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A Combined Active and Passive Method for the Remote Sensing
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Abstract—The Ultra-Wideband Software defined microwave radiometer (UWBRAD) was developed to
probe internal ice sheet temperatures using 0.5–2 GHz microwave radiometry. The airborne brightness
temperature data of UWBRAD show a significant reduction due to reflections of surface layering of
density fluctuations making difficult the retrieval of subsurface temperature in the kilometer range of
depth. Such reflections can be measured by the ultra-wideband radar in the same frequency range
suggesting a combined active and passive remote sensing of polar ice sheets. In this paper, we develop a
coherent reflectivity model for both ice sheet thermal emission and backscattering. Maxwell equations
are used to calculate the coherent reflections from the cap layers, and the WKB approximation is used
to calculate the transmission for the slowly varying profile below the cap layers. Results are then
shown to demonstrate the use of radar measurements to compensate reflection effects on brightness
temperatures. It is shown that the reflections corrected brightness temperature is directly related to
the physical temperature and absorption profile making possible the retrieval of subsurface temperature
profile with multi-frequency measurements.

1. INTRODUCTION

Cryosphere is a critical component of the earth system that continues to experience rapid changes [1, 2].
Mass loss from the Greenland and Antarctic ice sheets is a major contributor to sea level rise [3–7],
but ice dynamics and evolution remain incompletely understood and therefore challenging to predict
accurately [8, 9]. Recent studies have shown the important impact of ice sheet internal temperatures [10–
15], providing new impetus for the development of methods to remotely sense internal ice temperatures.
Ice internal temperature contributes to ice stiffness and therefore evolution, but at present remains a
quantity that is difficult to measure without in-situ borehole information.

The Ultra-Wideband Software Defined Radiometer (UWBRAD) [16] was developed for sensing
internal ice sheet temperature profiles using 0.5–2 GHz microwave radiometry. In principle, the lower
UWBRAD frequencies near 0.5 GHz can be impacted by temperatures at depths even greater than
2 kilometers while higher frequencies near 2 GHz respond only to temperatures at shallower depth.
UWBRAD has completed airborne campaigns in Greenland in September 2016 and 2017, as well as a
deployment to Antarctica in 2018, and has achieved successful measurements of internal ice temperatures
under dry snow conditions. However these experiments have shown that firn density fluctuations
within the top 100 meters can cause reflections that impact observed brightness temperatures. These
effects required UWBRAD temperature profile retrievals to incorporate ancillary information of density
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fluctuations. This was accomplished through the use of in-situ borehole measured temperature profiles
at location bracketing the flight path, with UWBRAD measurements at these sites used to constrain firn
density parameters [17, 18]. Because a-priori information on density fluctuations may not be available
for other locations, the development of methods to compensate the impact of firn density variations on
brightness temperatures is of interests.

Recent insights into emission physics suggest a means for combining active and passive
measurements to reduce or eliminate firn density effects. In this paper, we develop a combined
active and passive coherent model for both emission and scattering. The model considers the multiple
length scales of density fluctuations in the firn “cap region”; these fluctuations can occur on length
scales that are shorter than, comparable to, or greater than the electromagnetic wavelength, so that
coherent interactions can be appreciable. We assume that the most impactful density fluctuations
occur within the upper 100 m of the ice sheet which is in consistant with the in situ measurements.
We also approximate the firn “cap region” as having a uniform temperature, given its limited spatial
extent, The “cap region” is further resolved into a large number of layers having different densities as
shown in Figure 1. Beneath the cap region, the ice sheet is also assumed inhomogeneous but in this
case the permittivity and temperature profiles both vary only on large length scales compared to the
electromagnetic wavelength. Rytov’s fluctuation dissipation theorem [19, 20] is applicable for computing
thermal emission from the lower ice sheet region.

Figure 1. Ice sheet structure.

Due to reciprocity, we solve the active problem first to model radar backscattering at normal
incidence by considering plane wave incidence onto the medium of Figure 1, then the passive problem
is solved based on the solution of active problem for the thermal emission. Both formulations use a
layered medium approach for the cap layers and the WKB approximation for the lower region below
the cap layers. Instead of using the explicit form of the dyadic Green’s function for a layered medium as
in [19, 21], we use only the symmetry properties of the dyadic Green’s function. These symmetries allow
the solution of passive problem to be expressed entirely in terms of the electromagnetic fields of the active
problem. This approach ultimately allows observed brightness temperatures to be expressed in terms of
the reflectivity and transmissivity of the cap layers and the microwave emission from the inhomogeneous
lower half space. In the retrievals, radar measurements provide information on the reflectivity of the
cap layers. Taking advantage of the measurements, the cap layer effects in the measured brightness
temperature data are compensated. The compensated data, as shown in the model, is directly related
to the ice sheet physical temperature and absorption profiles.

The organization of the paper is as follows. In Section 2, we consider problem A, representing active
remote sensing using a wave radiated from a source above the ice sheet that is far from the observation
area. The result is a plane wave incident upon the observation area, and the electric field inside the
inhomogeneous layered medium is expressed in terms of the dyadic Green’s function with a source in the
free space region and an observation point within the ice sheet layered medium. In Section 3, we consider
problem B representing passive microwave remote sensing, with microwave thermal emission expressed
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in terms of sources obtained from Rytov’s fluctuation dissipation theorem. Brightness temperatures are
then expressed in terms of the dyadic Green’s function for sources within the layered medium. Using
the symmetry properties of the dyadic Green’s function (see Appendix), the brightness temperatures
of problem B are then expressed in terms of the electric fields of Problem A. In Section 5, we then
derive the solution of Problem A using Maxwell equations and the WKB approximation for the lower
half space under vertically polarized incidence (TM) and then shows that the brightness temperature
can then be expressed in terms of the reflectivity and transmissivity from problem A and the microwave
thermal emission from the lower half space. Numerical results for both cases are provided in Section 6
followed by concluding remarks.

2. ACTIVE PROBLEM A

Consider a short electric dipole antenna having dipole moment α̂Id� located at position r0 with r̂0 a
unit vector from the origin to the dipole location (Figure 2). The distance r0 is far away from the
observation area. The resulting incident electric field at position r in Region 0 is:

E
(A)
inc = iωμId�G0 (r, r0) · α̂ (1)

where G0 is the free space dyadic Green’s function which can be approximated locally about the origin
as a plane wave having polarization α̂:

E
(A)
inc = iωμ

exp (ikr0)
4πr0

Id�α̂ exp
(
iki · r

)
(2)

where k̂i = −r̂0 and ki = kk̂i, we choose Id� such that

iωμ
exp (ikr0)

4πr0
Id� = 1 (3)

so that the incident wave is of unit amplitude:

E
(A)
inc = α̂ exp

(
iki · r

)
(4)

Now E
(A)
1 , the electric field in region 1 that results, can be expressed in terms of the layered medium

dyadic Green’s function G10:
E

(A)
1 (r) = iωμId�G10 (r, r0) · α̂ (5)

where the subscript 10 denotes an observation point in region 1 and a source in region 0. Using the
amplitude of Id� we have ∣∣∣E(A)

1 (r)
∣∣∣2 = (4πr0)

2
∣∣∣G10 (r, r0) · α̂

∣∣∣2 (6)

Figure 2. Problem A.
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Similar Green’s functions also exist to determine the resulting fields in any other layer within the
modeled ice sheet.

3. PASSIVE PROBLEM B

The passive problem is shown in Figure 3. The antenna in θ0 direction receives the thermal emission
from region 0 with brightness temperature TB . For passive remote sensing, thermal emission can be
modeled as arising from noise current sources in the layered medium whose covariance is related to the
medium physical temperature T (r ′) using Rytov’s fluctuation dissipation theorem [22]〈

J1B

(
r ′, ω

)
J

∗
1B

(
r ′′, ω′)〉 =

4
π

ωε′′1
(
r ′)KBT

(
r ′) Iδ

(
ω − ω′) δ

(
r ′ − r ′′) (7)

Here KB represents Boltzmann’s constant; ω represents the angular frequency; ε′′ represents the
imaginary part of the medium permittivity; I is the unit tensor so that vector current components
are uncorrelated. The quantity of interest in problem B is the covariance of the electric field emitted
into region 0 and its integration over the observed bandwidth:∫

Δω
dω
〈
E

(B)
0 (r0, ω) · E(B)∗

0

(
r0, ω

′)〉
th

(8)

Note that we put the “radiometer receiver” at the same place as the transmitter antenna of problem
(A). Then the electric field in region 0 in α̂ polarization is:

α̂ · E(B)
0 (r0, ω) = iωμ

∫
dr ′

(
α̂ · G01

(
r0, r

′, ω
)) · J1B

(
r ′, ω

)
(9)

where G01 is the dyadic Green’s function with the source in region 1 and observation point in region 0.
Using this expression and taking the ensemble average yields [19]:〈

(α̂ · E(B)
0 (r, ω))

(
α̂ · E(B)∗

0

(
r, ω′))〉

= ωμω′μ
∫

dr ′′
∫

dr ′
(
α̂ · G01

(
r0, r

′, ω
)) · 〈J1B

(
r ′, ω

)
J1B

(
r ′′, ω′)〉 · (α̂ · G∗

01

(
r0, r

′′, ω′)) (10)

note that the correlation of noise currents gives a δ(ω − ω′), and we integrate over a small bandwidth
for the value field correlation at frequency ω:∫

Δω
dω
〈(

α̂ · E(B)
0 (r0, ω)

)(
α̂ · E(B)∗

0

(
r0, ω

′))〉
= ω2μ2

∫
dr ′

∣∣∣α̂ · G01

(
r0, r

′, ω
)∣∣∣2 4

π
ωε′′1

(
r ′)KBT

(
r ′) (11)

Figure 3. Problem B.



Progress In Electromagnetics Research, Vol. 167, 2020 115

Appendix A shows that,

G01 (ra, rb) = G
t

10 (rb, ra) (12)

so that ∫
Δω

dω
〈(

α̂ · E(B)
0 (r, ω)

)(
α̂ · E(B)∗

0

(
r, ω′))〉

= ω2μ2

∫
dr ′

∣∣∣(G10

(
r ′, r0, ω

) · α̂)∣∣∣2 4
π

ωε′′1
(
r ′)KBT

(
r ′) (13)

From problem A, we have ∣∣∣E(A)
1 (r)

∣∣∣2 = (4πr0)
2
∣∣∣G10 (r, r0) · α̂

∣∣∣2 (14)

so that ∫
Δω

dω
〈(

α̂ · E(B)
0 (r, ω)

)(
α̂ · E(B)∗

0

(
r, ω′))〉

= ω2μ2 1
(4πr0)

2

∫
dr ′

∣∣∣E(A)
1

(
r ′)∣∣∣2 4

π
ωε′′1

(
r ′)KBTB

(
r ′) (15)

The power received in polarization α is also

Pα = limr0→∞ r2
0dΩ

∫
Δω

dω

∫
Δω

dω′

〈(
α̂ · E(B)

0 (r0, ω)
)(

α̂ · E(B)∗
0 (r0, ω

′)
)〉

2η

which can be rewritten as [19]:

Pα = ΔωdΩμ
1
λ2

1
π

ω
1
2η

∫
dr ′

∣∣∣E(A)
1

(
r ′)∣∣∣2 ε′′1 (r ′)

ε0
KBT

(
r ′)

This received power can be re-scaled into the observed brightness temperature through:

Pα =
KBTBα

λ2
dΩ

Δω

2π
A0 cos θ0 (16)

where θ0 is the observation angle, and TBα is the brightness temperature in α polarization.
The final brightness temperature in direction r̂0 = −k̂i is then

TBα (r̂0) =
1

A0 cos θ0
k

∫
dr ′

∣∣∣E(A)
1

(
r ′)∣∣∣2 ε′′1 (r ′)

ε0
T
(
r ′) (17)

The above expression gives the brightness temperature of problem B in terms of the electric field in
region 1 of problem A. Note that this eliminates the use of an explicit form of the dyadic Green’s
functions as used in previous papers [20, 22]. A similar approach can be used to relate the fields within
other layers of the layered medium to their brightness temperature contributions.

4. EMISSION FROM LAYERED MEDIUM OVER AN INHOMOGENEOUS HALF
SPACE

As shown in Figure 1, we model the firn cap layer as N regions with reflective boundaries, with Region
0 corresponding to the free space region. The regions are labelled as � = 1, 2, ..., N , with the number of
layers N on the order of hundreds with each region thickness on the order of centimeters or finer.

The layer boundaries are located at z = 0,−d1, ......,−dN , and for each region �, the permittivity
is written as ε�. Within the cap region, the temperature T is modeled as uniform. For the region
t = N + 1, below z = −dN , the permittivity εt(z) is a slowly varying function of z and the temperature
profile T (z) is a slowly varying function of z. In this region, we use the WKB method for analyzing the
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internal fields under the assumption that there are no further reflections. and that the last boundary
z = −dN is reflectionless. Now we define:

TBα (r̂0) = T u
Bα (r̂0) + T l

Bα (r̂0)
T u

Bα (r̂0) = contribution from the cap N layers

T l
Bα (ŝ0) = contribution from region t, the inhomogeneous lower half space

T l
Bα (ŝ0) =

k

A0 cos θ0

∫
z≤−dN

drε′′1r (r ) T (r )
∣∣∣E(A)

1

(
r ′)∣∣∣2 (18)

T u
Bα (ŝ0) =

k

A0 cos θ0
T

∫ 0

z≥−dN

drε′′1r (r )
∣∣∣E(A)

1

(
r ′)∣∣∣2 (19)

The time-averaged Poynting vector in problem A is S
(A) = 1

2

{
E

(A) × H
(A)∗} for fields in region 0, and

can be similarly defined as S
(A)
1 in region 1. Then by the Poynting theorem

∇ ·
(
S

(A)
1

)
= −1

2
ωεε′′1r (r) E

(A)
1 · E(A)∗

1 (20)

Substituting for the field amplitude squared in Eq. (20) and applying the divergence theorem then yields

T u
Bα (ŝ0) =

1
A0 cos θ0

T2η
[∫

Su

dS
(
−n̂ ·

(
S

(A)
))

+
∫

Sl

dSn̂ ·
(
S

(A)
1

)]
(21)

where n̂ is pointing up on both the upper and lower boundaries, Su at z = 0 and S1 at z = −dN . In
the above, we have also made use of the relation: n̂ · S(A)

1 = n̂ · S(A) because of continuity of tangential
electric fields and magnetic fields at the boundary.

5. TM CASE: VERTICAL POLARIZATION

In this section we consider vertically polarized (TM) plane wave incidence in Problem A. For a field
incident in the (x-z) plane, the incident k-vector can be written as

ki = x̂kx − ẑkz = x̂k sin θ0 − ẑk cos θ0

For a unit amplitude incident electric field, the incident magnetic field has amplitude 1/η where
η =

√
μ/ε and has only ŷ component:

H
(A)
i = ŷ exp

1
η

(ikxx − ikzz) (22)

The reflected wave in region 0 is then

H
(A)
r = ŷRTM

cap exp (ikxx + ikzz) (23)

and the Poynting vector S
(A) in medium 0 is

−ẑ ·
(
S

(A)
)

=
cos θ0

2η

[
1 − ∣∣RTM

cap

∣∣2] (24)

Using
∫
Su

dS = A0, we have

T u
Bα (r̂0) = T

[
1 − ∣∣RTM

cap

∣∣2]+
T

A0 cos θ0
2η
∫

Sl

dSn̂ ·
(
S

(A)
1

)
(25)

T l
Bα (r̂0) =

k

A0 cos θ0

∫
z≤−dN

drε′′1r (r) T (r)
∣∣∣E(A)

1 (r)
∣∣∣2 (26)

where Equation (25) is the thermal emission from cap region from Equation (21), and Equation (26) is
the thermal emission from the bulk ice region by applying Equation (18).
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5.1. Fields within the Cap Region

For region �, H�y and E�x have the form:

H�y =
1
η

[C� exp (ik�zz) + D� exp (−ik�zz)] exp (ikxx)

E�x =
ε

k

k�z

ε�
[C� exp (ik�zz) − D� exp (−ik�zz)] exp (ikxx)

The coefficients C� and D� can be determined by matching the boundary conditions at each
interface:

[C� exp (−ik�zd�) + D� exp (ik�zd�)] =
[
C�+1 exp

(−ik(�+1)zd�

)
+ D�+1 exp

(
ik(�+1)zd�

)]
(27)

klz

εl
[C� exp (−ik�zd�)−D� exp (ik�zd�)] =

k(l+1)z

ε(l + 1)
[C�+1 exp (−ik�+1zd�) − D�+1 exp (ik�+1zd�+1)] (28)

with d0 = 0

D0 = 1
C0 = RTM

cap

Here RTM
cap is the reflection coefficient of the cap region, which includes multiple boundaries. The

boundary z = −dN separates regions N and t = N + 1. At the interface of the cap and lower regions,
we let

εt0 = εt (z = −dN )

ktz0 =
√

k2εt0 − k2
x

so that near z = −dN

Hty =
1
η

[
TTM

cap exp (−iktz0z)
]
exp (ikxx) (29)

Etx =
ε

k

ktz

εt0

[−TTM
cap exp (−ik�zz)

]
exp (ikxx) (30)

where

Dt = TTM
cap

Ct = 0

Here TTM
cap is the transmission coefficient of the cap region. Matching at z = −dN then yields

[CN exp (−ikNzdN ) + DN exp (ikNzdN )] =
[
TTM

cap exp (iktz0dN )
]

(31)
kNz

εN
[CN exp (−ikNzdN ) − DN exp (ikNzdN )] =

ktz0

εt0

[−TTM
cap exp (iktz0dN )

]
(32)

The reflection coefficient in each layer can now be calculated by recurrence using

RTM
�(�+1) =

ε(�+1)k�z − ε�k(�+1)z

ε(�+1)k�z + ε�k(�+1)z

where � = 0, 1, ..., N − 1 with RTM
Nt = εt0kNz−εNktz0

εt0kNz+εNktz0
.

Finally defining q� = C�
D�

exp(−2ik�zd�) the recurrence relation is

q� =
q�+1 exp

(
2ik(�+1)z (d�+1 − d�)

)
+ RTM

�(�+1)

RTM
�(�+1)q�+1 exp

(
2ik(�+1)z (d�+1 − d�)

)
+ 1

(33)
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Starting with qN = RTM
Nt we move up until we get q0 = RTM

cap . We then propagate down to determine
TTM

cap for � = 0, 1, 2, ..., N

C�+1 exp
(−ik(�+1)zd�

)
=

1
2
C� exp (−ik�zd�)

[
1 +

ε�+1k�z

k(�+1)zε�

]
+

1
2
D� exp (ik�zd�)

[
1 − ε�+1k�z

k(�+1)zε�

]
D�+1 exp

(
ik(�+1)zd�

)
=

1
2
C� exp (−ik�zd�)

[
1 − ε�+1k�z

k(�+1)zε�

]
+

1
2
D� exp (ik�zd�)

[
1 +

ε�+1k�z

k(�+1)zε�

]
until we get to

Dt = TTM
cap

Ct = 0

Just below z = −dN , the Poynting vector S
(A)
1 is

ẑ · S(A)
1 = −1

2
ε

k
Re
(

1
η

ktz0

εt0

∣∣TTM
cap

∣∣2 exp
(−2k′′

tz0dN

))
After solving the Poynting’s vector at z = −dN , we apply Equation (25) for the thermal emission

of cap region.

T u
Bα (ŝ0) = T

[
1 − ∣∣RTM

cap

∣∣2]− T
1

k cos θ0
Re
(

εktz0

εt0

∣∣TTM
cap

∣∣2 exp
(−2k′′

tz0dN

))
(34)

Let

tTM
cap =

1
k cos θ0

Re
(

εktz0

εt0

∣∣TTM
cap

∣∣2 exp
(−2k′′

tz0dN

))
rTM
cap =

∣∣RTM
cap

∣∣2
Then the contribution from cap region is given by:

T u
Bα (ŝ0) = T

[
1 − rTM

cap − tTM
cap

]
(35)

5.2. WKB for Region t

Region t has the permittivity profile εt(z). For the TM case, the ŷ component of the magnetic field in
region t obeys the equation:

εt (z)
∂

∂z

1
εt (z)

∂Hty

∂z
− k2

xHty = −k2 εt (z)
ε

Hty (36)

with kx fixed according to phase matching. Defining kt(z) = k

√
εt(z)

ε we have a differential equation for
Hty.

∂2Hty

∂z2
− 1

εt(z)

(
∂εt(z)

∂z

)(
∂Hty

∂z

)
+

1
δ2

k2
tz(z)Hty = 0 (37)

In the above equation, we have inserted the ordering “δ” parameter which is a small number. In the
WKB method, we assume that Hty is of the form:

Hty = exp

(
1
δ

∞∑
n=0

δnSn(z)

)
(38)

Substituting in, we obtain(
1
δ

∞∑
m=0

δmS′′
m(z)

)
+

(
1
δ

∞∑
m=0

δmS′
m(z)

)2

+
1
δ2

k2
tz(z) − 1

εt (z)

(
∂εt (z)

∂z

)(
1
δ

∞∑
m=0

δmS′
m(z)

)
= 0 (39)
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First, we balance the equation to the order of 1
δ2(

S′
0(z)

)2 + k2
tz(z) = 0 (40)

and determine the solution at this order for a wave propagating downward

S0(z) = i

∫ −dN

z
dz′ktz(z′) (41)

Next we balance to order 1
δ :

2S′
0(z)S′

1(z) = −S′′
0 (z) +

1
εt (z)

(
∂εt (z)

∂z

)(
S′

0(z)
)

(42)

and match the coefficient to the magnetic field at z = −dN . Then

Hty(z) =
TTM exp (iktz0dN )

η

((
ε2
t0

−k2
tz0

))1/4

1((−k2
tz(z)

ε2
t (z)

))1/4
exp

(
i

∫ −dN

z
dz′ktz(z′)

)
(43)

To calculate T l
Bα(r̂0) = k

cos θ0

∫ −dN

−∞ dzε′′1r(z)T (z)|E(A)
1 (r)|2 we use |E(A)

1 (r)|2 = |Etx|2 + |Etz |2. The
thermal emission from the inhomogeneous half space is then given by:

T l
Bα (r̂0) =

k

cos θ0

∫ −dN

−∞
dzε′′1r (z) T (z)∣∣∣∣∣∣∣∣∣

TTM
cap

η

((
ε2
t0

−k2
tz0

))1/4

∣∣∣∣∣∣∣∣∣
2 [∣∣∣∣ ktz(z)

ωεt(z)

∣∣∣∣2 +
∣∣∣∣ kx

ωεt(z)

∣∣∣∣2
]

exp
(
−2k′′

tz0dN − ∫ −dN

z dz′2k′′
tz(z′)

)
∣∣∣∣∣
((−k2

tz(z)
ε2
t (z)

))1/4
∣∣∣∣∣
2

Note that

tTM
cap =

1
k cos θ

Re
(

εktz0

εt0
|TTM

cap |2 exp(−2k′′
tz0dN )

)
The equation becomes:

T l
Bα (r̂0) = k2tTM

cap

∫ −dN

−∞
dzε′′1r (z)T (z)

ε(t)
η2ε

[∣∣∣∣ ktz(z)
ωεt(z)

∣∣∣∣2 +
∣∣∣∣ kx

ωεt(z)

∣∣∣∣2
]

exp
(
−2k′′

tz0dN −
∫ −dN

z
dz′2k′′

tz(z
′)
)

Using the fact that |ktz(z)|2 + k2
x = k2

t and ω2μεt(z) = k2
t (z). The equation is further simplified into:

T l
Bα (r̂0) =

k2tTM
cap

kt0cosθt0

∫ −dN

−∞
dzε′′1r (z) T (z)

ktz0

ktz(z)
exp

(
−2k′′

tz0dN −
∫ −dN

z
dz′2k′′

tz(z
′)
)

where ktz0 is the value of ktz at z = −dN . Note that 2k′
t(1)k

′′
t (z) = k2ε′′1r and 2k′

tz(1)k
′′
tz(z) = k2ε′′1r and

use the relationship k′
tz(z) = k′

t = k′
t(z) cos θt(z). The equation is simplified into:

T l
Bα (r̂0) = tTM

∫ −dN

−∞
dzT (z) 2k′′

t (z) sec θt(z) exp
(
−
∫ −dN

z
dz′k′′

tz(z
′)
)

(44)
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Finally, we have k′′
( tz) = k′′

t sec θt(z) and k′′
t = κa(z)

2 . Then brightness temperature given by the lower
half space is:

T l
Bα (r̂0) = tTM

∫ −dN

−∞
dzT (z) κa(z) sec θt(z) exp

(
−
∫ −dN

z
dz′κa(z′) sec θt(z′)

)
(45)

Summing the contributions from the cap layers and the lower half space we have:

TBα (ŝ0)=T
[
1 − rTM − tTM

]
+tTM

∫ −dN

−∞
dzκa(z) sec θt(z)Tt (z) exp

(
−
∫ −dN

z
dz′κa(z′) sec θt(z′)

)
(46)

The above gives the expression of the coherent model in terms of Eq. (1) the reflectivity and
transmissivity of the cap layers and Eq. (2) the absorption and temperature profile of the lower half
space. In general rTM and tTM are complicated and are dependent on the density fluctuations. However,
if they are measured by a radar, then the above formula can be used to retrieve the temperature profile
in the second term from the brightness temperature measurements.

If it is assumed that the absorption in cap layers is weak, we can further approximate: 1− rTM −
tTM = 0 to obtain

TBα (ŝ0) = (1 − rTM )
∫ −dN

−∞
dzκa(z) sec θt(z)Tt (z) exp

(
−
∫ −dN

z
dz′κa(z′) sec θt(z′)

)
(47)

Obviously, the brightness temperature from the ice body is reduced by the cap layer reflections. If we
compensate these reflection effects, the brightness temperature is related only to the ice sheet physical
temperature and absorption profiles.

The solution for horizontal polarization (TE) can be obtained similarly and yields a solution
identical to that of Eqs. (46)–(47) if the TE polarized reflection and transmission coefficients are used.

6. NUMERICAL SIMULATIONS

Numerical results for ice sheet thermal emission are presented in this section. The density profile ρ(z)
of the ice sheet is simulated using the density model of [20, 22], in which:

ρ(z) = ρ(z) + ρn(z)

ρn(z) = ρ(1)
n (z) exp(

z

α1
)〈

ρ(1)
n (z)ρ(1)

n (z′)
〉

= Δ(1)
1 exp

(
−(z − z′)2

�2
1

)
where ρ(z) is the mean density profile described by ρ(z) = 0.922 − 0.564 exp(0.0165z) while the
fluctuating part ρn(z) is a stationary Gaussian random process characterized by 3 parameters Δ1,
the variance, �1, the correlation length, and α1 the damping factor for the fluctuations. Figure 4
illustrates an example of simulated density profile. The fluctuations in density over a range of length
scales is evident. The physical temperature profile of the ice sheet is described by the Robin temperature
model [23]:

T (z) = Ts + C · erf
(

H

L

)
− C · erf

(
z + H

L

)
, −H ≤ z ≤ 0 (48)

where C = LG
√

π
2kc

, and erf is the error function. Here kc = 2.7 W/m is the ice thermal conductivity
kd = 45 sqm/year is the ice thermal diffusivity, and Ts is the surface temperature of the ice sheet. Also,
M is the mass accumulation rate, G the geothermal heat flux, and H the total thickness of the ice sheet.
We choose Ts = 216 K, M = 0.01 m/year, G = 0.047 W/sqm and H = 3700 m in what follows. The
simulated temperature profile with the given parameters are shown in Figure 5. The parameters for
generating density profiles are the same as in Figure 4. The permittivity of the ice sheet is calculated
using the Matzler [24, 25] and Tiuri [26] formulas for the real part and imaginary part, respectively.

Figure 6 plots the simulated brightness temperature from 0.5 to 2 GHz for both the standard
coherent model and the coherent reflectivity model derived in this paper following an average over 1000
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Figure 4. Example ice sheet density profile using Δ1 = 0.04 g/cc, � = 11 cm, α = 30 m.

Figure 5. Temperature profile from Robin model with Ts = 216 K, M = 0.01 m/year, G =
0.047 W/sqm and H = 3700 m.

realizations of the density random process. The results show that the coherent model and coherent
reflectivity model agree well.

The results for 1 density profile realization and a 1000 profile realization average are compared
further in Figure 7(a). It is shown that the random profile causes strong fluctuations which is much
different from the averaged curve. Figure 7(b) plots the results of Figure 7(a) divided by (1 − r) as
would be recommended for canceling cap layer effects in Equation (46). The reflectivity r is simulated
here. In the real measurement, it is obtained by radar. The results show that both the single realization
and averaged cases recover a smooth lower region brightness temperature that is a function only of
the lower region ice temperature and attenuation profiles. To account for the density fluctuations in
the passive only approach, a large number of density profiles need to be generated to average out the
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Figure 6. Brightness temperature as a function of frequency, 1000 realization averaging results are
shown for coherent model and coherent reflectivity model. The results have shown a good match between
the 2 models.

(a) (b)

Figure 7. (a) Simulated Brightness temperature as a function of frequency. Results for 1 realization
of cap region profiles and 1000 realizations are shown. (b) Simulated brightness temperature with cap
region effects compensated. To make the brightness temperature profile stable, we need to use monte
carlo averaging to smooth out the fluctuations. With the compensation, the brightness temperature
profiles match well with each other for 1 realization and 1000 realizations.

fluctuations as in Figure 7(a). In the combine active and passive method, there is no need to generated
profiles since the cap region reflectivity is measured by radar.

Figure 8 again investigates the compensation of cap region effects using a single realization of the
brightness temperatures with varying cap layer properties. The results again confirm the applicability of
the proposed approach for compensating these effects. In practice for nadiral radiometric measurements,
the reflectivity as a function of frequency should be measurable by a nadir pointed radar operating over
the same frequency range, indicating the potential for improving temperature profile retrievals using
combined active/passive measurements.

Figure 9 shows the case where Equation (47) is not applicable. We use a 1300 m thick ice body
with physical temperature profile generated by robin model and Ts = 250, M = 0.32, G = 0.1 are used
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(a) (b)

Figure 8. (a) Brightness temperature profile with different cap region properties. (b) Brightness
temperature with cap region effect compensation. The results show that for cap regions with different
statistical properties, the compensated brightness temperature profiles are the same. In the retrieval
process, we do not need a-priori information on the cap region density profiles if we have radar
measurements.

(a) (b)

Figure 9. (a) Temperature profile used for the simulation of brightness temperature profile of (b). In
this case, the bottom of ice body is water, and the thickness of the ice sheet is not thick enough to be
treated as half space. The assumption for the coherent reflectivity model to work is not valid in this
case. And as a result, the coherent model predicts a brightness temperature about 10K higher than the
results of Equation (51) at the low frequency end due to the reflection from bottom.

as input. We set water below the ice body with 80 + 10i as the permittivity. A correlation length of
15 cm is used to generate the top region density fluctuations while the other parameters are the same in
the previous case. We only consider the emission from ice body in the coherent model and the coherent
reflectivity model as shown in Figure 9(b). In the reflectivity model, we assumed that there is no abrupt
change in the profile, which means that the power due to the emission from bottom or reflected from
bottom is negligible. Due to the strong reflection at the bottom, the assumption for Equation (47) to
work is no longer valid. We may also insert a layer of material into any position in the ice body to
break the assumption. Thus the 2 models no longer agree with each other.
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7. CONCLUSION

Near surface ice sheet density fluctuations cause reflections that modulate thermal emissions from deeper
portions of the ice sheet. In this paper, a coherent reflectivity model for combined active and passive
sensing of polar ice sheets was developed. The approximation in the model was shown to characterize
the cap region influence in terms of its reflection and transmission coefficients and characterize the
emission from ice sheet by it physical temperature profile and absorption profiles. Numerical results
show a good agreement with coherent model. The brightness temperature compensated with cap region
effects shows smooth curves that are directly related to ice sheet physical temperature and absorption
profiles. The model may fail if the condition of “slowly varying profile” is not valid in the large ice body.
With the help of radar measurements, the a-priori information of cap region density is not required in
the retrieval of ice sheet temperature profiles. The UWBRAD flight path shall extended to the regions
without borehole sites. In future work, we shall use the co-located UWBRAD measurement and OIB
GPR data to validate this concept.

APPENDIX A. SYMMETRY RELATION OF DYADIC GREEN’S FUNCTION

Let region 0 be homogeneous with permittivity ε and region 1 is inhomogeneous with relative
permittivity ε1r(r).

First consider a source in region 0.
Let a be an arbitrary constant vector located at ra. Then the dyadic Green’s functions obey the

equations
∇×∇× G00 (r, ra) · a − k2

0G00 (r, ra) · a = aδ (r − ra) (A1)

∇×∇× G10 (r, ra) · a − k2
0ε1r (r) G10 (r, ra) · a = 0 (A2)

where G00 denotes a source in region 0 and field point in region 0, and G10 denotes a source in region
0 and field point in region 1.

Boundary conditions on the boundary separating region 0 and region 1 are

n̂ × G00 (r, ra) · a = n̂ × G10 (r, ra) · a (A3)

n̂ ×∇× G00 (r, ra) · a = n̂ ×∇× G10 (r, ra) · a (A4)

For a source in region 1, let b be an arbitrary constant vector located at rb

∇×∇× G01 (r, rb) · b − k2
0G01 (r, rb) · b = 0 (A5)

∇×∇× G11 (r, rb) · b − k2
0ε1r (r) G11 (r, rb) · b = bδ (r − rb) (A6)

The boundary conditions are

n̂ × G01 (r, rb) · b = n̂ × G11 (r, rb) · b (A7)

n̂ ×∇× G01 (r, rb) · b = n̂ ×∇× G11 (r, rb) · b (A8)

Applying the vector Green’s theorem and integrating over region 0 with n̂ pointing up yields:∫
region0

dV
[(

G01 (r, rb) · b
)
· ∇×∇×

(
G00 (r, ra) · a

)
−
(
G00 (r, ra) · a

)
· ∇ × ∇×

(
G01 (r, rb) · b

)]
= −

∫
dSn̂ ·

[(
G00 (r, ra) · a

)
×∇×

(
G01 (r, rb) · b

)
−
(
G01 (r, rb) · b

)
×∇×

(
G00 (r, ra) · a

)]
Then we have

a · G01 (ra, rb) · b = −
∫

dSn̂ ·
[(

G00 (r, ra) · a
)
×∇×

(
G01 (r, rb) · b

)
−
(
G01 (r, rb) · b

)
×∇×

(
G00 (r, ra) · a

) ]
(A9)
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Next applying vector Green’s theorem with a source in region 1 and integrating over region 1 yields:∫
region1

dV

[(
G11 (r, rb) · b

)
·
[
k2

0ε1r (r)G10 (r, ra) · a
]

−
(
G10 (r, ra) · a

)
·
[
k2

0ε1r (r)G11 (r, rb) · b + bδ (r − rb)
] ]

=
∫

dSn̂ ·
[(

G10 (r, ra) · a
)
×∇×

(
G11 (r, rb) · b

)
−
(
G11 (r, rb) · b

)
×∇×

(
G10 (r, ra) · a

)]
Note that(

G11 (r, rb) · b
)
·
[
k2

0ε1r (r)G10 (r, ra) · a
]

=
[
G10 (r, ra) · a

]
· (k2

0ε1r (r)G11 (r, rb) · b
)− (G10 (rb, ra) · a

)
· b

=
∫

dSn̂ ·
[(

G10 (r, ra) · a
)
×∇×

(
G11 (r, rb) · b

)
−
(
G11 (r, rb) · b

)
×∇×

(
G10 (r, ra) · a

)]
Applying the boundary conditions, the right hand sides of Equations (1) and (2) are equal and

opposite, so that
a · G01 (ra, rb) · b = b · G10 (rb, ra) · a (A10)

Since they are scalar, we take transpose amd since a and b are arbitrary

G01 (ra, rb) = Gt
10 (rb, ra) (A11)

REFERENCES
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