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Abstract—In the forward modeling of the transient electromagnetic (TEM) method, a frequency-
domain solution is usually obtained first, and the solution in the time domain is then calculated by a
frequency-time transformation. At present, the three main fast frequency-time transformation methods
are the Guptasarma algorithm, the sine and cosine numerical filtering algorithms, and the Gaver-Stehfest
(G-S) algorithm. In recent years, with the increasing demand for fine detection at shallow depths, the
small-loop TEM method has undergone rapid development. It is therefore important to evaluate whether
the traditional forward modeling approaches can be directly applied to the small-loop method. In this
paper, the principles of the three forward modeling methods and their limitations when being applied
to the small-loop TEM method are discussed. Through a comparison with the analytical solution for
a uniform half-space, we demonstrate that the accuracy of forward numerical calculation is affected by
loop size and earth resistivity. When the Guptasarma, G-S, and cosine numerical filtering algorithms
are used for small-loop TEM forward calculation, the overall calculation error becomes non-negligible,
whereas the sine numerical filtering algorithm retains a high calculation accuracy. By studying the
response of the frequency-domain solution, we analyze the cause of the error in the forward calculation.
Generally, the sine numerical filtering algorithm is the most suitable method for fast and high-precision
small-loop TEM forward modeling. The results obtained here should provide a foundation for high-
precision forward modeling and inversion of the small-loop TEM method.

1. INTRODUCTION

The transient electromagnetic (TEM) method is a rapidly developing noninvasive geophysical
exploration technique that is widely used in geological mapping and in exploration of mineral and
water resources owing to its good ability to penetrate high-resistivity strata and its high sensitivity
to anomaly detection. As shown in Fig. 1, TEM is a method of using an ungrounded loop to emit a
pulsed magnetic field to the ground. After the transmitting current is turned off, the secondary eddy
current field is obtained by the receiving coil. High-precision forward modeling is essential for TEM
data interpretation. Owing to the complexity of two- and three-dimensional forward modeling theory
and the huge amount of calculations required [1], the more mature one-dimensional layered model
forward modeling method is still widely used. Given that the forward analytical expression involves a
Bessel function, the frequency-domain solution is generally obtained by Hankel transformation, and the
time-domain solution is then calculated using frequency-time transformation [2,3]. The most widely
used fast frequency-time transformation methods at present are the Gaver-Stehfest (G-S) algorithm,
the Guptasarma algorithm, and the sine and cosine numerical filtering algorithms.

Knight and Raiche [4] were the first to use the G-S algorithm to convert a frequency response to a
time response in a two-layer geoelectric model, which facilitated the development of forward calculations
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Figure 1. Principle of TEM detection and schematic diagram of forward modeling and inversion
interpretation.

in the TEM method. Raiche [5] then applied the G-S algorithm to polygonal loops to obtain a time-
domain electromagnetic solution. To solve the efficiency problem caused by a large number of sampling
times, Luo and Chang [6] further improved the operating speed of the G-S algorithm using the delay
theorem for the Laplace transform. The G-S algorithm has few filtering coefficients and a fast calculation
speed, and its calculation accuracy is closely related to the word length of the computer. The greater the
word length is, the higher the accuracy is, so the algorithm requires a higher computer performance [7].
Kaufman and Keller [8] first applied the sine and cosine transform algorithms to one-dimensional forward
calculations in the TEM method. There are various ways to realize the sine and cosine transforms, such
as the Feron algorithm, the broken-line approximation algorithm, and the numerical filtering algorithm.
The Feron algorithm requires a large number of calculations, and in the broken-line approximation
algorithm, the integration step is difficult to control, and the calculation speed is slow, whereas the
numerical filtering algorithm can ensure the accuracy of calculation and greatly improves the speed of
operation [9]. The Guptasarma algorithm is a linear filter algorithm proposed by Guptasarma [10] for
calculating the time-domain induced polarization response from the frequency domain. The algorithm
is suitable for the case where the two extremes of the frequency variables have real asymptotic values,
and the amplitude decreases monotonically from low frequency to high frequency. In this algorithm,
only 21 filter coefficients are used, so the calculation is fast. In the calculation of the TEM response [11],
the accuracy is higher at early times and lower at late times.

The classical TEM forward modeling theory is based on a large-loop source. In recent years, with
the increasing demand for exploration of urban underground spaces, tunnels, and mountain disasters,
there has been a rapid growth in the use of small-loop TEM systems [12-14]. In this paper, to evaluate
the applicability of the traditional forward method for small coils, three different fast forward modeling
methods are discussed in detail in the context of their application to small loops. The advantages and
limitations of the three methods are revealed by comparing them with analytical solutions for a uniform
half-space.
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2. FORWARD MODELING THEORY

In this section, we briefly introduce the calculation of the frequency-domain solution and the frequency-
time conversion method in TEM forward modeling theory, and we present the related core calculation
formula. Full details can be found in the references cited.

2.1. Hankel Transform

In electromagnetic sounding theory, for layered earth, the transient electromagnetic field response V()
of the central loop device under excitation by a step current is given by [20]

Vit) = —@ OOO Re[H. ()] cos(wt) dw
_ Qq% OOOIm[HZ(w)] sin(wt) dw, (1)
where
Ho(w) = Ior /0 Z(w, )1 (r\) dA @)

is the electromagnetic frequency-domain solution, Z(w, \) the transfer function of the layered earth [21],
J1 the first-order Bessel function of the first kind, Iy the transmitting current, r the radius of the
transmitting coil, o the vacuum permeability, and ¢ the equivalent receiving area. In a horizontal
layered medium, the forward formula for transient electromagnetic sounding of a loop source is expressed
as a double integral. The inner layer is a Hankel-type integral with a Bessel function of the first kind,
and the outer layer is a sine or cosine integral. In the integral formula, since the Bessel function
decreases slowly with the independent variable, the solution for layered earth can be obtained only
through a numerical calculation method. At present, the high-precision linear numerical filtering formula
proposed by Guptasarma and Singh [16] is generally used to calculate the frequency-domain response.
The principle of the calculation is as follows:

H,(w) = /000 F(w,\)Jy(rA)dA

= %iF(w,)\i)Ki, (3)
i=1

Flw,\) = IorZ(w, ), A= (1/r)x 10let0=Dsl 519

where F(w, )\;) is the objective function to be converted; the shift a determines the starting point of the
sampling input function; the sampling interval s specifies the interval of the remaining sampling; ); is the
position of the sampling point; and K; is the Hankel transform of the numerical filtering coefficients,
whose values are given in [16]. The accuracy of numerical calculation depends on the length of the
integration interval n. Generally, the larger the value of n is, the slower the calculation speed is but
the higher the accuracy is. In this study, a 140-point Hankel J; transform is used to obtain the TEM
frequency response.

2.2. G-S Algorithm

The G-S algorithm belongs to a class of probability transformation algorithms that involve purely
real number operations. It requires only calculation of the s value of the Laplace transform, so its
calculation speed is fast. The main idea is to use the basic integral properties of a special function (the
kernel function) to connect the function to be solved and the integral of its product with the kernel
function, thereby transforming the function to be solved from the frequency domain to the time domain.
The core expression of the calculation is as follows [4, 17]:

N
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where ( Y
min(m,N/2
W, = (—1)m+N/2 Z kN2 (2k)! 5
ooty o (N2 = R)RI(E = D)l (m — B)I(2k — m)!

is the G-S filtering coeflicient, f, the response function in the frequency domain to be converted,
[(m + 1)/2] the integer part of (m + 1)/2, and N a positive integer determined by the number of
computer bits, which is usually taken from the set {8, 10, 12, 14}. In this study, NV is taken as 12. The
expression for the time-domain TEM response can be obtained by Gaver and Stehfest’s inverse Laplace

transform: N
In2 In2
Vas(t) = —quo—— > [Hz <’m7>} W (6)

m=1

Using Eq. (3), it can be deduced that the frequency domain response H, in Eq. (6) satisfies
In2 In2 2
H, ( - ) Z F( = > K;. (7)

2.3. Guptasarma Algorithm

The Guptasarma algorithm can convert the voltage response of an impedance model in the frequency
domain that involves a fractional power of the complex frequency variable, such as the Cole-Cole model,
to the voltage response under step-current excitation. The specific conversion method is as follows [10]:

21

qup(t) = Ro — ZSOT Re[R(wr)]v (8)
r=1

w, = 10% o810t (9)

where R(w,) is the frequency-domain impedance of the polarization model, Ry the zero-frequency
impedance, ¢, the linear filtering coefficient, and a, the position value, whose specific value can be
found in [10]. The filter is applicable to complex impedances with real asymptotic values at the two
extremes of the frequency variable for which the amplitude decreases monotonically from low frequency
to high frequency. For the TEM field, both the magnetic field response and electric field response have
real asymptotic values at the two extremes of the frequency variable, and the amplitude basically shows
a monotonic downward trend. Therefore, the linear filtering method can be used for frequency-time
conversion of the electromagnetic response [11]. In the forward calculation in the TEM method, Ry = 0,
and Eq. (8) can be converted to

21

Vaup(t) = —quo Y or Re[H. (w,)]. (10)
r=1

2.4. Sine and Cosine Numerical Filtering Algorithms

Sine and cosine transforms are special cases of the Hankel transform, and the associated numerical
filtering algorithms can be quickly obtained by using the familiar Hankel transform theory. The main
difference between the sine and cosine transforms is that the kernel functions used are the virtual
component and the real component of the vertical magnetic field, respectively. The Bessel functions
and the sine and cosine functions are related as follows [18]:

2 . 2
Jij2(2) =1/ — sinz, J_12(2) = ”E oS 2. (11)

The numerical filtering algorithm for the sine and cosine transforms can be deduced as

Fein( \f Z ( >csin(nA), (12)
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feos(t) \f Z fw( )ccos(nm, (13)

where f, is the response function in the frequency domain that is to be converted; A is the
sampling interval; csin(nA) and ccos(nA) are the numerical filtering coefficients of the sine and cosine
transformations, respectively, and the sine and cosine integrals of the voltage response induced in the
central loop device have the forms given in Eq. (1). The numerical filtering forms can be obtained by
substituting the above expressions:

Van(t) = 2(”‘0\/7 Z Im[ ( )]csin(nA), (14)
Vios(t _Qq“‘)\/>z Re[ < ﬂccos(nA). (15)

In actual calculations, n takes only a limited number of values: the range is generally from —200
to 200. The more filter coefficients are used, the slower the calculation speed is, but the higher the
calculation accuracy is. Generally, for the same type of function, the optimum number of filtering
coefficients should be determined by experiment [18]. Provided that the calculation accuracy is ensured,
the calculation speed should be increased as much as possible. In this study, A = In(10)/10 and n = —59
to 100.

3. COMPARISON OF FORWARD MODELING RESULTS

For the TEM method, an analytical solution is available for the electromagnetic field in the uniform half-
space model, and this is not constrained by the coil size, so it can be used as a theoretical reference to
evaluate the accuracy of other layered geological forward modeling methods. The analytical expression
for the TEM field-induced voltage response of a central loop device in a uniform half-space is [19]

V(t) = ?;i{ff [qb(u) - \/gu<1 + “;) e—u%] , (16)

where u = ry/po/2pt, ¢p(u) = /2/7 [} e " 124y (probability integral), r is the radius of the
transmitting loop (the square loop side length a and circular loop radius r satisfy r = a/4/7), and
p is the resistivity of the uniform half-space. To compare the characteristics and applicability of three
different forward modeling methods for large and small loops, this study simulates a large transmitting
loop with side length 100 m and a small transmitting loop with side length 5 m. The half-space resistivity
is set as 1002 - m and the transmitting current as 10 A, and the receiving equivalent area is 10 m? (the
receiving area is mainly realized by increasing the number of receiving turns, and its size is small
enough relative to the transmitting coil). The calculation time range is [10~7,1072], and 30 points of
data are sampled according to logarithmic equal intervals. It is worth mentioning that for the small-loop
TEM method, data within 1 ms can be regarded as a high-SNR data segment. The calculation results
are compared with the uniform half-space analytical solution. In addition, to provide an objective
and quantitative evaluation standard for the accuracy and calculation speed of the forward modeling
method, the average running time and error of a single forward modeling are defined as

m
ZTimei
Time = = —— (17)
m

i |Forward; — Analytic,|

Analytic;

Error = =1 x 100% (18)
n
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where Time; is the duration of one forward modeling, m the number of forward modelings, Forward; the
tth-channel response value in the forward calculation results, Analytic; the ¢th-channel response value

corresponding to the analytical solution, and n the total number of channels. In this study, m = 50
and n = 30.

3.1. Results of G-S Algorithm

The forward calculation results obtained with the G-S algorithm are illustrated in Fig. 2. When the
algorithm is applied to large-loop TEM forward modeling, the calculation speed and accuracy are
relatively high; the calculation error is mainly concentrated at late times; the overall average calculation
error is less than 3%; so this algorithm is widely used in large-loop source forward modeling. However,
when it is applied to the small loop, the average error of the overall calculation increases by nearly 80
times. At late times, there is a large fluctuation, with negative values appearing (in the figure, all of
the data are processed using the absolute value). Only at early times, the coincidence degree is high.
Taking account of the fact that the effective data time length can reach the order of milliseconds in
actual TEM field detection, the applicability of this method in the small-loop case is severely limited.
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Figure 2. Forward modeling results of the G-S algorithm: (a) large-loop TEM; (b) small-loop TEM
(the negative parts of the data are processed using the absolute value).

3.2. Results of Guptasarma Algorithm

The calculation results obtained with the Guptasarma algorithm are shown in Fig. 3, from which it can
be seen that the calculation speed is twice as fast as that of the G-S algorithm. Because only the real
part of the frequency-domain solution is used in frequency-time conversion, the late-time conversion
accuracy is relatively low, and the overall average error is large. Fortunately, this method has high
accuracy in the [1077,1073] time period, and it can realize the most rapid forward modeling, which is
in line with actual engineering needs, so it is widely applied to the large-loop TEM method. However,
when being applied to the small-loop method, although there is no negative fluctuation similar to that
occurring with the G-S algorithm, the overall calculation error becomes larger. The time period for
which accurate calculations are possible is greatly reduced, and also the average error is over 1000%,
which is far from meeting actual engineering measurement requirements. Therefore, this method is
unsuitable for application to the small-loop TEM method.
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Figure 3. Forward modeling results of the Guptasarma algorithm: (a) large-loop TEM; (b) small-loop
TEM.

3.3. Results of Sine and Cosine Numerical Filtering Algorithms

The cosine numerical filtering algorithm uses the real component of the magnetic field, which provides
high calculation accuracy at early times, although a fluctuation will occur at late times (Fig. 4). This
fluctuation phenomenon will appear earlier and more strongly in small-loop TEM. The sine numerical
filtering algorithm uses the imaginary component of the magnetic field. Its calculation accuracy is
nearly 50 times higher than that of the G-S algorithm, and the overall average error is less than
0.1% (Fig. 5). However, the calculation speed of this method is the slowest among the three types of
numerical algorithm, with its calculation time about three times as long as that of the G-S algorithm.
However, compared with the broken-line approximation method and the Feron algorithm (which usually
take several seconds for one forward modeling), its calculation speed is still considerable. When the
algorithm is applied to a small coil, its operation speed is basically unaffected. Although the calculation
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Figure 4. Forward modeling results of the cosine numerical filtering algorithm: (a) large-loop TEM;
(b) small-loop TEM (the negative parts of the data are processed using the absolute value).
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Figure 5. Forward modeling results of the sine numerical filtering algorithm: (a) large-loop TEM; (b)
small-loop TEM.

error becomes larger, the accuracy remains high and is equivalent to that of the G-S algorithm for
large-loop forward modeling.

4. DISCUSSION

4.1. Relationship between Frequency-Domain Solution Response and Loop Size

The relationship between the vertical magnetic field and the frequency received by the uniform half-space
central loop device is as follows [15]:

Iy
k3r3

where k; is the underground wave number in the uniform half-space, o the conductivity of the uniform
half-space, w the circular frequency (w and frequency f satisfy the conversion relation f = w/27), and
r the radius of the transmitting loop. The square loop side length a and circular loop radius r satisfy
r = a/y/m. The size of the loop directly affects the solution for the frequency-domain response. With
a small loop, the sampling position in the frequency response calculation is increased owing to the
reduction in the offset distance, which makes the sampling interval of the formation transfer function
larger. To evaluate the influence of the small loop on the frequency solution in an intuitive manner, the
frequency is calculated analytically for side length of 100m and 5m. The transmitting current is 1 A;
the half-space resistivity is 100€2 - m; and the number of frequency points is 300. In the case of a large
central loop (Fig. 6(a)), the real part of the magnetic field oscillates in the high-frequency band, but it is
very stable in the low-frequency band, while the imaginary part of the magnetic field is not completely
stable, but it is generally smooth. In the high frequency region, the interaction between the induced
eddy current fields in the ground becomes non-negligible, which leads to the generation of oscillation
signals. When the coil size is reduced (Fig. 6(b)), the response in the low-frequency band is extended
to the high-frequency band. It can be seen from the calculation errors of the three numerical forward
modeling methods (Fig. 7) that compared with the case of a large loop, the overall calculation error
for a small loop will shift to early times, and consequently the calculation error will appear earlier in
the small-loop TEM method. For the Guptasarma and cosine transform algorithms, which use the real
part of the magnetic field, the late-time error caused by high-frequency oscillations cannot be ignored in
the case of a small loop. By contrast, the sine numerical filtering algorithm uses the relatively smooth
imaginary component of the magnetic field, which provides good calculation accuracy and stability.

H.(w) = [3 — (34 3kyr + k22 e*kl’“] .k = —iowp, (19)
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Figure 6. Variation of the vertical magnetic field with frequency at the center of the transmitting loop:
(a) large-loop TEM; (b) small-loop TEM.
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Figure 7. Comparison of calculation errors of the three fast forward modeling methods: (a) large-loop
TEM; (b) small-loop TEM.

4.2. Influence of Earth Resistivity

For the small-loop sine numerical filtering algorithm, we study the calculation accuracy and speed for
different values of the earth resistivity. The results are shown in Fig. 8. With increasing resistivity, the
forward calculation speed slows down slightly, and the calculation error gradually increases, especially
in the time period [1072,1072], and the relative error fluctuates strongly. The reduced accuracy of
forward calculation at late times will lead to problems in the interpretation of data on deep high-
resistance bodies. In actual field measurements, especially in complex environments such as cities and
tunnels, the TEM signal in this period is often contaminated by noise, and although this does not affect
the applicability of the sine transform algorithm to the small-loop TEM method, it implies that if the
appropriate forward calculation method is not chosen, the error in early-time calculation results may
become large owing to the presence of underground high-resistivity bodies.
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Figure 8. Influence of resistivity on the calculation error of the sine numerical filtering algorithm.

5. CONCLUSION

This paper has described the basic principles of three classical fast forward modeling methods based
on the large-loop TEM method: the G-S algorithm, the Guptasarma algorithm, and the sine and
cosine transform algorithms. Through a comparison with the uniform half-space analytical solution,
we have demonstrated that the accuracy of forward numerical calculation is affected by loop size and
earth resistivity. The smaller the transmit-receive distance is, the larger the sampling interval is in the
frequency calculation. This makes the low-frequency response appear earlier in the numerical calculation
results, as a consequence of which the overall calculation error shifts to early times, and the calculation
error appears earlier in the small-loop TEM method. Furthermore, the real part of the numerical
solution in the frequency domain oscillates in the high-frequency band, and therefore the errors in the
Guptasarma algorithm, the G-S algorithm, and the cosine transform algorithm cannot be ignored when
they are used in the small-loop forward calculation. The sine numerical filtering algorithm uses the
relatively smooth imaginary component in the frequency-domain solution, which provides high overall
calculation accuracy, with only slight oscillations occurring at late times. For subsurface low-resistivity
structures, the calculation accuracy and speed of this algorithm are further improved, which is consistent
with the high detection sensitivity of the TEM method for low-resistance anomalies. Thus, at present,
the sine numerical filtering algorithm is the most suitable approach for fast and high-precision forward
modeling in the small-loop TEM method.
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