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Abstract—Electrical impedance tomography (EIT) is a technique for reconstructing the conductivity
distribution by injecting currents at the boundary of a subject and measuring the resulting changes in
voltage. Many algorithms have been proposed for two-dimensional EIT reconstruction. However, since
the human thorax has the characteristic of three-dimensions, EIT is a truly three-dimensional imaging
problem. In this paper, we propose a three-dimensional imaging method using tensors for EIT. A tensor
EIT model is established by EIT data, and the tucker decomposition is used to obtain the tensor basis.
The tensor basis can form a new way to reconstruct image in three-dimensional space. Experiment
results reveal that the data structural information of image can be fully used by the tensor method. A
comparison of the peak signal to noise ratio (PSNR) shows that the newly proposed method performs
better than other methods, i.e., the Dynamic Group Sparse TV algorithm and Tikhonov algorithm.
The newly proposed method is closer to the ground truth, thus it can more accurately reflect the state
of a lung than two-dimensional EIT. Finally, the EIT experiment is carried out to evaluate the proposed
method. The experimental results show that the accuracy of reconstruction based on the new method
is efficiently improved.

1. INTRODUCTION

Electrical impedance tomography (EIT) is an emerging imaging technology that has been developed in
recent years. EIT technology is a noninvasive method to obtain the impedance information distribution
within the measured object field by applying excitation current to detect the variation of the boundary
voltage information of the measured object field. In recent decades, EIT technology [1] has been
developed rapidly in the field of biomedical imaging, owing to its non-radiation, high-speed, and non-
intrusive sensing ability. It can reconstruct the internal impedance by simultaneously measuring the
voltage or current at the boundary. EIT is an attractive medical imaging technology with potential
clinical application. However, maintaining high resolution in space together with low costs is still
challenging.

In order to meet the requirement of mathematical model and reduce the computation complexity,
EIT imaging data are always represented as a vector. However, the essence of EIT data is multi-
dimensional, which is similar to traditional medical imaging, such as CT and MRI [2]. According to
the EIT mathematical model, the reconstructed image data are represented by vectorization, while the
actual reconstruction image is two-dimensional or three-dimensional signal. As a result, the information
from image domain is difficult to be used for optimization of EIT reconstruction since the spatial
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relationships of pixels are lost. Most of EIT reconstruction algorithms have been designed for two-
dimensional geometries or a single cross-sectional slice of the volume. However, it can only reveal
partial information of the realistic three-dimensional objects and thus limit the capability of EIT. The
path of the electric currents spread all over the three-dimensional domain, so EIT is intrinsically a
three-dimensional problem. As such, off-plane conductivity changes generally affect the solutions of the
electrode plane and create considerable distortions in the resulting two-dimensional images. These severe
limitations to two-dimensional EIT thus encourage the development of three-dimensional reconstruction.

At present, the traditional EIT image reconstruction algorithms [3, 4] include sensitivity coefficient
method [5–7], iterative algorithm [8], conjugate gradient method [9], and TV regularization [10, 11].
The sensitivity coefficient method [5] is a simple image reconstruction algorithm, but the image
reconstruction quality is not high because approximate substitution is used in the calculation process.
LSQR algorithm [12, 13] introduces the double-diagonal matrix and QR decomposition method, which
can effectively improve the computational efficiency. However, in the process of three-dimensional
imaging, the amounts of measured data and reconstructed image data increase exponentially, which
restricts the imaging speed. Conjugate gradient method [9] has fast convergence and small storage
capability, but imaging results are susceptible to noise. TV regularization [14, 15] is a kind of
regularization based on L1 norm, which can maintain a clear interface, protect image edges, and improve
the accuracy of reconstructed images. However, TV regularization technique usually focuses on the
global characteristics of the conductivity distribution, and constraint is posed on the image as a whole.
Recently, the effect of regional structure information on image quality improvement has aroused a lot
of interest. Group sparsity method [16] utilizes structure information as boundaries, which can obtain
distinct boundary of inclusions. However, most of reconstruction algorithms for EIT are based on two-
dimensional space. They may destroy the inherent structure of the image and fail to make full use of
the information in the three-dimensional image field. Therefore, how to make full use of EIT image
information on time and space scale to improve the quality of reconstruction is still challenging.

In this paper, we propose a three-dimensional imaging method using tensors for EIT. The structural
information of images can be fully used by the tensor method. By means of tensors representation of
image, the higher-order features of image can be preserved, and the loss of image information can
be avoided. Images based on low-rank tensors are regarded as three-dimensional tensors, and their
expansion matrices on time and space scales respectively represent the strong correlation of image frames
on time series, and the weak correlation between pixels on space scales of a single frame, which can
effectively improve the quality of image reconstruction. The reconstruction quality of the new method
is compared with that of the Dynamic Group Sparse TV algorithm and the Tikhonov algorithm. Both
simulated and experiment results show that EIT reconstruction based on tensors representation has
better spatial resolution and noise reduction performance than traditional algorithms.

The paper is organized as follows. The second part covers the basics of EIT reconstruction. The
third part explains the simulation of three-dimensional thorax contour model. In the fourth part, an
EIT image reconstruction algorithm using tensors is proposed. The fifth part shows the experimental
results. Finally, the sixth part gives a summary of the paper.

2. PRINCIPLE OF EIT IMAGE RECONSTRUCTION

The relationship between the conductivity distribution and the measured boundary voltage is expressed
as:

V = F (σ) + e (1)

where F is the nonlinear forward operator, σ the conductivity variation with respect to the reference
conductivity distribution in the sensing domain, and e the measurement noise. In practical scenarios,
Equation (1) can be linearized and formulated as

V = Jσ + e (2)

where V is the normalized voltage measurement, J the Jacobian matrix or sensitivity matrix [17], and σ
the conductivity variation vector between the object field and reference field. In this paper, pulmonary
emptying cases are used as the reference conductivity image.
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To estimate the conductivity distribution from boundary voltage measurements, an inverse problem
needs to be solved. A commonly used method to solve this problem is reformulating it into a Tikhonov
regularization problem

arg min
σ

{
‖Jσ − V ‖2

2 + λ ‖σ‖2
2

}
(3)

where λ is the super-parameter. The Tikhonov regularization is an L2-norm-based regularization and
is best suited for a smooth model σ. EIT inversion with the Tikhonov regularization produces blurred
interfaces for piecewise-constant conductivity models. To help preserve sharp interfaces in subsurface
structures, TV regularization is incorporated into the EIT model, leading to

arg min
σ

{
‖Jσ − V ‖2

2 + λ ‖σ‖TV

}
(4)

where the TV-norm for a 3D model is defined as

‖σ‖TV =
∑

i,j,k

√∣∣∣(∇xσ)i,j,k
∣∣∣2 +

∣∣∣(∇yσ)
i,j,k

∣∣∣2 +
∣∣∣(∇zσ)i,j,k

∣∣∣2 (5)

(∇xσ)i,j,k = σi+1,j,k − σi,j,k

(∇yσ)
i,j,k

= σi,j+1,k − σi,j,k

(∇zσ)i,j,k = σi,j,k+1 − σi,j,k

where (∇xσ), (∇yσ) and (∇zσ) are the first-order local differences of the three-dimensional model in
the x, y, and z dimensions, respectively. The indexes i, j, and k refer to elements in the finite element
mesh. In traditional TV solution, a smoothing parameter ε is always introduced to approximate the
original TV term to make it differentiable at the origin:

‖σ‖TV,ε =
∑

i,j,k

√∣∣∣(∇xσ)i,j,k

∣∣∣2 +
∣∣∣(∇yσ)

i,j,k

∣∣∣2 +
∣∣∣(∇zσ)i,j,k

∣∣∣2 + ε (6)

In order to improve the anti-noise performance, a filter is applied to Equation (6).{
|σ|i,j,k = |σ|i,j,k , |σ|i,j,k > |σ|mean + |σ|std
|σ|i,j,k = 0, |σ|i,j,k ≤ |σ|mean + |σ|std

(7)

where |Δσ|mean is the mean of Δσ absolute value, and |Δσ|std is the variance of Δσ absolute value.

3. SIMULATION OF THREE-DIMENSIONAL CHEST CONTOUR MODEL

To obtain 3D reconstruction results, the image could be reconstructed onto multiple voxel layers
perpendicular to the z-axis with the measurements from multi-ring electrode planes. Considering the
memory limits and speed requirements, there are 111 reconstruction layers for 3D reconstructed image,
i.e., the reconstruction layer separation is 0.25 cm. A three-dimensional mesh for the inverse problem
is developed as shown in Fig. 1, where the illustrated sensing domain is longitudinally divided into 111
layers, and each layer has the resolution of 32 × 32.

By calculating and plotting the imaging relative error between the reconstructed images and the
real conductivity distribution on each layer, we selected 20 reconstructed layers, i.e., 5 cm between
adjacent rings for measurement. As a result, 5 electrode rings with 16 electrodes on each ring are used
to cover the measurement of the whole thorax area. The models with 5 electric rings are shown in
Fig. 2. This leads to the improved spatial resolution on the z-axis and reduces the influence of off-plane
objects [18].

4. TENSOR BASED EIT IMAGE RECONSTRUCTION

This section briefly introduces some basic tensors used in this paper and proposes a 3D electrical
impedance imaging algorithm using tensors. The simulation experiment is conducted through the 3D
thoracic contour model established in the second section to verify the reconstruction image quality of
this algorithm.
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Figure 1. Voxel mesh for inverse problem calculation.

Figure 2. 3D thorax models with designed 5 electric rings.

4.1. Basic Knowledge of Tensors

X ∈ R
I1×I2×...×IN is an N -th order tensor, and the matrix X ∈ R

I1×I2 and the vector x ∈ R
I are special

cases of tensors. The Frobenius norm is defined by ‖X‖F =
√∑

i1. . .
∑

iN x2
i1i2...iN

, where xi1i2...iN is
an element of the tensor.

The matricization, also known as unfolding or flattening, is the process of reordering the elements
of a tensor into a matrix. Mode-n unfolding of a tensor X ∈ R

I1×I2×...×IN yields a matrix
X(n) ∈ R

In×In (In =
∏

m�=nIm), a tensor element (Xi1i2...iN ) maps to matrix element (Xi,j), where
j = 1 +

∑
k �=n (iκ − 1)Jk with Jk =

∏k−1
m�=n Im [19].

In order to capture the potential patterns and important features in the signal and to remove the
redundant components of the original data, the Tucker decomposition is often performed on the tensor.
The Tucker decomposition can be regarded as the generalization of the singular value decomposition of
the matrix. Tucker decomposition [20] is the decomposition of an n-order tensor X ∈ R

I1×I2×...×IN into
an n-mode product of a core tensor G ∈ R

J1×J2×...×JN and factor matrices A1,A2, . . . ,AN , i.e.,

X = G×1 A1 ×2 . . . ×N AN (8)

where Ak ∈ R
Ik×Jk (k = 1, . . . , N) are orthogonal.

Given a tensor X ∈ R
I1×I2×...×IN and a matrix Φ ∈ R

J×In , the mode-n tensor is obtained by
matrix product Y = X×n Φ ∈ R

I1×...×In−1×J×In+1×...×IN . The element of Y is defined by:

Yi1...in−1jin+1...iN =
∑In

in=1
Xi1...in...iN φjin (9)

with ik = 1, 2, . . ., Ik (k �= n) and j = 1, 2, . . . , J . It should be noted that this corresponds to the product
of matrix Φ by each one of the mode-n fibers of X since Y(n) = ΦX(n).
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5. SIMULATION EXPERIMENT

In order to make full use of the multi-dimensional property of image data, a tensor model X ∈ R
p×q×m

is constructed based on the image resolution (p × q) and the number of layers (m). The boundaries
of reconstructed images for EIT are related to the location of electrodes and the thorax contour of
the human body, which vary with different parts of the body. As a result, the boundary shapes of
reconstructed images are irregular, not only for 2D reconstruction, but also for each cross-sectional slice
of the volume. In this paper, the zero-filling method [21] is extended to 3D EIT reconstruction. We
consider the effective pixel number of each image (L), the total pixel number of each reconstructed
image (n), and the number of image layers (m). Let PEi ∈ R

L×n define effective pixel selection
and PLi ∈ R

n×m define image layer selection. The conductivity distribution can be represented as
Δσi = PEiPLiΔσ. Fig. 3 is the EIT pixel expansion schematic.

Figure 3. EIT pixel expansion schematic.

As discussed in Section 2, the simulation voltage can be obtained by the thorax simulation model.
The change Δσ ∈ RN×1 of conductivity can be further estimated through Equation (6). In this paper,
the effective pixel of each layer image is extracted by zero-filling method. Because the resolution of
each image layer is 32× 32, changes in conductivity are extended to the matrix of size 32× 32. The 111
layers are stacked in the z axis direction. The third order tensor X ∈ R

32×32×111 is constructed.
In practical applications, the data tensor X is not in full rank, but has a good low linear-rank

approximation. Therefore, an image signal can be written as [22]:

X = X0 + E (10)

where X0 is a multilinear-rank-(32,32,111) tensor approximation, and E is an error tensor.
The tensor X can obtain low linear-rank tensor X0 by Tucker higher-order orthogonal iteration,

which is defined as follows:

X0 = G ×1 A1 ×2 A2 ×3 A3 (11)

An = Un(ΦnUn)−1 (12)

with a core tensor G ∈ R
32×32×111 and factor matrices A1 ∈ R

32×32, A2 ∈ R
32×32, A3 ∈ R

111×111,
HOSVD [20] factorized orthogonal matrix Un, as shown in Fig. 4.

According to the definition of the mode-n product in Eq. (8), we use multidimensional structure
of tensors to obtain the compression measurement sets. Therefore, the compressed multichannel
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Figure 4. Tucker decomposition diagram of the 3rd-order tensor.

measurement set Z(n) (n = 1, 2, 3) is calculated by the following formula:

Z(1) = X×2 Φ2 ×3 Φ3

Z(2) = X×1 Φ1 ×3 Φ3 (13)

Z(3) = X×1 Φ1 ×2 Φ2

where Φn ∈ R
Rn×In are the mode-n sensing matrices [23], which are set as identity matrices in this

paper.
By the compressed multichannel measurement set Z(n) (n = 1, 2, 3), tensor W = Z(n) ×n Φn, ∀n

can be obtained, as expressed in Fig. 5.

W = X×1 Φ1×2Φ2 ×3 Φ3 (14)

Figure 5. A multiplex compression measurement set of the 3rd-order tensor InRn (n = 1, 2, 3) represent
the dimension of the tensor.

By combining Equations (13) and (14), the reconstruction formula can be obtained as follows:

X̂ = W ×1 Z1W+
(1) ×2 Z2W+

(2) ×3 Z3W+
(3) (15)

where “+” stands for the Moore-Penrose (MP) of a matrix, and Zn is the mode-n unfolding of the
compressed multiplex measure set Z(n) (n = 1, 2, 3).

As shown in Formula (16), a tensor W ∈ R
32×32×111 can be unfolded in three modes, and the

unfolding diagram is shown in Fig. 6.

W(1) = [W(:, :, 1),W(:, :, 2), . . . ,W(:, :, 111)] ∈ R
32×3552

W(2) = [W(:, :, 1)T ,W(:, :, 2)T , . . . ,W(:, :, 111)T ] ∈ R
32×3552 (16)

W(3) = [W(:, 1, :)T,W(:, 2, :)T , . . . ,W(:, 111, :)T ] ∈ R
111×1024
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Figure 6. The unfolding diagram of the 3rd-order tensor W.

In particular, the reconstruction method is stable if the obtained error ‖X − X̂‖F is comparable
to the input error, i.e., ‖X − X̂‖F ∼ ε, where X is a tensor that rearranges the real pixel values, and
X̂ is the data reconstructed by Equation (15). However, Equation (15) may suffer from an unstable
behavior, which generates large output errors. So we can solve this unstable behavior by using the
truncated pseudo-inverse. The truncated Moore-Penrose pseudo-inverse is defined as follows [24]:

W∗τ = VS∗τUT (17)
where τ is a threshold parameter. It is noted that W∗τ → W+ as τ → 0.

Entries of the diagonal matrix are defined as follows:

σ∗
i =

⎧⎨
⎩

1
σi

, σi > τ

0, σi ≤ τ
(18)

In other words, we define the modified reconstruction formula as follows [25]:

X̂τ = W ×1 Z1W∗τ
(1) ×2 Z2W∗τ

(2) ×3 Z3W∗τ
(3) (19)

Zn ≡
(
Z(n)

)
(n)

(n = 1, 2, 3)

where W∗τ
(n) is the truncated pseudo-inverse of W(n), and Zn is the mode-n unfolding of compressed

multiplex measure sets Z(n).
Figure 7 illustrates that the original tensor X can be recovered from multi-channel measurement

set Z(n) and W.
By analyzing Equations (10) and (14), the error bound is defined as:

∥∥∥X− X̂τ

∥∥∥
F
≤

⎧⎪⎨
⎪⎩

bε + c
ε2

σR
, τ ≤ σ

aτ + bε + c
ε2

τ
, τ > σ

(20)

a =
(√

R1 +
√

R2 +
√

I3

)
‖A1‖ ‖A2‖
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Figure 7. Multilinear-rank-(R1, R2, R3) restoration of 3rd-order tensor.

b = 1 + ‖A1Φ1‖ ‖A2Φ2‖ + ‖A1‖ (1 + ‖A2Φ2‖) ‖Φ1‖ + ‖A2‖ (1 + ‖A1Φ1‖) ‖Φ2‖
c = (1 + ‖A1Φ1‖)(1 + ‖A2Φ2‖) ‖Φ1‖ ‖Φ2‖

where σR = σR1 = σR2 , σ = max(σR, σR3), σ = min(σR, σR3) (i.e., the maximum and minimum of the
smallest singular values of the mode-n unfolding matrices W(n)).

The threshold τ which determines the truncated MP pseudo inverse of W and reference
Equation (18) is defined as follows:

τ = ε

√
c

a
(21)

The error is determined empirically as ε = 8.5 × 10−20 in this paper.

Three-dimensional imaging method using tensors for EIT

Input: The EIT measured voltage U , Jacobian matrix J and sensing matrices Φ1,Φ2,Φ3

Output: Reconstruction of tensor X̂τ
1: Set up a tensor model X.
2: Obtain the change of the conductivity value Δσ̂ in Equation (6).
3: Estimate the filtered absolute conductivity change based on Equation (7).
4: Through zero padding method, Δσ̂ is stacked in the z axis directions, expanded to the third order
tensor X.
5: According to Equations (13) and (14), calculate the compression multidimensional measurement set
Z(n) and the tensor W.
6: Calculate the threshold τ in Equation (21).
7: Compute W∗τ

(N) the truncated pseudo-inverse of W(n).

8: Calculate the reconstruction of tensor X̂τ in Equation (19).

In order to evaluate the performance of the new algorithm and choose significant parameters,
tests were conducted on simulated data. The EIT data could be obtained by the thorax simulation
model based on the prior information of human body structure that was established by COMSOL.
The reconstruction image algorithm was realized through MATLABR2013b. According to simulation
results, 5 electrode rings with 16 electrodes on each ring were set up. Electrodes were used to cover
the measurement. The condition at end-expiration was modeled by setting the conductivity of the lung
tissue to σexp = 120 mS/m. Other tissues not belonging to the lung were set to σbkg = 480 mS/m [26, 27].
In order to simulate the typical noise levels in real measurement systems, Gaussian, zero mean random
noise was added to the simulated voltages. The amplitude of the noise was 0.5% of simulated voltage [28].
A conventional adjacent current injection and voltage measurement strategy based on the complete
electrode model were chosen consisting of 16 current excitation configurations and 13 corresponding
voltage measurement configurations for each current excitation, i.e., the number of measured data was
208 for the reconstruction of one EIT image. All algorithmic programming and image reconstruction
were done on a PC configured for 2.4 GHz GPU, 4 GB of memory, using MATLAB R2013b.
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The quality of the reconstruction is quantified using peak signal to noise ratio (PNSR). The PNSR
can be defined as

PSNR (dB) = 20 log10

(
max(X)/

∥∥∥X̂− X
∥∥∥

F

)
(22)

where X is a tensor that rearranges the actual pixel values, and X̂ is the data reconstructed by the
tensor reconstruction algorithm.

We could obtain construction data X̂τ through Equation (19) by the compressed multidimensional
measurement set Z(n) (n = 1, 2, 3) and the tensor W.

In order to analyze the behavior of the reconstructions as a function of the threshold parameter τ ,
the variation of PSNR versus threshold value is plotted in Fig. 8.

Figure 8. The relationship between PNSR and threshold of the tensor method.

It could be known that the PSNR of reconstructed image was the highest when τ = 4.15 × 10−20,
which means that the quality of image reconstruction was the best.

X̂τ was used for three-dimensional imaging. The reconstruction results were compared with zero
threshold (τ = 0), Dynamic Group Sparsity TV, and Tikhonov methods, as shown in Fig. 9. The results
show that the nonzero threshold truncation reconstruction has higher fidelity. The tensor reconstruction
algorithm makes full use of the multidimensional property of image data, so that it can retain the
higher-order features of the image, avoid the loss of image information, and effectively improve the
reconstruction quality of the image.

Figure 9. EIT 3D reconstruction results using four methods.

We selected four layers, i.e., 50th, 56th, 77th, and 87th layers which have different shapes and areas
of lung in craniocaudal direction from the 111 reconstruction layers to prove the distinguish ability of
2D details in 3D EIT reconstruction results. It could be clearly found that the reconstructed image after
threshold truncation can display edge information more clearly, with better imaging effect, as shown in
Fig. 10.

3D reconstruction method proposed in this paper is compared with 2D reconstruction method. For
2D reconstruction, 2D current injection/voltage measurement is used for conductive distribution in each
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Figure 10. Typical 2D slices from 3D EIT reconstruction results based on four methods.

Figure 11. 2D EIT reconstruction results based on three methods.

slice. Because a matrix is a special form of tensor, the method is similar to the 3D tensor reconstruction
method. The effective pixels are extracted and expanded to a matrix X of size 32 × 32 by means of
zero-fill. Formula (19) is transformed into a two-dimensional formula for EIT image reconstruction,
where sensing matrices are generated randomly. Finally, the pixel value of corresponding position is
selected for image display. In Fig. 11, 2D reconstruction results based on the tensor method, Dynamic
Group Sparsity TV method, and Tikhonov method are compared. Obviously the imaging quality is
the best when the tensor method with nonzero threshold is used. The average PSNR for all of the 111
imaging layers was calculated to be 94.39 dB.

6. EXPERIMENTAL RESULTS

In order to verify the feasibility of the 3D imaging method of electrical impedance using the present
tensor reconstruction method, experiments were conducted with thorax phantom using a measurement
setup, as shown in Fig. 12.
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Figure 12. Experimental equipment for thoracic model imaging.

(b)

(a)

Figure 13. .3D printed phantom of thorax. (a) Thorax boundary. (b) Lungs.

We 3D printed clear thorax phantom and white lung phantom by means of a cast resin material
(TN3908) according to the geometric dimension of simulation model discussed in Section 2 with 5 rings
of electrodes. The 3D model of thorax boundary and lung under two respiratory conditions are shown in
Fig. 13. The phantom was filled with saline solution of conductivity 0.32 s m−1. The adjacent current
injection and voltage measurement strategy was adopted. The amplitude of the boundary voltage
measurement was used for image reconstruction. 5 mA current was injected into adjacent electrode
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pairs. All measurements were made at 50 kHZ.
The EIT image was reconstructed respectively by the tensor method, Dynamic Group Sparsity TV

method, and Tikhonov method. The experimental imaging results are shown in Fig. 14.
In order to illustrate that the structure of lung can be fully considered by the tensor reconstruction

algorithm in each layer, we selected two typical layers from the 111 layers to show the variation of lung
region in craniocaudal direction, as shown in Fig. 15. The experimental results show that the proposed
algorithm has superior imaging quality, compared with Dynamic Group Sparsity TV and Tikhonov
method. The tensor method can more accurately reflect the state of human lung. Furthermore, since
the multi-dimensional property of the image data can be fully used, the PNSR is efficiently improved.

Figure 14. EIT 3D experimental reconstruction results using three methods.

Figure 15. Typical 2D slices from 3D EIT experimental reconstruction results.

7. CONCLUSION AND FUTURE WORK

In this paper, the 3D imaging method using tensors for EIT has been successfully introduced to
reconstruct EIT image. According to the vector structure of EIT data, EIT data can be expanded
to tensors by the zero-filling method, then EIT images can be reconstructed using 3D imaging method.
Experiment results revealed that the structural information of images could be fully used by the tensor
method. The lung image is closer to the real human lung using tensors reconstruction algorithm. By
comparing the PSNR of 2D and 3D reconstructed images in the above experiments, it can be found that
3D reconstruction effect is significantly better than 2D reconstruction effect. Because the ill-conditioned
matrix is computed by the truncated MP pseudo-inversion, the threshold τ is selected during EIT image
reconstruction.

In future work, we will further optimize the proposed algorithm to explore a faster and better 3D
imaging method with better image quality while making full use of the time and space information of
the dynamic image.
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