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A Robust Approach for Three-Dimensional Real-Time Target
Localization under Ambiguous Wall Parameters

Hua-Mei Zhang*, Sheng Zhou, Cheng Xu, and Jiao Jie Zhang

Abstract—To obtain three-dimensional (3-D) high-precision and real-time through-wall location under
ambiguous wall parameters, an approach based on the extreme learning machine (ELM) which is a neural
network is proposed. The wall’s ambiguity and propagation effects are both included in the hidden layer
feedforward network, and then the through-wall location problem is converted to a regression problem.
The relationship between the scattered signals and the target properties are determined after the
training process. Then the target properties are estimated using the ELM approach. Numerical results
demonstrate good performance in terms of effectiveness, generalization, and robustness, especially
for the kernel extreme learning machine (KELM) approach. Noiseless and noisy measurements are
performed to further demonstrate that the approach can provide good performance in terms of stability
and reliability. The location time, including the training time and test time, is also discussed, and the
results show that the KELM approach is very suitable for real-time location problems. Compared to
the machine learning approach, the KELM approach is better not only in the aspect of accuracy but
also in location time.

1. INTRODUCTION

Detecting and localizing the hidden targets in enclosed structures are major challenges in a wide range
of both civilian and military applications. The capability of electromagnetic (EM) waves to penetrate
visually opaque obstacles provides an efficient means for sensing and seeing through obstacles. Through-
wall radar imaging (TWRI) is such a non-destructive technique that has sparked growing interest.

During the past decades, several effective TWRI algorithms that consider the propagation
phenomenology in layered media have been proposed, such as linear inverse scattering algorithms and
the autofocusing approach based on the spectrum Green’s function [1, 2]. A multi-algorithm fusion
framework has also been presented to track human targets under the heterogeneity of walls and the
scattering characteristics of human targets [3]. Another approach which decouples the through-wall
localization problem into three separate components was proposed by Chen and Narayannan [4]. The
approach improves the accuracy of target location estimation efficiently. Although successful imaging
results and robust tracking performance can be obtained using these algorithms, they mainly deal with
two-dimensional (2-D) scenarios that provide information on the range and azimuth profile. To obtain
more valuable information about the target extent in length, width, and height, three-dimensional (3D)
TWRI is proposed. Some researchers extend 2-D imaging to 3-D imaging. Ahmad et al. presented a
delay-and-sum beamformer using line arrays for 2-D TWRI and a planar array for 3-D TWRI [5]. The
height information was added to enhance target discrimination and identification abilities. To image
targets behind multi-layered walls, Zhang et al. proposed full polarimetric beamforming algorithms based
on the far field approximation of layered medium Green’s function for 2-D and 3-D TWRI [6, 7]. To
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obtain a 3-D image, Solimene et al. proposed a 2-D sliced approach that can be employed to obtain the
3-D scene by the superposition and interpolation of 2-D reconstructed images [8, 9]. Other researchers
have provided successful 3-D imaging results directly. Using the time-domain approach, a comprehensive
system-level simulation platform was proposed. Then, a backprojection microwave imaging algorithm
was applied for 3-D focused images of radar targets [10].

Although the aforementioned algorithms are successful in obtaining satisfactory imaging, they
are time-consuming in 3-D situations or large-scale scenarios. Due to the easy implementation of
the algorithm with fast Fourier transform (FFT) and inverse FFT (IFFT), diffraction tomography
(DT) has much higher computational efficiency [11]. Then, Zhang and Hoorfar proposed a 3-D DT
algorithm based on the first-born approximation and the spectral expansion of the wall’s dyadic Green’s
function for real-time through-the-wall radar imaging. The image is efficiently reconstructed and easily
implied, which makes the diffraction tomographic TWRI algorithm suitable for on-site applications [12].
However, this real-time imaging approach requires a wall estimation procedure in advance. It does not
work under unknown wall parameters.

Therefore, all of the above approaches for TWRI cannot simultaneously handle two key problems:
unknown wall parameters and real-time imaging. Machine learning approaches, such as support vector
machines (SVMs) and least-squares support vector machines (LS-SVMs), can locate targets under
unknown wall parameters at a relatively fast speed [13]. The TWRI problem aims to find the target
properties according to the received signals. The relationship between the target properties and received
signals is nonlinear and ill-posed because of the presence of the wall. However, it can be easily obtained
through the training process of the machine learning approach in [13]. However, in the training
process, the learning speed is very slow, although the testing process is very fast. To improve the
location speed, an alternative technique in the area of neural networks, extreme learning machines
(ELMs), is proposed in this paper. Conventional neural networks, such as the back-propagation
(BP) algorithm, are based on biological learning mechanisms. Their learning speed is very slow, and
trivial human intervention is needed. These challenging issues are also faced by SVMs. ELMs can
overcome these challenges. ELMs were proposed by Huang et al. in 2004 [14], and the work generalizes
single-hidden layer feedforward neural networks (SLFNs), which randomly choose the input weights.
Thus, the hidden layer of SLFNs needs not be tuned, and random computational nodes that may
be independent of the training data can be applied. Then, the learning speed significantly improves.
According to neural network theory, reaching a smaller training error, the smaller the norm of weights
is, the better generalization performance the feedforward neural networks tend to have. Different
from traditional learning algorithms for neural networks, the ELM tends to reach not only a smaller
training error but also the smallest norm of output weights [15]. Thus, ELMs usually achieve similar
or better generalization compared to other learning algorithms. In general, ELMs build some tangible
links between machine learning techniques and biological learning mechanisms [16] and provide better
generalization performance at a much faster learning speed with minimal human intervention [15]. ELMs
are competitive techniques and have attracted increasing attention in both regression and classification
applications.

In the standard ELM, the parameters of the hidden node remain fixed after being randomly
generated. The only unknown parameters in SLFNs are the output weight vectors between the hidden
layer and output layer, which can simply be resolved by ordinary least-square directly. Thus, training
an SLFN is simply equivalent to finding a least-squares solution. It is a learning process based on the
principle of empirical risk minimization, and overfitting cannot be avoided. The orthogonal projection
method can be used to solve the above problems, and the solution is more stable and tends to have
better generalization performance. However, learning efficiency is reduced according to optimizing the
regularization parameters. If the hidden layer feature mapping is unknown to users, a kernel matrix for
the ELM is introduced according to Mercer’s conditions. Similar to SVMs, feature mapping need not
be known, and instead, it uses its corresponding kernel function. Thus the computational complexity
of the kernel ELM (KELM) is significantly reduced. Compared to the standard ELM, the KELM can
effectively improve the generalization and stability by using kernel mapping instead of random mapping.
Compared to the SVM, optimal solutions will tend to be easily achieved if the same kernels are used [16].

In TWRI, the relationship between the received signals and target properties can be determined
by the training process of the ELM algorithm. Then, the target properties can be estimated through
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the testing process. The total location time consists of the training time and testing time. Generally,
the testing time is less than the training time. If the training time is short, the total time is not long.
This advantage is beneficial for realizing real-time application in TWRI. Then, the ELM algorithm can
simultaneously solve the two key problems with computational efficiency and reliability. To the best of
our knowledge, the ELM for 3-D real-time automatic detection has not been addressed in prior works
in the context of TWRI.

This paper proposes the ELM-based approach to perform the through-wall location problem. This
paper is organized as follows. In Section 2, the 3-D imaging geometry of TWRI is presented. In Section 3,
the theory of ELM is presented in detail. The fundamental theory of the proposed approaches is also
presented. Section 4 provides some numerical examples, and the paper concludes in Section 5.

2. MATERIALS AND METHODS

Figure 1 shows a typical scenario for the 3-D through-wall location. The simulations are performed using
the XFDTD software, in which the domain of the TWRI problem is discretized with finite-difference
time-domain (FDTD) square cells of 1 cm length, and the time resolution is 16.68×10−12 s. The relative
permittivity, thickness, and conductivity of a single layer wall are denoted as εr = 3, d = 10 cm, and
σ = 0.001 S/m, respectively. The investigation domain is assumed to be a cuboid region behind the
wall and is denoted as D = [0, 2.0] × [1.1, 2.0][0, 1.0] m3. A spherical metallic target in the investigation
domain is centred at (xc, yc, zc) with a diameter of ρc = 5cm. The receivers over a rectangular planar
aperture are parallel to the wall and 0.5 m away from the front side of the wall. One transceiver located
at (1.0, 0.5, 0.5) m transmits an ultrawide-band short pulse signal, which is a 1.2 ns Gaussian pulse
modulated by a 1.5 GHz cosine wave. The signals are reflected by the wall and refract through the
walls. The signals are also scattered by the target. Finally, the signals are received by receivers. The
receivers are an 4× 4 array. They are 0.5 m away from the wall and on the same side as the transceiver.
The interval between the antennas is 0.2 m.

x
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Tx/Rx 
antenna 
array

target

Tx antenna 
Rx antenna 

Figure 1. Schematic of through-wall geometry.

Then, the scattered signals introduced by the target are obtained by subtracting the electric field
computed in the absence of the target from the total electric field computed in the presence of the
target. The scattered signals of the target change with the location, shape, dielectric property, etc. In
this paper, the location of the target is considered. Whether there is a target or not, one simulation
requires approximately 5 minutes through XFDTD software. To obtain the scattered signals of the
target, two simulations are needed. One simulation is in the scenes with the target and with the wall.
Another simulation is in the scenes without the target but with the wall. The former simulation will
repeat with the change of the location of the target, but the latter simulation only needs one time. If we
want to obtain multiple (M samples) scattered signals of the target, all simulations need approximately
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Figure 2. Amplitude of the received signal versus time for different locations.

M × 5 + 5 minutes.
We assume that the scattered signals will merely change with the location of the target. Figure 2

shows the scattered signals versus the different centres of the target. From Figure 2, we know
that the scattered signals will change in the x-direction, y-direction, and z-direction. Thus, there
is some relationship between the scattered signals and target locations. However, the propagation
phenomenology in layered media is more complex than that in free space, and the wall characteristics
are also ambiguous. Thus, the relationship is nonlinear, uncertain, and inherently ill-posed. Then, the
scattered signals can be considered as input, and the target locations can be considered as output. How
to obtain the nonlinear relationship can be considered a regression problem. Once the relationship is
confirmed, the location of the target can be obtained according to the scattered signals.

3. MATHEMATICAL MODE

Within the ELM framework, some arbitrarily distinct samples need to consist of the input array.
In the TWRI problem, according to the analysis in Section 2, each centre location of the spherical
target s represents a sample; that is, s represents xc, yc, or zc. From Figure 2, we know that the
maximum amplitude E and the corresponding time t are different when the target is in a different
location. Then, they can be extracted as features of the target. For one sample, a one-dimensional
vector v = (E1, . . . , En, t1, . . . , tn) is obtained, where n = 1, . . ., N is the number of sampling points.
Then the data (v, s) are obtained. When the target locations change, the data set in the form of
(vi, si) is generated, where i represents the ith sample. Then, in the ELM algorithm, a training
set W = {(v1, s1), . . . , (vl, sl)} is given, where i = 1, . . . , l, l is the number of training samples;
vi = (Ei1, . . ., Ein, ti1, . . ., tin) ∈ Rl is the input vector; and si = [si1, si2, . . . , sim]T∈ Rm is the
output vector. The output function of the standard ELM is mathematically modelled as:

f (v) =
L∑

i=1

βigi (vj) j = 1, . . . , N (1)

where β =[β1, . . . , βL]T is the vector of the output weights between the hidden layer of L nodes and
the output node, and g is the activation function. Because SLFNs can approximate these N samples
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with zero error means, there exist (ai, bi) and βi such that

f (v) =
L∑

i=1

βiG (ai, bi,vj)=sj, j = 1, . . . , N (2)

where G (ai, bi,vj) is a nonlinear piecewise continuous function. The above N equations can be written
compactly as:

Hβ = s (3)

where

H =

⎡
⎣

h (v1)
...

h (vN)

⎤
⎦ =

⎡
⎣

G (a1, b1,v1) . . .G (aL, bL,v1)
... . . .

...
G (a1, b1,vN ) . . .G (aL, bL,vN )

⎤
⎦ (4)

H and h (v) are the hidden layer output matrix of the SLFN and the hidden layer feature mapping,
respectively. In the standard ELM, from the interpolation capability point of view, the hidden layer
parameters can be randomly generated if the activation function g is infinitely differentiable in any
interval. Then Equation (3) is converted to solve the minimal norm least square:

β = H†s (5)

where H† is the Moore-Penrose generalized inverse of matrix H.
In the orthogonal projection method, to improve the stability of the ELM, we have

β = HT

(
I
C

+ HHT

)−1

s (6)

where C is a user-specified parameter. Then, the corresponding output function of ELM is

f (v) = h (v) β =h (v)HT

(
I
C

+ HHT

)−1

s (7)

If the hidden layer feature mapping h (v) is unknown, we can define a kernel matrix for the ELM. Then,
the hidden layer output matrix H is written as:

H =

⎡
⎣

h (v1)
...

h (vN )

⎤
⎦ =

⎡
⎣

h1 (v1) . . . hL (v1)
... . . .

...
h1 (vN ) . . . hL (vN )

⎤
⎦

N×L

(8)

Thus, we can define a kernel matrix for ELM as follows:

ΩELM= HHT:ΩELMi,j= h (vi) ·h (vj)=K (vi,vj) (9)

Similar to orthogonal projection to improve the stability of the ELM, we have β as Equation (6); then,
the output function of the ELM can be written as:

y = h (v) HT

(
I
C

+ HHT

)−1

s = =

⎡
⎣

K (v,v1)
...

K (v,vN )

⎤
⎦

T (
I
C

+ ΩELM

)−1

s (10)

Through the kernel K (vi,vj), the data (vi,vj) in the lower-dimensional space can be converted
to the inner product h (vi) ·h (vj) in the higher dimensional space, and there is no relationship
with the dimensionality of the hidden layer feature space. The number of hidden nodes L needs
not be specified, and only K (vi,vj) needs to be given to users. The radial basis function (RBF)

K (vi,vj)=exp
(
−γ ‖vi − vj‖2

)
is one of the kernel functions and is used in this paper. The kernel

parameter γ is the variance in the kernel function, which is the only parameter that needs human
intervention. Compared to the standard ELM, the KELM is more efficient and more stable.

According to the above discussion, if a new sample v is given, then the estimated value s is obtained.
The core idea of the estimation algorithm based on KELM is revealed in Figure 3.
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Figure 3. Flow chart of the estimation algorithm based on KELM.

4. RESULTS AND DISCUSSION

To show the efficiency and effectiveness of the proposed ELM algorithm for 3-D real-time through-wall
location, some numerical simulations are presented in this section. In the simulation, the spherical
target is assumed to be unchanged except for the change in the location, whose radius is 5 cm. Thus,
the training data are achieved by repeated simulations with variation in the centre coordinates of the
spherical target:

xtrain = 0.1 + nΔx, n= 0, 1, . . . , 9
ytrain = 1.3 + mΔy, m= 0, 1, . . . , 3
ztrain = 0.1 + kΔz, k= 0, 1, . . . , 4

(11)

where Δx= Δy= Δz = 0.2 m are sampling intervals which are same in this paper, but they can also
be different. The sampling frequencies are 10, 4, and 5 respectively, and they are also independent. So
there are 200 training samples.

In the same way, for testing samples, the centre coordinates of the spherical target vary as follows:

xtest = 0.2 + nΔx′, n= 0, 1, . . . , 8
ytest = 1.2 + mΔy′, m = 0, 1, . . . , 3
ztest = 0.2 + kΔz′, k = 0, 1, . . . , 3

(12)

where Δx′ = Δy′ = Δz′ = 0.2m are sampling intervals respectively. Similarly, they can be equal or
unequal. There are 144 testing samples. The sampling frequencies are also independent. None of the
test data are the same as the training data.

We first present a numerical example for the standard ELM with randomly generated hidden
nodes and random neurons. In the training process of the standard ELM, the activation function and
the number of random hidden neurons need to be known. Through simulations, we find that if the
sigmoidal function is selected as the activation function, the best results will be obtained. Thus, the
sigmoidal function is selected as the activation function in this paper. We also find that the larger
the number of random hidden neurons is, the smaller the root mean squared error (RMSE) is. The
RMSE is the mean value of the square root of error between the estimated value and true value. The
smaller the RMSE is, the higher the estimated accuracy is. However, the calculation time will increase
correspondingly. Thus, the number as large as possible under acceptable calculation time is chosen.
Then, training model modelelm is obtained. According to modelelm, the testing data are used for
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estimation, and the estimated results are shown in Table 1. From Table 1, we can see that the training
time is approximately tens of seconds, the testing time is approximately a few seconds, and the RMSE
is below 5 cm except in the width direction. Table 2 gives the estimated results of the KELM. In
the KELM training process, the RBF is selected as the kernel function, and γ is the only parameter
that needs to be tuned with the input data knowledge. In the simulation process, the optimal kernel
parameter is selected when the RMSE is minimum. Then, the training data are trained by the KELM,
and the model, which is called modelkelm, is obtained. From Table 2, both the training time and testing
time are only a few milliseconds, and the RMSE is no more than 1.6 cm.

Table 1. Estimated results of standard ELM.

Location Training time (s) Testing time (s) RMSE (cm)
length 50.453 3.703 4.054
width 45.781 3.609 14.889
height 19.094 1.438 2.872

Table 2. Estimated results of KELM.

Location Training time (s) Testing time (s) RMSE (cm)
length 0.001 0.002 1.056
width 0.002 0.001 0.818
height 0.002 0.001 1.587

Table 3. Estimated results of SVM.

Location Training time (s) Testing time (s) RMSE (cm)
length 26.018 0.886 3.217
width 87.712 0.809 14.362
height 86.252 0.799 2.971

To compare the ELM approach with the SVM approach, Table 3 gives the SVM results with the
same simulation parameters. The RBF kernel function is used in the SVM. From Table 3, the training
time is approximately tens of seconds; the testing time is no more than one second; and the RMSE is
below 4 cm except for in the width direction.

In TWRI, the location time is a crucial problem. For this regression problem, the location time
consists of the training time and testing time. In the training process, the standard ELM approach needs
to search for the optimal number of hidden neurons, which is time consuming, while the KELM approach
only needs to determine the appropriate kernel parameter. The SVM approach needs to optimize
two parameters and requires more calculation time. Moreover, unlike machine learning approach, the
training time of the ELM approach is not related to the number of training data, which is affected by the
number of neural networks in the standard ELM and the kernel parameter in the KELM. Thus, if the
number of samples is larger, the KELM approach can still train a model very fast. In general, the time
on the order of seconds is sufficient. However, for the SVM approach, the training time significantly
increases as the number of samples increases. For the standard ELM, the training time is longer than the
time of the KELM approach but shorter than that of the SVM approach. The testing time will generally
also be shorter than the training time. From Table 1 to Table 3, we can find that the training time of
the KELM approach is four orders of magnitude shorter than that of the other two approaches, and
the testing time is two orders of magnitude shorter than that of the SVM approach and three orders of
magnitude shorter than that of the standard ELM approach. The KELM approach can obtain the most
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accurate result with the fastest location speed. Thus even the 3-D schematic of through-wall geometry
changes, on-site location is feasible because of the very short location time. Therefore, compared to
the machine learning approach, the neural network approach is more suitable for real-time through-wall
location.

To demonstrate the estimated results intuitively, Figure 4 gives the contrast between the estimated
values and actual values. In Figure 4, the 45-deg diagonal line indicates that the estimated values are
equal to the actual values. The round dots represent the estimated values of the standard ELM, and
the stars represent the estimated values of the KELM. The closer the round dots or stars are to the
diagonal line, the more precise the estimated values are. Figure 5 gives the error results between the
actual values and estimated values quantitatively. In Figure 5, the estimated errors of length and width
are under 2 cm, those of height under 3 cm for the KELM algorithm, and they are all under 6 cm for the
standard ELM algorithm. From these statistical data, we know that all estimated accuracies of length,
weight, and height are very high for the KELM algorithm. Moreover, regardless of the direction, the
estimated results of the KELM algorithm are better than those of the standard ELM algorithm. The
reason is that the KELM uses kernel mapping instead of random mapping which is used in the standard
ELM, and the generalization and stability are effectively improved.
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Figure 4. Estimated values of (a) length (b) width, and (c) height versus the actual values.
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Figure 5. ELM algorithm versus KELM algorithm of (a) length (b) width, and (c) height.
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Figure 6. SVM algorithm versus KELM algorithm of (a) length (b) width, and (c) height.

To compare the accuracy of the ELM approach and SVM approach, Figure 6 gives the estimated
errors of the KELM approach and SVM approach. In Figure 6, the estimated errors of length are under
5 cm, those of width under 30 m, and those of height are under 6 cm for the SVM approach. Thus in all
directions, the results of the KELM are better than the results of the SVM approach, especially in the
width direction. The KELM approach shows good performance in terms of accuracy and generalization.

To simulate more practical circumstances, Gaussian noise with a mean value of zero is added to
the testing data, and all other parameters are the same as before. In this simulation, the signal-to-
noise ratio (SNR) is set as 5, 10, 20, 30, 60, and 100 dB. The results of the mean error in the different
directions are given in Figure 7.

Figure 7 shows that the ELM approach and SVM approach are almost unaffected by the added
noise even through the SNR is very low, except in the width direction. However, the width direction is
unaffected by the KELM approach. Under noisy circumstances, the mean error for the KELM algorithm
is lower than that for the standard ELM algorithm and SVM algorithm in any direction. The KELM
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approach is more robust than SVM approaches, such as supporting machine learning. Thus the KELM
approaches present a competitive performance in through-wall location under noisy circumstances.

To verify the feasibility of the ELM approach, target tracking in a 3-D environment is simulated.
The target moves along a random route. The tracking result is shown in Figure 8. From Figure 8,
we know that the estimated route for the KELM approach almost coincides with the actual route, but
those for the standard ELM approach and SVM approach deviate from the actual route. As a result,
the KELM approach is competent in TWRI because of its high precision and real-time features.

5. CONCLUSIONS

The ELM approach for 3-D through-wall location under unknown wall parameters is proposed in this
paper. The wall parameters’ uncertainty and wall propagation effects are included in the hidden layer
of the neural network. After the training process, the nonlinear relationship between the scattered
signals that we can obtain directly and the target properties that we want to know are obtained. In this
paper, the standard ELM approach and KELM approach are proposed, and their results are compared
with those of the SVM approach. Because the kernel function in the KELM substitutes for the random
neural number in the standard ELM, the accuracy of the KELM is higher, and the training time and
testing time are shorter than that of the standard ELM, which are much shorter than that of the
SVM approach. For the KELM approach, the estimated errors are under 0.02 m in length, width, and
height, and both the training time and testing time are a few milliseconds. Thus the KELM approach
demonstrates more speed and convenience in the training process and its good performance in terms of
effectiveness and validity in automatic location. For both noiseless and noisy circumstances, the KELM
approach provides stable results. In 3-D target tracking, the KELM approach can track the actual
route reliably. Thus the KELM approach is very suitable for real-time location under unknown wall
parameters.

However, the KELM approach is not suitable for the case of multiple targets. Future work will be
aimed at locating multiple targets in a real-time process under unknown wall parameters.
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