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Differential-Fed Log-Periodic Dipole Array with High Isolation
for Wideband Full-Duplex Communications

Tuan T. Nguyen* and Tutku Karacolak

Abstract—This study presents a differentially driven log-periodic dipole array system with high
isolation between reception and transmission ports for wideband full-duplex applications. The antenna
system is composed of two pairs of log-periodic dipole arrays operating in the X-band spectrum from
8GHz to 12 GHz. The system offers a low cross-polarization between E-plane and H-plane (less than
−25 dB). The simulation results show high isolation S21 < −60 dB through the entire X-band while
the measured results reach S21 < −45 dB in a reflective lab room. Furthermore, in order to verify the
measured values, a modified 180◦ out-of-phase wideband power divider is used to feed transmitting and
receiving ports. The second measured outcomes also attain total isolation greater than 45 dB for the
entire band of interest. The proposed design is able to cover both orthogonal transmitted and received
directions with reasonable gain values, high efficiency, and good impedance matching.

1. INTRODUCTION

As the wireless communication devices are becoming more numerous, the available radio wave spectrum
is becoming increasingly congested due to the traditional data transmission practices such as frequency-
and time-division multiplexing. These methods require transmission (TX) and reception (RX) at either
different frequencies or at different times, decreasing the spectral efficiency. Researchers are exploring
new wireless spectrum standards to address overcrowded spectrum. One of these standards is full-
duplex communications which allows for transmitting and receiving on the same frequency at the same
time [1, 2]. In recent years, this technology has been broadly investigated and proved its significant role
in various aspects of the technological advancements. Because the transmitted and received signals are
reduced to a single frequency, more frequency resources are available for the data communication within a
specified bandwidth leading to an efficient use of the RF spectrum. However, there are several challenges
to realize full-duplex operation. The most significant of them is the high level of self-interference. The
power of this undesired signal can be much stronger than the targeted signal [3]. Hence, the received
signal of interest may become unrecognizable and distorted due to RF leakage between transmitting
and receiving terminals.

To successfully suppress this self-interference, different active and passive suppression methods
have been considered including antenna separation, placing absorbers between antenna elements, using
circulators combined with analog cancellation tools, and antenna orientation [4–8]. The authors in [9–
11] also considered dual polarization antennas structure to mitigate the self-interference. Another
technique uses a near-field resonator or coupling element to enhance the isolation between antenna
elements [12, 13]. However, these proposed architectures achieve high isolation only at the center
frequency suffering from low bandwidth. They are also large in size and are not appropriate for low-cost
compact systems.
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In this study, we propose a differentially driven log-periodic dipole array (LPDA) system with
large isolation between transmission and reception ports for wideband full-duplex communications. The
antenna system consists of two pairs of LPDAs. High isolation and wide bandwidth are the important
characteristics of the design. To maximize the isolation, orthogonal polarization is considered. The
propagating directions of both transmitted and received signals are offset by 90◦ about the center of
the system. The LPDAs in transmission and reception pairs are oriented in the opposite directions and
on the same plane [14]. However, the directions of transmitted and received antennas are perpendicular
to each other to ensure that both signals will not interfere with one another. Thus, the signals of the
system can propagate in orthogonal directions for both operations and maximize the isolation.

Symmetry manipulation is also employed to attempt to reach a high level of isolation [15]. By
attaching both antennas to a single module, a compact planar antenna system is designed. The
antenna system is optimized to sustain a high level of isolation through the entire band of interest.
The proposed design provides coverage for X-band spectrum which has common applications in radar,
weather monitoring, or air traffic control.

2. ANTENNA DESIGN PROCESS

In this work, two antenna arrays are designed with each having two elements. LPDAs are chosen for
antenna elements due to their broad bandwidth, low cross polarization, high gain, and highly directive
patterns. FR4 is used for the substrate with a thickness h1 of 1.5 mm, a dielectric permittivity εr of
4.4, and dielectric loss tangent tan δ of 0.02. For a desired directivity of 8 dB, the scale factor, τ , and
relative spacing, σ, are determined as 0.865 and 0.15, respectively. With these parameters, the number
of dipoles, N = 8, and aperture angle, 2α = 25.36◦, are calculated. Then, the length of the largest
dipole is computed using the lowest frequency of operation.

Considering the 50 Ω characteristic impedance, Zn, the width, Wn, is found using the below
expressions [16]:
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where an is the radius of each cylindrical dipole, and η0 is the intrinsic impedance of air.
Finally, after computing the dimensions of the largest dipole, the length, L, width, W , and spacing,

D, of remaining dipoles are determined by using the following well-known LPDA design expressions:
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Figure 1(a) illustrates the geometry of a single LPDA antenna. The optimized dimensions of the
LPDA are given in Table 1. The mode converter balun based on tapered microstrip lines is used for
impedance matching and feeding the LPDA. Figure 1(b) depicts the top view of proposed LPDA antenna

Table 1. Geometry of the proposed LPDA.

Dipole Length, Ln (mm) Width, Wn (mm) Spacing, Dn (mm)
1 2.391 0.688
2 2.764 0.795 2.081
3 3.196 0.920 2.406
4 3.694 1.063 2.782
5 4.271 1.229 3.216
6 4.938 1.421 3.718
7 5.709 1.643 4.299
8 6.600 1.900 4.970
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Figure 1. (a) The geometry of a single LPDA; (b) The geometry of LPDA antenna system; (c) The
top view of the fabricated system.

system with two differential pairs. Here, we assign ports 1 and 2 as differential port 1 (TX port), and
ports 3 and 4 as differential port 2 (RX port). This design provides orthogonal linear polarizations
in the same radiating structure. Dual linear polarizations in the horizontal and vertical planes will
effectively suppress the coupling between the two differential pairs without affecting antenna’s radiation
performance. The TX and RX LPDAs are separated by an optimized distance Dt and Dr of 0.928λ,
where λ is the wavelength of the highest frequency. The spacing between two opposite LPDAs is
important since it affects the mutual coupling and beam direction of the array between TX and RX
ports. Figure 1(c) shows the fabricated antenna system which comprises four LPDAs. The bottom
side of each LPDA is symmetrical with the top side and is soldered to the ground part of the SMA
connector.

The reflection coefficients and isolation for the antenna system are calculated using two methods.
In the first method, the differential pair 1, which includes the single-ended ports 1 and 2, is designated
as differential TX port 1. Likewise, the differential pair 2 including ports 3 and 4 is designated as
differential RX port 2. The differential simulated and measured S-parameters are obtained using the
below equations [17]:

Sa11 =
1
2

(S11 − S12 − S21 + S22) (4)

Sa22 =
1
2

(S33 − S34 − S43 + S44) (5)
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Figure 2. The top-view of the wideband power divider.

Figure 3. Measured phase of output ports for the modified power divider.

Sa12 =
1
2

(S13 − S14 − S23 + S24) (6)

Sa21 =
1
2

(S31 − S41 − S32 + S42) (7)

where Sij are single-ended S-parameters for an ordinary 4-port device. Here, Sa11 and Sa22 denote the
differential reflection coefficients, and Sa12 and Sa21 show the coupling between differential TX and RX
ports. Moreover, to further validate the results, two wideband 180◦ out-of-phase power dividers are
implemented based on the design in [18] to feed each differential pair. Because two LPDAs in each
pair are placed opposite to each other, 180◦ power divider is chosen for feeding method. Note that the
design in [18] operates from 3 GHz to 10 GHz, and we redesigned the original model to cover the entire
X-band spectrum. Power divider is designed on a RO4003C substrate with dielectric permittivity εr of
3.66, thickness h2 of 0.51 mm (0.020 in), and loss tangent tan δ of 0.0031. The geometry of the power
divider is shown in Figure 2. It achieves phase difference of 180◦ between the output ports through
the operating band, as seen in Figure 3. Table 2 shows the detailed dimensions of the entire antenna
system.

3. RESULTS AND DISCUSSION

The antenna system is designed and simulated by using ANSYS HFSS. Based on the first method, the
differential reflection coefficients (Sa11 and Sa22) and the isolation of differential signal between TX and
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Table 2. Geometry of the proposed antenna system.

Symbol Dimension (mm) Symbol Dimension (mm)
LTL1 4.85 Lpd 22.0
LTL2 26.4 Wpd 18.0
Dr 23.2 W10 0.20
Dt 23.2 D10 9.70
L9 0.80 W11 0.90
L10 1.90 L11 6.15
Lsub 87.8 r 2.00

RX ports (Sa21) are calculated using Eqs. (4)–(7). An Agilent PNA-L Network Analyzer N5230C is used
to measure the S-parameters in a reflective environment. The LPDA operates from 6GHz to 12 GHz;
however, we only focus on X-band spectrum with large isolation. Figure 4 illustrates the simulated and
measured results of the proposed system. The simulated reflection coefficients show that both TX and
RX antennas operate through the entire X-band spectrum. The measured impedance matching is good
from 8GHz to 11.4 GHz and degraded in the higher frequencies after 11.4 GHz.

Figure 4. Simulated and measured S-parameters using first method.

Additionally, the system maintains high simulated isolation, Sa21 < −60 dB, attaining −80 dB
at the center of the band. The measured results indicate that the system sustains high isolation
Sa21 < −45 dB, reaching as low as −85 dB. The difference between the simulated and measured data
may be caused by several factors. The losses of the SMA connectors affect the antenna matching.
The imperfections account for the fabrication process of the mini milling machine. Also, regarding the
isolation, reflections from the environment and symmetricity degradation due to the coaxial cables limit
the amount of isolation that can be measured.

As previously mentioned, further measurements have been performed with the use of two out-of-
phase power dividers. As shown in Figure 5, each differential LPDA pair is connected with a wideband
power divider using coaxial cables. Figure 6 clearly illustrates that the system maintains a high isolation
less than −45 dB and reaches a minimum of −78 dB. The antenna also has good impedance matching,
leading to a −10 dB bandwidth from 8 GHz to 11.4 GHz within X-band. The second measurement
method is in decent agreement with a bandwidth of 3400 MHz (35%), compared to the first method.
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Figure 5. Measurement setup of the antenna system with wideband power dividers.

Figure 6. Measured S-parameters with power divider.

In Figure 7, the LPDA reaches simulated peak gain from 6.1 dB to 7.5 dB while the measured gain
attains up to 7 dB. In order to measure the antenna gain, the coupling between two identical antennas
is collected. Two LPDAs are placed line of sight and separated with a far-field distance 2D2/λ, where
D is the maximum dimension of the LPDA, and λ is the wavelength of the highest frequency. Then,
Friis transmission equation is used to calculate the gain in far-field region [19]:

Pr

Pt
= |S21|2 = GtGr

(
λ

4πR

)2

where the ratio of the received to the input power, Pr
Pt

, equals the transmission coefficient |S21|2 measured
by network analyzer. Since Gt and Gr are the gains of two identical antennas, Gt is equal to Gr. The
distance between two antennas, R, is equal to or greater than the far-field distance. The scatterings
and reflections from the environment cause the difference between the simulated and measured gains.
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Figure 7. Simulated and measured gain of the antenna system.

(a) (b)

(c) (d)

Figure 8. Radiation pattern of transmit mode with Phi = 0◦ and Phi = 90◦ at (a) 8GHz, (b) 9 GHz,
(c) 10 GHz, (d) 11 GHz.

Figure 7 also shows the simulated radiation efficiency of the antenna system sustaining more than
75% through the entire X-band which is good for radar applications. Figures 8 and 9 report the
simulated co-polarized and cross-polarized radiation patterns of TX and RX modes at 8, 9, 10, and
11 GHz, respectively. In TX mode, the polarization differences approximate 39 dB and 21 dB at φ = 0◦
and φ = 90◦, respectively. At φ = 0◦ (x-z plane), the co-polarization value of RX mode is 25 dB more
than cross-polarization value, while this value increases up to 38 dB in the directions of 90◦ and 270◦
at φ = 90◦ (y-z plane). Additionally, the radiation patterns in E-plane are nearly omnidirectional,
whereas they are almost bi-directional in H-plane over the operating frequency band. In TX mode,
these values are similar due to symmetrical geometry of the antenna. Low cross-polarization prevents
the interference between two signals and improves the performance of the system.
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Figure 9. Radiation pattern of receive mode with Phi = 0◦ and Phi = 90◦ at (a) 8 GHz, (b) 9 GHz,
(c) 10 GHz, (d) 11 GHz.

Table 3. Comparison of the proposed system with literature.

Design
Targeted
Frequency

(GHz)

Measured
Minimum

Isolation (dB)
Bandwidth (%)

[1] 6 < −55 8.3
[4] 2.4 < −46 1
[9] 2.4 < −50 3.7
[10] 2.4 < −40 12.5
[20] 2.4 < −50 12.5

This work X-band < −45 35

Table 3 presents the comparison of the proposed antenna with high isolation full-duplex systems
from the literature. As seen, the current design achieves a higher cancellation within a wide-band
operation. The antenna array also maintains a high gain and low cross-polarization in a compact size.

4. CONCLUSION

This paper presents a wideband high isolation antenna system for X-band full-duplex applications. The
proposed design has two differentially-fed LPDA pairs for RX and TX operations. The structure
maintains isolation greater than 45 dB through the entire band of interest in a highly reflective
environment. A stable radiation pattern with low cross-polarization values is observed and covers
orthogonal directions for both RX and TX modes. This compact antenna system with its high isolation
and gain can be used within small size wideband full-duplex systems.
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