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Abstract—A package-board co-design method was applied for a Narrowband Internet of Things (NB-
IoT) SiP module. The electromagnetic interference (EMI) generated by the module was studied by
improving the transmission quality of radio frequency (RF) signal. The SiP models of the initial design
and the optimized design were simulated separately to show that the optimized design significantly
increased effective transmission power of the RF signal and suppressed near-field electromagnetic
radiation intensity to a certain extent. In addition, the optimized design model was verified by
measurement. The measured results show good agreement with the simulated ones and demonstrate
that the package-board co-design method can improve the electromagnetic compatibility (EMC) of
NB-IoT applications.

1. INTRODUCTION

The SiP technology can miniaturize RF transceiver system and improve the performance and stability
of the entire system. However, the increasing capacities and shrinking dimensions of SiP package
will lead to a complex electromagnetic environment [1–9]. Hence, the EMI caused by the complex
electromagnetic environment inside a SiP model has become a serious problem. If the EMI cannot be
effectively suppressed, it will not only influence the performance of the module itself, but also cause
interference to the entire electronic system. Some methods to restrain the EMI have been studied, but
most of them focus on the electromagnetic shielding outside the package. A shielded metal lid was
traditionally used to block EMI radiation from device to device. Furthermore, conformal shielding will
be a more effective method to decrease the EMI, because it has a smaller size and a lighter weight than
a shielding cover [10–19]. Some novel shielding structures were applied to packages based on conformal
shielding technology [20, 21]. In addition, the designed BVA wire bonding structure is also a good way
to improve SiP integration and electrical performance [22, 23]. Although the above-mentioned EMI
suppression methods are more conducive to meeting the measurement standard of radiation emission,
they will increase the cost of a SiP module. If EMI can be restricted to a certain extent in the initial
stage of package model design, it will definitely reduce the cost of solving EMI problem in the later
stage.

It is known that EMI can be reduced by improving the signal transmission quality. Some different
methods have been studied to improve the quality of signal transmission in different package types [24–
30], but a quantitative analysis of generated electromagnetic radiation has rarely been performed.
Therefore, it is necessary to study the EMI generated under an actual operating condition of SiP
module from the perspective of signal transmission.
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In order to suppress EMI to a certain extent during the design stage, a package-board co-design
method is adopted in this paper to effectively and reasonably design the RF channel that actually
operates in the NB-IoT SiP module. The electromagnetic radiation generated by the SiP module was
studied quantitatively by improving the transmission quality of RF signal. The SiP models of the initial
design and optimized design were simulated separately, and their simulation results of S-parameter and
electromagnetic radiation were compared and analyzed. Furthermore, the optimized SiP module was
manufactured for near-field radiation measurement. The measured results of near-field radiation not
only verified the correctness of the simulation modeling, but also indicated that the EMI generated by
the optimized NB-IoT SiP module was suppressed to a certain extent successfully.

2. PACKAGE-BOARD CO-DESIGN OPTIMIZATION METHOD

An RF circuit system with the best performance is designed by using RF components with ideal
interconnection. At the same time, the parasitic effects caused by interconnection structures are also
added to the original ideal RF circuit. Figure 1 shows the S-parameter comparison results for the RF
signal circuit with and without ideal interconnection. In order to evaluate the performance easily, the
magnitude of −1 dB is considered as criterion associated with insertion loss (S21), and the magnitude of
−20 dB is considered as criterion associated with return loss (S11). From Figure 1, the performance of

Figure 1. S-parameter comparison results for a same RF signal circuit with and without ideal
interconnection structure.
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ideal connection measured for S21 and S11 is −0.28 dB and −22.64 dB at 836 MHz, respectively, while the
performance of nonideal connection measured for S21 and S11 deteriorates to −1.58 dB and −8.07 dB at
836 MHz. It can be seen that a better transmission quality is obtained with ideal interconnection at the
operating frequency. However, the ideal interconnection structure does not exist in reality; therefore, it
is necessary to optimize the nonideal connection structure to improve the transmission performance of
RF signal.

It is well known that signal reflection will be produced when a transmission line is affected by
a discontinuous impedance, such as a shunt capacitance or a series inductance. And the reflection
amplitude of individual effect is greater than the combined reflection amplitude because the capacitance
and inductance have opposite polarities. A negative reflection is generated when the discontinuous
impedance is lower than the characteristic impedance Z0 of transmission line. On the contrary, a
positive reflection is produced.

Firstly, a discontinuous impedance structure is formed between the pads of two adjacent components
and the transmission line connecting the two components in RF channel of SiP module. Its equivalent
circuit is demonstrated in Figure 2.

Figure 2. Equivalent circuit of component pads connection in RF channel.

A simple comparison circuit, as shown in Figure 3, was designed to effectively analyze and optimize
this discontinuous impedance structure. Due to the different sizes of pads, some appropriate circuit
constants were selected for simulation analysis.

Figure 3. Designed equivalent comparison circuits. Appropriate circuit constants are selected for
simple simulation verification.

The frequency responses of different capacitor combinations are shown in Figure 4. Therefore,
the dielectric material, distance from the pads to the adjacent reference layer, and pad size are some
crucial factors that affect the capacitance value. The discontinuous impedance of pads structure can be
effectively improved by adopting these methods.
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Figure 4. S21 of equivalent comparison circuits.

Additionally, via plays a very significant role in the SiP module, which is mainly used to connect the
same signal between different signal layers, but it is also one of the discontinuous impedance structures
in RF channel. Figure 5 illustrates the equivalent circuit model of a via structure in SiP module. It is
known from the following simple calculation in Equation (1) of impedance Zd that the via impedance
can be controlled by changing the values of L and C.

Zd =

√
L

C
(1)

Figure 5. Equivalent circuit model of via structure.

Based on feasible and reliable manufacturing technology, shortening the physical length h of the via
can improve the problem of discontinuous impedance, because the inductance and capacitance will be
reduced in accordance with the proportion of via reduction at the same time. However, the discontinuous
impendence cannot be completely eliminated, because the via cannot be fabricated sufficiently small.
Furthermore, the distance d between the via and inner reference planes is reasonably designed to be a
more effective method.
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When the anti-pad radius is increased, the reduction of mutual-inductance makes the equivalent
inductance increase, but the increase of distance d causes the equivalent capacitance to decrease, and
they have the same factor α. In this case, the via impedance can be expressed as shown in Equation (2).
It is easy to find from Equation (3) that if the anti-pad radius is reasonably designed, there will be a
factor α = Z0/Zd such that the via impedance is equal to Z0.

Zd′ =

√
L · α

C · 1/α = α

√
L

C
(2)

Zd′ = α

√
L

C
= αZd

α=
Z0
Zd−→ Zd′ = Z0 (3)

3. INITIAL NB-IOT PACKAGE-BOARD COLLABORATIVE MODELING AND
SIMULATION

3.1. Initial NB-IoT Package-Board Collaborative Modeling

A system-level circuit is integrated in the NB-IoT module, which mainly includes a Hi2115 SoC processor
chip for LPWAN communication, four RF signal channels, etc. An RF signal channel mainly includes a
power amplifier, a filter, an RF switch, and some passive components, as shown in Figure 6. The entire
system-level NB-IoT circuit is packaged in a Land Grid Array (LGA) package with 52 pins.

A test board for realizing co-simulation is modeled on a four-layer substrate. According to the test
standard IEC61967-3 of IC EMC, almost all components of peripheral circuits are placed on the top

Figure 6. Output channel of the RF signal.

Figure 7. Package-board co-design model of NB-IoT module.
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layer of the test board, and only the NB-IoT module is installed in the middle of the bottom layer. The
whole simulation model is shown in Figure 7, where the size of the LGA package is 14mm (length) ×
14mm (width) × 1.85 mm (height), and the test board is 100mm(length) × 100mm (width) × 1.5 mm
(height).

3.2. Initial NB-IoT Collaborative Simulation and Results Analysis

S-parameter models were added to corresponding components of the RF channel to perform S-parameter
simulation with frequency sweep from 0.1 GHz to 5GHz. S-parameter reflects the correlation between
transmitted power and reflected power from the perspective of energy transmission. Figure 8 shows the
S-parameter simulation results. At the operating frequency of 836 MHz, S21 is −1.56 dB, and S11 is
−8.39 dB.

(a) (b)

Figure 8. S-parameter simulation results of the initial design sweep from 0.1 GHz to 5GHz. (a) S21

and (b) S11.

However, the S-parameters indicate that the RF signal has great loss during transmission.
Furthermore, the corresponding time-domain simulation result is shown in Figure 9. It can be seen
that the signal amplitude of the receive port (red line) is significantly lower than the driver port (black
line) in the initial design model, indicating that there is indeed a large energy loss in the process of
signal transmission.

It is well known that the lost energy will be manifested by means of heat, electromagnetic radiation,
etc. The electromagnetic radiation will interfere with other signals. In addition, an excessive EMI will
cause chip to fail the EMC test standard. So it is necessary to study the electromagnetic radiation of
the NB-IoT module working under the initial design model. A radiation observation plane is located
at 3mm directly above the LGA package, and its size is the same as the package. The near-field
radiation intensity is quantified by an electric field (E-field) intensity and a magnetic field (H-field)
intensity, as shown in Figure 10. The simulation results indicate that the radiation energy is mainly
concentrated near the driver port. The maximums of E-field and H-field intensity are 1.062E+01 V/m
and 2.007E-02 A/m, respectively.

4. PACKAGE-BOARD COLLABORATIVE OPTIMIZATION FOR NB-IOT MODULE

In order to study the effects of improving signal transmission quality on the electromagnetic radiation,
the package-board co-design methods proposed in the second part are applied to the initial design
model. The stack-up adjustment, dielectric material selection, and size design can be selected to control
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Figure 9. Driver and receive RF signals of the initial design model.

(a) (b)

Figure 10. Near-field simulation results of the initial design model at 836 MHz. (a) E-field intensity
and (b) H-field intensity.

impedance of the component pads and transmission line, which can effectively improve the signal
transmission quality of this discontinuous impedance structure. The via is classified as a capacitive
discontinuity because the capacitance exists between the drilled hole and inner layers. Therefore,
the radius of the anti-pad is appropriately increased to cancel discontinuous impedance based on the
connection structure at both ends of the via.

After the optimized design, the same simulation analysis is conducted to investigate the effect of
the optimized design model on electromagnetic radiation. Figure 11 shows the S-parameter simulation
results for the optimized design model from 0.1 GHz to 5GHz. S21 increases 0.72 dB, and S11 decreases
9.62 dB compared to the initial simulation results of Figure 8, which shows that the optimized design
model not only achieves the same function, but also improves the transmission quality of the RF signal.

In addition, from the time-domain simulation results, as shown in Figure 12, the signal amplitude
of the receive port is basically the same as the driver port, indicating that the signal has a smaller energy
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(a) (b)

Figure 11. S-parameter simulation results of the optimized design model from 0.1 GHz to 5GHz. (a)
S21 and (b) S11.

Figure 12. Driver and receive RF signals of the optimized design model.

loss in the process of signal transmission than the initial NB-IoT. Compared with the initial near-field
radiation results, the energy distribution of the optimized design model is approximately the same, as
shown in Figure 13, but the radiation intensity is decreased, in which the maximum E-field has been
suppressed from 1.062E+01 V/m to 6.175E+00 V/m, and the maximum H-field has been restrained
from 2.007E-02 A/m to 8.494E-03 A/m.

5. FABRICATION AND NEAR-FIELD RADIATION MEASUREMENT OF
OPTIMIZATION DESIGN MODULE

The NB-IoT module and test board are fabricated based on the optimized design model. The
manufactured NB-IoT module with a size of 14mm × 14 mm is mounted on the bottom of the test
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(a) (b)

Figure 13. Near-field simulation results of the optimized design model at 836 MHz. (a) E-field intensity
and (b) H-field intensity.

(a) (b)

Figure 14. Test sample. (a) NB-IoT module and (b) near-field test board.

Figure 15. Near-field radiation measurement.
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board to make up an overall sample of near-field measurement, as shown in Figure 14.
According to the test standard IEC61967-3 of IC EMC, the surface scanning method is used for the

near-field radiation measurement. Figure 15 shows a near-field scanning system. The patterns of the
measured E-field and H-field along the Z direction at 836 MHz are shown in Figure 16. The maximums
of E-field and H-field intensity are about 6.145 V/m and 0.014 A/m, respectively.

(a) (b)

Figure 16. Measured near-field radiation patterns of the NB-IoT module at 836 MHz. (a) E-field
intensity and (b) H-field intensity.

A comparison of maximum near-field radiation intensity between simulation and measurement is
concluded in Table 1, which demonstrates the effectiveness of the simulation and indicates the optimized
module can effectively restrain EMI.

Table 1. Comparison of maximum near-field radiation intensity between simulation and measurement.

NB-IoT module Max: E-field (V/m) Max: H-field (A/m)

Simulation 6.175 0.0085

Measurement 6.145 0.014

6. CONCLUSION

In this paper, a package-board co-design method for improving the signal transmission quality is
discussed, and the electromagnetic radiation intensities generated by the NB-IoT module before and
after the optimized design are quantitatively analyzed. S21 increases from −1.56 dB to −0.84 dB, and
S11 decreases from −8.39 dB to −18.01 dB at 836 MHz. The time-domain results indicate that the RF
signal power has been significantly improved. Therefore, it can be concluded that the optimized design
restrains the maximum E-field intensity by 41.85% and the maximum H-field intensity by 57.68%. The
measurement results of near-field radiation not only effectively verify the correctness of the simulation
modeling, but also indicate the feasibility of the optimized co-design method. Our work could be
extended to the design of other similar types of packages to restrain an EMI problem of circuit’s
operating frequency.
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