of the

M SUs receives the transmitted signal s, then
M∑

m=1
wmxm(n) can be used to recover the transmitted

signal s(n) in the case of no noise environment. Here, w = [w1, w2, · · · , wM ]T is defined as

w = arg
w

max
1
N

ln
N∏

n=1

⎛
⎜⎜⎜⎝ e − 1(

M∑
m=1

wmxm (n) − s (n)
)2

+ 1

+ 1

⎞
⎟⎟⎟⎠ (12)

In the impulsive noise, combining Equations (12) and (10), we construct the LSMD test statistic of the
CSS as

JLSM (w) = max
w

1
N

ln
N∏

n=1

⎛
⎜⎜⎜⎝ e − 1(

M∑
m=1

wmxm (n) − s (n)
)2

+ 1

+ 1

⎞
⎟⎟⎟⎠. (13)
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If xm(n) is contaminated by large noise, its corresponding LSM term will be 0 whether the PU is
present or absence, thus we focus on the samples with small noise. In such a case, the noise can be

ignored, and there is an optimal w∗ that satisfies w∗ M∑
m=1

xm(n) = s(n) when the PU is present. Then

the cost function is equivalent to

JLSM (w) = max
w

1
N

ln
N∏

n=1

⎛
⎜⎜⎜⎝ e − 1(

w
M∑

m=1
xm (n) − s (n)

)2

+ 1

+ 1

⎞
⎟⎟⎟⎠ (14)

Remark 2 : Comparing the test statistics JLSM(w) and JLSM(w), we have the following conclusions.
On the one hand, the cost functions JLSM(w) and JLSM(w) have approximately same maximum value.
Moreover, when xm(n) corresponds to large noise (impulsive noise), both the cost functions will have the
minimum values which approximate 0. Thus the two test statistics have similar detection performance.
On the other hand, the test statistic JLSM(w) greatly reduces the amount of computation. Firstly,

calculating e(n) = w
M∑

m=1
xm(n) − s(n) only needs one multiplication operation for JLSM(w), while

calculating e(n) =
M∑

m=1
wmxm(n) − s(n) needs M multiplication operation for JLSM(w). Secondly, the

cost function JLSM(w) requires optimizing the M dimension vector w, and the JLSM(w) just requires
optimizing a scalar w.

3.4. The Optimal Solution of the Cost Function

Now, we need research the optimal w to maximize the cost function JLSM(w). The direct approach is one-
dimensional search by various optimization algorithms. However, this approach is rather cumbersome.
Here, we give a proper efficient solution by theoretical analysis. To maximize JLSM(w) means to minimize

e(n) = w
M∑

m=1
xm(n) − s(n). In an ideal case, i.e., the noise nm(n) = 0, the receive signal xm(n) = s(n)

if there is no occlusion. Thus
M∑

m=1
xm(n) = Cs(n) (C = 1, 2, · · · ,M), then we can easily obtain the

optimal solution w∗ = 1
C , i.e.,

w∗ = arg max
w∈{1, 1

2
,··· , 1

M }
1
N

ln
N∏

n=1

⎛
⎜⎜⎜⎝ e − 1(

w
M∑

m=1
xm (n) − s (n)

)2

+ 1

+ 1

⎞
⎟⎟⎟⎠ (15)

Finally, the test statistic of the LSMD f(X, s) of CSS can be described as

f (X, s) =
1
N

ln
N∏

n=1

⎛
⎜⎜⎜⎝ e − 1(

w∗
M∑

m=1
xm (n) − s (n)

)2

+ 1

+ 1

⎞
⎟⎟⎟⎠ (16)

3.5. Performance Analysis for LSMD

It is clear that f(X, s) can be rewritten as

f (X, s) =
1
N

N∑
n=1

ln

⎛
⎜⎜⎜⎝ e − 1(

w∗
M∑

m=1
xm (n) − s (n)

)2

+ 1

+ 1

⎞
⎟⎟⎟⎠. (17)
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Because both
M∑

m=1
xm(n) and s(n) are independent and identically distributed (i.i.d) for different n,

ln

⎛
⎝ e−1

(w∗
M∑

m=1
xm(n)−s(n))2+1

+ 1

⎞
⎠ is i.i.d for different n. In the case of sufficiently large N , the test statistic

of the LSMD algorithm asymptotically follows a normal distribution in both H0 and H1 hypotheses

f (X, s) ∼
{ N (

α0, σ
2
0

)
H0

N (
α1, σ

2
1

)
H1

, (18)

where αk and σ2
k (k = 0, 1) are the mean value and the variance of the sensing statistic under H0 and H1

hypotheses, respectively. Moreover, according to the straightforward result of law of large numbers [21],
αk and σ2

k are defined as

αk =
1
N

N∑
n=1

ln

⎛
⎜⎜⎜⎝ e − 1(

w∗
M∑

m=1
xm (n) − s (n)

)2

+ 1

+ 1

⎞
⎟⎟⎟⎠ (19)

and

σ2
k =

1
N

⎛
⎜⎜⎜⎝ 1

N

N∑
n=1

⎛
⎜⎜⎜⎝ln

⎛
⎜⎜⎜⎝ e − 1(

w∗
M∑

m=1
xm (n) − s (n)

)2

+ 1

+ 1

⎞
⎟⎟⎟⎠
⎞
⎟⎟⎟⎠

2

− α2
k

⎞
⎟⎟⎟⎠ , (20)

respectively. It is worth noting that k = 0 and k = 1 correspond to xm(n) = vm(n) and
xm(n) = s(n) + vm(n), respectively.

Based on the asymptotic distribution of the LSMD test statistic in Eqs. (18)–(20), probability of
false alarm Pf and probability of detection Pd of the LSMD spectrum sensing algorithm can be given
as

Pf = Q

(
η − α0

σ0

)
(21)

and

Pd = Q

(
η − α1

σ1

)
. (22)

Here, Q(x) is defined as Q(x) =
∫ +∞
x

1√
2π

exp
(
− t2

2

)
dt. In order to obtain the sensing threshold η

associated with the proposed LSMD sensing algorithm, the Neyman-Pearson criterion [22] is adopted,
where we assume that Pf is set to a prespecified value in the range of [0.01, 0.1] compatible with the
CR standards [23]. For this case, the sensing threshold is obtained as

η = Q−1 (Pf )σ0 + α0 (23)

Now, we evaluate the performance of the proposed LSMD from detection performance and
computational complexity.

It is well known that the detection performance is determined by σ1, σ0, and distance of α1 − α0.
On the one hand, the smaller the values of σ1 and σ0 are, the better the detection performance is. From

Equation (17), it is clear that the variance of test statistic f(X, s) is closely related to w∗ M∑
m=1

xm(n). The

smaller the variance of w∗ M∑
m=1

xm(n) is, the smaller the variance of f(X, s) is. Similar to the proposed

test statistic f(X, s), the variance of OR rule test statistic in Eq. (11) is closely related to the variance of

xm(n). Because xm(n) is i.i.d for different m, the variance D[w∗ M∑
m=1

xm(n)] = M(w∗)2D[xm(n)]. The
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value w∗ is largely determined by occlusion probability pb. In the ordinary course of events, M(w∗)2 < 1,
then the variance of the test statistic f(X, s) is smaller than that of the corresponding OR rule, and
detection performance of f(X, s) is superior to OR rule method in the respect of variance σ1 and σ0.
On the other hand, to theoretically analyze the distance of α1 − α0 of the test statistic f(X, s) and
that of the OR rule is difficult due to complex function form of αk (k = 1, 2) (please see Equation (19)).
Fortunately, computer numerical analysis is available by comparing α1 − α0 of the algorithms. A lot
of experiments show that the distance of α1 − α0 of the test statistic f(X, s) is larger than that of OR
rule. Hence, the proposed detection performance of f(X, s) should also be better than OR rule method
in the respect of the distance of α1 − α0.

In addition to the detection performance, another index we concerned about is the calculation
amount. In order to simplify the analysis, the computational complexity of the addition and subtraction
operations in the related methods is ignored. Given N samples, the detailed computational complexity
of LSMD, OR rule based LSM algorithm (LSM OR), CMF and OR rule based CMF (CMF OR) is
discussed as follows. Noticeably, precalculating SM(x(n), s(n)) = e−1

(w
M∑

m=1
xm(n)−s(n))2+1

+1 approximately

takes 3 multiplications for each sample. Once SM(x(n), s(n)) has been given for all n, the LSMD
method requires one logarithmic operation and N multiplication operations to calculate f(X, s) for
fixing w. Moreover, we need searching M (the number of receiving antennas) different w to obtain the
test statistics. Thus, the overall calculation amount of the LSMD is 4NM multiplication operations
and M logarithmic operations. Similarly, the LSM OR needs 3NM multiplication operations and
M logarithmic operations. The CMF approximately requires 2 multiplications and one exponential
operation for each sample, and then the overall calculation amount is 2N + 1 multiplication operations
and N exponential operations. It is well known that the calculation volume of the OR rule CSS
is M times of that of corresponding single antenna based spectrum sensing method. Thus the overall
calculation amount of CMF OR is 2MN+M multiplication operations and NM exponential operations.
A comparison for computational complexity is listed in Table 1.

Table 1. Computational complexity of the four methods.

Methods LSMD LSMD OR CMF CMF OR

multiplications 4NM 3NM 2N + 1 2MN + M

Exponential/logarithmic M M N NM

It is worth noting that LSMD, LSMD OR, and CMF OR are three CSS methods, and comparing
their complexity is meaningful. It can be seen that the LSMD and LSMD OR have fewer
exponential/logarithmic operations, thus they have lower computational complexity than CMF OR, and
even lower than CMF (M � N), which only uses the information of one received antenna and has a worse
detection performance. To further compare LSMD and LSMD OR, we find that the proposed LSMD
has a slightly greater calculation amount than LSMD OR. The main reason lies on the optimization
of parameter w which relates to the channel information and occlusion probability. Essentially, all the
algorithms require optimizing parameter w when the channel state information is unknown, and then
the calculation amount of LSMD OR is approximately M times of LSMD. More generally, if we apply
the proposed CSS mechanism to other schemes, such as CMF, the calculation amount is 1/M of that
of corresponding OR rule scheme when the channel state information is unknown.

4. SIMULATION RESULTS

In this section, some simulation results are presented to evaluate the performance of the proposed LSMD
algorithm. The simulation setup follows a one PU and 5 SUs scenario where all the SUs perform the
spectrum sensing task collaboratively. BPSK modulated signals are transmitted by the PU. Simulation
results involved in this section are categorized as
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i) Simulation results are presented to confirm the validity of the analysis in Section 4 by comparing
with the conventional detectors as practical spectrum sensing schemes mostly considered in this domain.

ii) The detection performance of the proposed LSMD algorithm for different choices of
environmental parameters, such as N , α, and pm, is presented.

Pure noise samples corresponding to the predetermined symmetry alpha-stable distribution
Sα(a, β, γ) = Sα(0, 0, γ) noise are generated, based on which sensing threshold is measured for a
pre-specified false alarm probability. The measured threshold is then employed to sense the PU’s
signal. Moreover, 10,000 Monte Carlo experiments are conducted, whose average is presented as the
final results. Besides, the input GSNR is defined as GSNR = 10 lg(σ2

s/γ) dB [24], where σ2
s and γ

represent signal power and the dispersion coefficient of Sα(0, 0, γ) noise, respectively. In addition,
receiver operating characteristic (ROC) and detection probability Pd are employed as the metrics for
performance comparison.

Simulated ROC curves are depicted in Fig. 2 for the PU with the BPSK signal under impulsive
noise, where N = 200, GSNR = 2 dB, α = 1.5, M = 5, and pb = 0.2. It can be seen that the proposed
LSMD and LSMD OR are able to significantly improve the spectrum sensing performance compared
with the existing methods, especially for LSMD. The good SS performance results from the following
reasons: (1) The proposed LSM introduces parameter constant c3 to suppress the influence of large
noise, whose value corresponds to 0, while GKF methods (CMF and WCSD) suppress influence of
large noise by making the GKF be 0. Thus the proposed LSM may be more effective in suppressing
impulsive noise. (2) Both the LSMD and LSMD OR can overcome the problem of hidden terminal by
CSS. Especially, the LSMD comprehensively utilizes the data information of receiving antennas, which
leads to a small variance σ1, σ0 and large distance of α1 − α0.

Figure 2. ROC curves for a PU with BPSK
modulated signal for the LSMD, LSMD OR CMF,
CMF OR and WCSD algorithms, where N = 200,
GSNR = 2 dB, α = 1.5, M = 5 and pb = 0.2.

Figure 3. The Pd versus different number of
samples of the LSMD, LSMD OR CMF, CMF OR
and WCSD algorithms, where Pf = 0.1, GSNR =
2 dB, α = 1.5, M = 5 and pb = 0.2.

In Fig. 3, we compare Pd versus different numbers of samples of the LSMD, LSMD OR with three
existing methods. Pf , GSNR, α, M , and pb are fixed to 0.1, 2 dB, 1.5, 5, and 0.2, respectively. It
is obvious that the sensing performance of the LSMD always significantly outperforms the CMF and
WCSD with same number of samples, and is slightly better than that of the LSMD OR and CMF OR, in
the case of small samples. This result illustrates that the LSMD can work well with very small samples,
thus the proposed algorithm can perform spectrum sensing tasks quickly and reduce the possibility of
affecting authorized users. This higher detection performance of the LSMD stems from the fact that
the LSMD test statistic comprehensively encompasses all the data information from different antennas,
and the LSMD can more effectively suppress the influence of impulse noise.

In Fig. 4, we compare the detection performance versus GSNR of LSMD with the LSMD OR CMF,
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Figure 4. The Pd versus different GSNR of the
LSMD, LSMD OR CMF, CMF OR and WCSD,
where Pf = 0.1, N = 200, α = 1.5, M = 5 and
pb = 0.2.

 

Figure 5. The Pd versus different pb of the
LSMD, LSMD OR CMF, CMF OR and WCSD
algorithms, where Pf = 0.1, GSNR = 2dB,
α = 1.5, M = 5 and N = 200.

CMF OR, and WCSD. Pf , N , α, M , and pb are set to 0.1, 200, 1.5, 5, and 0.2, respectively. From the
result, it is evident that the LSMD significantly outperforms other methods, and further the performance
gap among the competing detectors progressively increases with the increase of the GSNR when the
GSNR is small. This result indicates that the proposed algorithm has a good anti-noise capability and
can achieve reliable spectrum sensing in low GSNR.

To cope with the effect of the hidden terminals in cognitive radio network, we consider the CSS
mechanism. Fig. 5 shows the achievable sensing efficiency in terms of Pd versus pb. On the one hand,
Pd will decrease with the increase of pb for all the algorithms. On the other hand, the sensing efficiency
of CSS mechanism, including LSMD, LSMD OR, and CMF OR, is significantly higher than that of the
SS with single SU or single receiving antenna. Moreover, we can see that the CMF and WCSD have the
same sensing efficiency. LSMD, LSMD OR, and CMF OR also have the same sensing efficiency. The
reason for this phenomenon is that pd ≈ 1 for an SU when detection conditions are good, i.e., Pf = 0.1,
GSNR = 2 dB, α = 1.5, pb = 0, and N = 200. Hence, detection probability pd ≈ 1−pM

b and pd ≈ 1−pb

for CSS and SS, respectively. Although the CMF OR has the same detection probability as LSMD and
LSMD OR in the good detection conditions, the CMF OR has a much higher computational complexity
than LSMD and LSMD OR.

One of the most challenging problems in spectrum sensing scheme, as well as CSS, arises when the
noise statistics do not match with the ones used to set the sensing threshold, i.e., the noise uncertainty.
To investigate the effect of the noise uncertainty on the performance of the five methods, the impulsive
noise parameter α is changed in this experiment. In this regard, the detection performances of all
the algorithms are illustrated in Fig. 6 for various α. It is apparent from Fig. 6 that the detection
performances of CMF and WCSD are obviously affected by the change of α, while the detection
performances of LSMD, LSMD OR, and CMF OR are nearly unchanged with different α. Moreover,
it worth noting that the proposed LSMD can work well when α = 2 (when α = 2 and β = 0, the
alpha-stable distribution S2(0, 0, γ) becomes a Gaussian distribution), which indicates that the LSMD
also has a good detection performance in the Gaussian noise environment.

Figure 7 shows Pd versus M for the three CSS methods. As the number of SUs increases, the
detection performance is enhanced for all the three methods. Because of the probability that the all
SUs are blocked is pM

b , it will be decreased with the increase of M . On the other hand, the proposed
LSMD has better performance than other methods, especially in the case of small M . This indicates
that the LSMD can work well with small M , i.e., the LSMD can meet application requirements at
a small cost. The reasons for the good performance may be as follows: (1) the LSM test statistics
has better anti impulsive noise performance. (2) LSMD comprehensively utilizes the data information
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Figure 6. Pd versus different α of the
LSMD, LSMD OR CMF, CMF OR, and WCSD
algorithms, where Pf = 0.1, GSNR = 2 dB,
pb = 0.2, M = 5 and N = 200.

Figure 7. Pd versus different M of the LSMD,
LSMD OR and CMF OR algorithms, where Pf =
0.1, GSNR = 2 dB, pb = 0.2, α = 1.5, and
N = 200.

of receiving antennas, then the test statistics has a smaller variance and large α1 − α0 as mentioned
in Subsection 3.5. Hence, the LSMD has a better performance than the other schemes in the same
conditions.

Through above experiments, the good performance of the proposed LSMD is illustrated. Finally,
we consider the effects of the parameters on the performance of LSMD. Pf is set to be a pre-specified
value in the range of [0.01, 0.1] compatible with the CR standards. The curves corresponding to different
parameters labeled in the legend are given in Fig. 8. We can see that the performance of the proposed
method is very sensitive to α and pb. A larger value of α,M , GSNR, or N yields a better detection
performance, while a smaller value of pb results in a better detection performance. As expected, the
detection probability can be enhanced through increasing M .

Figure 8. The ROC curves for LSMD with different parameters.
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5. CONCLUSION

In this paper, we propose a novel cooperative spectrum sensing method based on logarithmic similarity
measure, namely logarithmic similarity measure detector (LSMD), for practical impulsive noise
environments. It is shown that the proposed LSMD method significantly outperforms the conventional
CMF, WCSD, and CMF OR in the more pragmatic impulsive noise scenario, i.e., practically approved
alpha-stable noise. We prove that the LSMD has the potential to be an optimal detector for Gaussian
and various non-Gaussian noise models. The presented analysis and simulation results confirm the
superior performance of the proposed LSMD.
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