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Miniaturized Twelve-Stubbed Microstrip Balun with Twelfth Higher
Order Harmonic Suppression and Improved Bandwidths
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Abstract—The design of a compact stubbed microstrip balun with very wide range higher order
harmonic suppression is presented based on multiple open stub units, for which advantages are twofold,
compared to single and double open-stub based designs. First, the high degree of size and harmonic
reduction is achieved within the realizable impedance values. Second, the achieved bandwidths are
fairly large (close to those of conventional balun) for a given set of electrical lengths. Unlike other
methods, here, predetermined bandwidth analysis is provided for various levels of size and harmonic
reduction. A prototype balun, having 75% size reduction and simultaneous wide higher order harmonic
suppression extended up to 12f0, while maintaining good input matching, amplitude, and phase balance
bandwidths, is fabricated for validation.

1. INTRODUCTION

Whenever it is intended to transform unbalanced single input signal into balanced differential signal,
the foremost choice is a balun, which is a prominent microwave component. Baluns are crucial in a
wide variety of applications like double balanced mixers, push pull amplifiers, frequency multipliers,
and balanced antennas [1].

Several planar balun designs have been reported [2–11]. Marchand balun [2], using coupled lines, is
difficult to realize and further requires compensation to match the even- and odd-mode phase velocities.
The balun based on Wilkinson topology [3] requires a very large area and additional circuitry. In
contrast, the branch-line balun (BLB) design [4–11], based on modified rat race coupler, entirely
composed of transmission line sections, is simple and easy to implement, hence being the choice in
wide attempts like dual-band operation [4, 5] and bandwidth enhancement [6, 7]. However, the circuit
size of BLB is large due to the transmission line topology composed of half-wavelength lines; moreover,
BLB exhibits harmonic responses, which interfere with other circuitries in system level. Addressing this,
several methods were proposed in [8–11]. Transmission line equivalent shunt open-stub units with single
and two stubs were presented in [8–10] for simultaneous size and harmonic reduction, while an inter
digital capacitor like structure (resembling two stub unit) is presented in [11] only for miniaturization.
However, the total size of the balun is large in [8] as the stubs were placed outside, while the amplitude
imbalance is huge (0.9 dB) at operating frequency in [11]. Though a good size reduction was achieved
in [9–11], the harmonic suppression was not wide, limited up to fourth [9] and sixth [10]. These were
achieved at the expense of reduced balun bandwidths, which were not addressed in [8–11].

In this work, a multiple stub unit composed of three open-stubs (inverted E-shape) is proposed to
obtain improved bandwidths compared to those obtained using single and two stubs [9, 10]. Here, special
attention is paid to the prediction of several balun bandwidths such as input matching, amplitude, and
phase balances, where the variation is examined for different line lengths, using detailed design graphs
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and tables. Furthermore, the present unit offers high degree of size reduction and harmonic suppression
within the realizable impedance values compared to [8–10]. A prototype balun having 75% size reduction
with a very wide range (up to twelfth) harmonic suppression is fabricated at 0.5 GHz for demonstration.
The achieved bandwidths are better than [8–11], and the harmonic suppression range is double of [10].

2. DESIGN AND ANALYSIS

A multiple shunt open-stub unit, equivalent to a conventional quarter wavelength line, is shown in
Fig. 1, where the cases with single stub [9], double stub [10], and the present triple stub units having T,
Π, and InvE-shapes, respectively, are highlighted. The present InvE-unit with three shunt open-stubs
(ZS , θS) and two connecting lines (Zt, θt), shown in Fig. 2, is used to replace the quarter wavelength
lines of the conventional balun and thus forming the present compact balun with twelve open-stubs. It
is noted that the middle stub of the present InvE-shape unit is Zs/2, and the implemented BLB will
have twelve stubs with impedance Zs/2 due to the parallel combination of two consecutive stubs of the
six cascaded units.

Figure 1. Traditional quarter-wavelength transmission line and its equivalent multiple-stub unit.

(a) (b) (c)

Figure 2. Transmission line topology of (a) conventional branch-line balun and (b) the proposed
compact stubbed balun using three-stub InvE-units.
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The choice of electrical lengths for the series arm and shunt-stub leads to miniaturization and
harmonic suppression, respectively. The size reduction (M) and number of harmonics suppressed (N)
are given in terms of electrical lengths [10] as

M = 100
[
1 − (θt/90)2

]
and

N = 2 [floor (90/θs) − 1]
(1)

From Eq. (1), higher orders for M and N are achieved for smaller values of θt and θs, respectively.
However, the selection of electrical lengths is limited by the corresponding impedances of the lines. For
a conventional quarter wavelength transmission line (QWTL), the ABCD matrix is:[

A B
C D

]
QWTL

=

[
0 jZ
j

Z
0

]
(2a)

The ABCD matrix of the InvE-shape unit is obtained by multiplying the individual units of two
series arms and three shunt open stub units.[

A B
C D

]
InvE

=

[ 1 0
j

ZS
tan θS 1

]
×

[ cos (θt/2) jZt sin (θt/2)
j

Zt
sin (θt/2) cos (θt/2)

]
×

[ 1 0
2j
ZS

tan θS 1

]

×
[ cos (θt/2) jZt sin (θt/2)

j

Zt
sin (θt/2) cos (θt/2)

]
×

[ 1 0
j

ZS
tan θS 1

]
(2b)

From Eq. (2b), AInvE = cos θt − 4 Zt
ZS

sin (θt/2) cos (θt/2) tan θS + 2( Zt
ZS

)2 sin2 (θt/2) tan2 θS and

BInvE = 2Zt cos (θt/2) sin (θt/2) − 2
(

Zt

ZS

)2

sin2 (θt/2) tan θS (2c)

The final impedances of the InvE-shape unit are obtained by equating Eqs. (2a) and (2c), and by
solving

Zt =
Z√
2

csc (θt/2) and

Zs =
Z tan θs√

2 cos (θt/2) − 1

(2d)

Using Eqs. (1) and (2d), circuit computations of BLB are performed for different levels of size
reduction and harmonic suppression responses. In each case, various fractional bandwidths (FBWs)
are calculated and plotted to show the variation with θt and θs in Figs. 3 and 4, respectively. Here,
first the FBWs of the conventional BLB are calculated and shown as solid lines. For comparison,
the corresponding FBWs of the BLBs implemented using single and two-stub units of [9] and [10],
respectively, are also plotted. Considering port 1 as the input port, the bandwidth criteria are defined
as

|S11| : − 20 dB,

Mag.Bal. (|S31| ∼ |S21|) : 0 ± 1.0 dB and
PhaseBal. (∠S31 ∼ ∠S21) : 180◦ ± 10◦

(3)

To show the effect of miniaturization, the variations of FBWs of return loss, magnitude, and phase
balances in Eq. (3), with θt for fixed θS (15◦ and 30◦), are shown in Fig. 3. It can be observed that the
FBWs decrease with reducing θt in all cases, but are closer to conventional BLB for the present three
stub unit. Among the three cases in Eq. (3), the input matching is found to be greatly affected with
miniaturization than the amplitude and phase balances. For instant comparison, the FBWs and the
impedance values for BLB realization are compared in Table 1. For greater size reduction of M = 75%
(θt = 45◦), the input matching bandwidth is 32% for the present Inv-E shaped unit, while it is 21 and
22% for the single and two stub units, respectively. Hence the matching FBW is improved by about



60 Ravi Sekhara Reddy, Velidi, and Prabhakara Rao

10% in the present case. Similarly, an improvement of 4% and 2% is seen in the case of phase and
magnitude balance bandwidths, respectively. However, the T-shaped unit is not suitable to achieve
this level of size reduction as the impedance value (170 Ω) is beyond the realizable range, hence, the
two-stub and three stub units are the possible solutions.

(a) (b)

(c)

Figure 3. Variation of balun FBWs with miniaturization (θt) using single, double and three stub units.
(a) Return loss, (b) magnitude balance and (c) phase balance.

Table 1. Line impedances and FBWs for T, Π and present Inv-E shaped units equivalent to Z = 70.7Ω
For N = 10 (θs = 15◦) for various θt.

Parameter M = 55.6% (θt= 60◦) M = 25 % (θt =45◦)
T [9] Π [10] Present InvE T [9] Π [10] Present InvE

FBWs (%)
RL (20 dB)

Phase bal. (180◦ ± 10◦)
Amp. bal. (0 ± 1 dB)

25.6
40.5
25.7

25.8
40.7
25.6

32.5
43.4
27.4

21.3
38.0
24.0

22.5
38.2
24.1

32.0
42.6
26.9

Impedances
Zt(Ω)
ZS(Ω)

122.5
28.4

81.6
18.9

100
42.1

170.7
22.9

100
13.4

130.6
30.9
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(a) (b)

(c)

Figure 4. Variation of balun FBWs with harmonic suppression (θS) using single, double and three
open-stub units. (a) Input matching. (b) Magnitude balance. (c) Phase balance.

Table 2. Line impedances and FBWs for T, Π and present Inv-E units for M = 25% (θt = 45) for
various θS .

Parameter
N = 4 (θS = 30◦) N = 10 (θS = 15◦)
Π Present InvE Π Present InvE

FBWs (%)
RL (20 dB)

Phase bal. (180◦ ± 10◦)
Amp. bal. (0 ± 1 dB)

22.0
36.2
22.8

30.4
40.3
25.5

22.5
38.2
24.1

32.0
42.6
26.9

Impedances
Zt(Ω)

ZS/2(Ω)

100
28.9

130.6
66.6

100
13.4

130.6
30.9

Similarly, the variations of FWBs, with stub length θS for fixed M = 44.4% and 25% (θt = 60◦ and
45◦), are shown for all cases of Eq. (3) in Fig. 4 for the single, two and present three stub units. Here,
FBWs increase with decreasing θS; however, the variation is relatively minimal, compared to Fig. 3. For
instance, the FBWs and impedances are compared in Table 2 for θS = 30◦ and 15◦ for fixed θt = 45◦.
As discussed previously for the realizable impedance value, the single stub case is not shown here. From
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θS = 30◦ to 15◦, the harmonic suppression is enhanced by two times (from six to twelve) with an overall
improvement in FBWs by at least 2%. However, this case with θS = 15◦ is difficult to implement using
two stub units as the impedance required is too low (13.4 Ω), which results in stub placement problems.
In contrast, the impedance required is approximately 31 Ω in the case of the present three stub unit
that can be easily accommodated inside the ring geometry.

From the above discussions, it can be clearly highlighted that an improvement in FBW is obtained
by choosing higher number of stubs having smaller stub lengths. Thus, triple stub unit is a fine choice
in terms of improved FBW, miniaturization, and harmonic suppression compared to those in [9, 10].

3. FABRICATION AND MEASUREMENT

A low cost FR4 substrate having a dielectric constant of εr = 4.3, loss tangent 0.022, and thickness
1.58 mm was used to fabricate microstrip balun using present InvE-shaped unit at f0 = 0.5 GHz. From
Eq. (2d), the line impedance (Zt) and stub impedance (ZS) of each triple stub unit, corresponding to
Z = 70.7Ω, θt = 45◦, and θS = 15◦, are 130.6 Ω and 30.9 Ω, respectively.

EM simulations of the present balun were carried out using the Ansys HFSS full wave simulator.
A photograph of the fabricated miniaturized balun is shown in Fig. 5 occupying an area of 47 mm ×
94 mm, which is only 26% area of a conventional balun area (91mm × 183 mm) at f0.

Figure 5. Photograph of the fabricated balun with dimensions (mm).

Measured, EM simulated, and circuit predicted magnitude responses, in Fig. 6, show good
agreement. The measured insertions losses (including connector losses) S21 and S31 are 3.64 dB and
3.6 dB, respectively. The return loss is 15.7 dB at f0 and 15 dB FBW 74%. The phase and amplitude
balance responses are shown in Fig. 7. The measured phase difference and magnitude balance FBWs
are 57% and 26%, respectively. Moreover, the proposed balun has no spurious response up to 6 GHz,
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(a) (b)

(c) (d)

Figure 6. Measured, EM simulated, computed S-parameters. (a) S11. (b) S21. (c) S31. (d) In band
of proposed compact balun with wide range spurious suppression.

(a) (b)

Figure 7. Measured, EM simulated, computed amplitude and phase response of proposed balun. (a)
Phase balance. (b) Amplitude balance.
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Table 3. Comparison of proposed balun performance with the best reported baluns.

Param. \Ref.
Conventional

(Ideal)
[9]-T [9]-Π [10] [11] Present

Operating freq.,
f0 (GHz)

- 1.0 1.0 1.0 2.4 0.5

Insertion loss at f0

|S21| (dB)
|S31| (dB)

3.0
3.0

3.5
3.7

3.6
3.8

3.56
3.5

2.90
3.83

3.64
3.60

Magnitude Bal. at f0

(|S21| − |S31|) (dB)
0.0 0.2 0.2 0.06 0.93 0.04

Phase diff. at f0

(∠S21 − ∠S31) (deg.)
180 NA NA 177.3 178.63 179.8

FBWs (%) RL (15 dB)
Magnitude bal. (0 ± 1 dB)
Phase bal. (180◦ ± 10◦)

80
28
44

73.1
22.8
46.5

63
22.1
52.7

70
25
51

42
33
33

73.8
25.5
56.9

Size of balun (λ2
g) 0.125 0.045 0.031 0.031 0.069 0.033

Occupying Area (%)
Relative to conventional design

100 36 25 25 55.8 26

Harmonic suppression up to No 4.5f0 4.5f0 6f0 NA 12f0

which is about 12f0, where a deep suppression is observed from fourth to eighth harmonics, while the
overall suppression is better than at least 10 dB. Table 3 compares the performance of the proposed
balun with those of best reported balun designs. The proposed balun exhibits excellent magnitude and
phase differences at f0, while various FBWs are better than [9–11]. Besides, the proposed balun has
high degree of harmonic suppression up to 12f0 which is double of [10], while maintaining the compact
area the same as those in [9, 10] with improved bandwidths.

4. CONCLUSION

A design of a multiple (three) stub based compact wide range harmonic suppressed balun is presented.
In contrast to other methods that achieve size reduction at the cost of unexpected bandwidth reduction,
here, the various bandwidths are predetermined for various levels of size and harmonic reduction. It is
shown that the balun using three stub unit exhibits improved bandwidths that are close to those of a
conventional balun. Further, a high degree of miniaturization (up to 75%) and spurious suppression (up
to twelfth harmonic) is achieved within the realizable impedance values. The proposed balun, based on
transmission line analysis, is simple and straightforward with predicted bandwidths, easy to fabricate
as no tedious coupled lines and ground plane structures are involved.
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