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Abstract—This paper presents a set of statistical channel models based on 60 GHz radio measurements
in a server room. The channel models are developed for possible use-cases, corresponding to potential
deployment scenarios in wireless data centers (WDCs). A simple parametric channel model is used
to model both the deterministic and stochastic channel parameters in the delay domain, within the
57–64 GHz unlicensed band. A simulation framework is accordingly provided to generate channel
realizations for WDC use cases. The accuracy of the simulation framework is verified using the delay
spread as a validation metric. The reported models are useful for practical system design and evaluation
of WDCs millimeter-wave systems.

1. INTRODUCTION

The demand for new technologies capable of delivering high throughput in data centers (DC) is
higher than ever before. The introduction of multi-gigabit wireless links in data centers has received
considerable interest in recent years [1–5]. Wireless data centers (WDC) can potentially augment or
replace the wired data center network (DCN) using optical or radio links. 60 GHz wireless links can
alleviate over-subscription by providing flexible and instantaneous extra-bandwidth using direct line-
of-sight (LoS) between top-of-racks (ToRs). Wireless links can also offer efficient network switching
using beamsteering, resulting in reduced costs and low latency [6]. As such, WDC links can potentially
increase the reliability, fault tolerance, and failure resiliency. WDCs are foreseen as an emerging use-case
in the IEEE 802.11ay 60 GHz standard [7, 8]. The IEEE 802.11ay devices can achieve up to a 100 Gb/s
data rate [9]. Thus, 60 GHz WDC links can potentially match the wired DCN in terms of performance,
without the downsides of logistics and cost challenges.

Transmission mechanisms and system design at 60 GHz are strongly dependent on the propagation
environment, due to the small wavelength (λ = 5mm) [10]. 60 GHz radio links are heavily attenuated,
and signals are distorted by reflected and scattered multipath components (MPCs) [11]. 60 GHz WDC
propagation channel is characterized by rich reflections from ToRs and surrounding objects, due to the
abundance of metallic scatterers in DC environments. In fact, in our previous work [12, 13], we observed
double bounce reflections from the surrounding metallic objects and up to the fourth order reflections
in [4]. As such, the WDC radio channel can significantly vary depending on the WDC deployment
scenario and cannot be modeled only by a single slope channel response. Therefore, use-case specific
channel modeling is crucial for WDC system design and evaluation.
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This paper reports a statistical channel modeling effort based on 60 GHz radio measurements in
a server room. Using a vector network analyzer (VNA) based channel sounder, the WDC channel
characteristics are investigated to develop statistical channel models capable of reproducing and
expressing the deterministic and stochastic channel parameters in the delay domain. WDC channel
measurements and modeling are driven by the need for channel models to design reliable and densely
connected WDCs. To the best of our knowledge, only racktop-to-racktop scenarios were investigated in
a quasi-deterministic-map-based modeling effort in [4]. This approach is dependent on the environment
geometry, and therefore, it provides an environment dependent channel parameters. In contrast,
we report a generic channel modeling effort that considers the practical deployment scenarios in a
WDC. The original contributions of this paper are twofold. First, we investigate the directional WDC
propagation characteristics in the 57–64 GHz band for possible WDC deployment scenarios. Second, we
propose a set of parametric statistical channel models along with a simulation framework to generate
the channel response for potential WDC LoS use-cases.

2. CHANNEL MEASUREMENTS IN DATA CENTER ENVIRONMENT

The WDC measurement campaign was conducted in the campus server room of the University of Quebec
in Outaouais, Gatineau, Canada. The characteristics of the server room are detailed in [12].

2.1. Measurement Scenarios

The three WDC use-cases investigated in this paper are cross-aisle-ToR (XToR), Neighbor-ToR (NToR)
links, and server-to-server (S2S) use-case. XToR links are formed between two different ToRs from
distinct rack rows separated by an aisle, whereas NToR links are established between neighboring
contiguous racks. S2S links are established between servers within facing server-racks, as shown
in [12]. The measured distances across use-cases were chosen considering the aforementioned deployment
scenarios. As DC equipment is size and structure-standardized, the chosen distances correspond to the
practical deployment scenarios in a real DC.

2.1.1. Cross-Aisle ToR

As shown in Figure 1(a), the XToR measurements were performed with the Rx antenna mounted on
R5 (60 × 110 × 200) cm3, with different ToR heights (relative to the ToR) and corresponding depths

(a) (b)

Figure 1. Campus server room layout: (a) Campus data center environment floor plan (not in scale)
with measurement scenarios, and (b) photography of a rack-row.
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Table 1. Measurement parameters.

WDC
Use-case

Tx-Rx
antennas

Antenna ToR
depth (cm)

Antenna ToR
height (cm)

Tx-Rx
range (m)

XToR Horn-Horn 20, 33 13, 15 0.5–5
NToR Horn-Horn 20, 33 13, 15 0.6–1.8
S2S Horn-Horn - - 0.2–1.6

(relative to the front of the rack), shown in Table 1. The Tx antenna was moved up to 5m to cover
practical aisle widths in DCs. The Tx antenna height was matched in optimal LoS with the Rx antenna
at each ToR height, i.e., 13 cm and 15 cm. At each Tx-Rx measured location, 10 power delay profiles
(PDPs) were measured per height/depth combination, i.e., (13 cm, 20 cm) and (15 cm, 33 cm). Each
PDP is averaged from 10 snapshots to reduce random noise. The total number of measured PDPs at
six locations is: 10 × 10 × 2 × 6 = 1200 PDPs (120 averaged PDPs).

2.1.2. Neighbor ToR

The Rx antenna was mounted on R4, and the Tx antenna was moved on R1 and R2 with similar
height/depth combinations to XToR use-case. The channel response for directly adjacent ToRs was
found deterministic, as the antennas’ spatial filtering omits MPCs at small distances. As such, only
distant-neighboring racks from R4 (i.e., R2 and R1) were considered. The corresponding measured
distances are shown in Table 1. The total number of measured PDPs at two locations is: 10×10×2×2 =
400 PDPs (40 averaged PDPs).

2.1.3. Server-to-Server

To emulate two vertically facing servers in S2S configuration, the Tx and Rx antennas were mounted
on two slotted steel bars at a 1 m height above the floor. The width of the metal bars is 4 cm, which
is slightly smaller than a rack unit width U = 4.445 cm. The measurement distance was varied from
0.2 m up to 1.6 m to cover the intra-rack and inter-rack practical separations and quantify the specular
reflections from the metallic bars. For each distance, a total of 20 averaged PDPs were measured in
two different locations along Aisle-2, shown in Figure 1(b). The total number of measured PDPs for
the eight locations is 1600 (160 averaged PDPs).

2.2. Measurements Setup and Data Processing

The used channel sounder is based on a VNA capable of stable measurement up to 70 GHz. The Tx
and Rx sides are composed of a power amplifier (PA) and a low noise amplifier (LNA) at the Tx and Rx
sides, respectively, with identical extension cables (amplitude and phase stable [14]) and identical horn
antennas. The channel sounder setup and used settings are tabulated in Table 2. The horn antennas
(with a 3 dB-beamwidth of 24◦) were used in both sides with vertical polarization. The used antennas
can operate in the 50–75 GHz band; therefore, the effect of cross-bandwidth gain variation was assumed
flat in the measured band (around 0.4 dB in the 57–64 GHz band [15]). A back-to-back calibration was
performed before the measurements and the delay from the nominal velocity in the cables accounted for.
We stress that the antennas are not included in the calibration, thus, the antennas effects are implicitly
considered as a part of the channel. Interested readers in the measurement setup refer to [16, 17].

At each measured location, the snapshots of the channel transfer function (CTF) were measured
in the frequency domain. A data pool of all measurement scenarios was built and normalized to the
transmit power. The discrete complex CTF is given by a complex exponential expression as:

H(f) =
{
An · e(jθn)

}
(1)

where An and θn are the magnitude and phase of the measured S21-parameter at a frequency point
1 � n � 7001. The measured complex CTF is a vector of Nf measured points. The averaged PDP is
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Table 2. Channel sounder settings and parameters.

Setup Parameters Characteristics
VNA Anritsu MS-4647A

PA gain (CERNEX CBM 57653/015-03) 30 dB
LNA gain (CERNEX CBL 57653/055-01) 30 dB

Tx Cable (Phase shift stable) 4.6 m (32 dB attenuation)
Rx Cable (Phase shift stable) 4.6 m (32 dB attenuation)

Tx, Rx Antenna gain (Millitech SGH-15) 23.3 dBi Horn-(V-V)
Bandwidth (BW ) 7 GHz (57–64 GHz)
Dynamic range ∼ 90 dB

Sweep points (Nf ) 7001
Frequency step (Δf) 1 MHz

Delay resolution 142.85 ps

deduced from Eq. (1) by applying an inverse discrete Fourier transform on the CTF as:

PDP (τ) =
1
S

S∑
s=1

|IDFT{H(f) · w}|2 (2)

where s is the PDP snapshot 1 � s � 10. wn is a Kaiser windowing function (of size Nf ) used to reduce
side lobes.

The large-scale path loss was modeled in [12] by a log-distance model as:

PL(d) = PL(d0) + 10 · n log10(
d

d0
) + Xσs (3)

where n is the path loss exponent, PL (d0) i the path loss at a reference distance d0 = 1 m, and Xσs

the shadow fading.

3. WDC STATISTICAL CHANNEL MODELS

In this section, the channel models are developed to express the channel response for WDC use-cases.

3.1. Parametric Model

The shape of the measured PDPs is composed of a LoS component followed by a decaying clutter
and specular components in the form of distinguishable peaks. The PDP for WDC use-cases can be
expressed by a simple parametric model as:

PDP (τ)=

⎧⎪⎪⎨
⎪⎪⎩

PLoS , τ = τ0

Ns∑
n=1

Psc.δ(τ −τn)+Pdf .e
−(τ−τ0)

β , τ0 <τ �τc

(4)

where Ns is the number of enumerated specular components. τ0 is the time of arrival (ToA) of the LoS
component, and τc is the maximum excess delay. Psc and τn are the power and the excess delay of the
nth specular component. Pdf is the onset power of the diffuse component, and β is the exponential decay
constant. As the LoS components’ ToA is modeled deterministically, the PDPs are delay-normalized
with respect to the LoS time-of-arrival τ0, i.e., τ0 = 0. Therefore the delay of the PDP components
after the LoS component is considered as an absolute excess delay.
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3.2. Statistical Processing

The specular components powers, Psc, and their corresponding excess delays are extracted using a peak
detection method. The method operates as:

(i) Identify the first most significant peak and get its ToA in the delay domain.
(ii) Identify all peaks above a 30 dB threshold with respect to the peak identified in step 1.
(iii) If peakn < peakn−1, and a 6 dB minimum below peakn (in the delay interval between peakn and

peakn−1) is found, then identify peakn as the beginning of a cluster of specular components.

The 6 dB threshold here is a heuristic value that can efficiently enumerate up to 95% of the specular
components. The diffuse components statistics were extracted from the onset power of the local power
minimum after the LoS components. Moreover, the delay between specular components, denoted as ξ,
is extracted accordingly from the ToA of the detected specular components. ξ statistical distribution
is used to model the specular components’ arrival rate. The model parameters Psc, Pdf , and β are
modeled by a linear least-square regression, as shown in Figure 2, Figure 3, and Figure 4, whereas the
excess delay between specular components, ξ, is modeled statistically.
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Figure 2. The normalized power of the specular components Psc, relative to PLoS : (a) XToR, (b)
NToR, and (c) S2S.
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Figure 3. The diffuse power Pdf , relative to PLoS : (a) XToR, (b) NToR, and (c) S2S.

The specular components power, Psc, is dependent on the excess delay, as shown in Figure 2. The
linear regression expressions for the XToR, NToR, and S2S use-cases are tabulated in Table 3. Psc

statistical deviations were best fitted with a Gamma distribution (Γ(μ, σ) in linear scale) for the XToR
and S2S use-cases, and a lognormal distribution (L(μ, σ)) for the NToR use-case. The delay between
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Figure 4. The decay constant β: (a) XToR, (b) NToR, and (c) S2S.

Table 3. Wireless data center channel model parameter.

XToR NToR S2S

Parameters Unit Linear fit Deviation (μ, σ) Linear fit Deviation (μ, σ) Linear fit Deviation (μ, σ)

Psc dB −10.6 − 0.13τ
Γ (a = 3.91,

b = 0.28)
−11.1 − 0.24τ L(0.01, 0.68) −17.5 − 0.26τ

Γ (a = 3.97,

b = 0.28)

Pdf dB −34.1 − 0.19d
Γ (a = 2.61,

b = 0.46)
−31.4 + 0.73d L(0, 0.40) −30.9 + 4.42d L(0.01, 0.36)

β - 20.4 − 0.58d N (0.05, 3.22) 15.8 + 2.06d N (0.08, 3.62) 19.4 + 0.44d N (0.08, 3.17)

ξ ns - L(0.04, 0.67) - L(0.42, 0.68) - L(0.55, 0.84)

PL (d0) [12] dB 76.63 76.00 67.08

n [12] - 2.02 1.77 1.11

σs [12] dB L(0, 2.81) L(0, 1.63) L(0, 2.74)

Rx-Tx

distance
m [0.5–5) [1.2–1.8) [0.2–1.6)

specular components, ξ, was best fitted by a lognormal distribution across all use-cases, as shown in
Figure 5. The linear fits of the initial diffuse component power, Pdf , shown in Figure 3, are tabulated in
Table 3. The deviations from the fitted lines were best fitted by a lognormal distribution for the NToR
and S2S use-cases, and a Gamma distribution for the XToR use-case. Moreover, the linear fits of the
decay constant, β, shown in Figure 4 are tabulated in Table 3. The deviations of the decay constant
from the fitting lines were found normally distributed (N (μ, σ)).

Across all WDC use-cases, the shadowing statistical parameters were best fitted with a Gaussian,
Gamma, or lognormal distributions. Pdf and Psc deviations were also found lognormally distributed
in [18, 19]. In [18], β was modeled by its mean, as it shows no dependency on the measurement distance,
whereas in our case, β shows a slight variation against distance in all WDC use-cases. The variations
are partly attributed to the wider measurement bandwidth (cf. [18]) and measured distances. Moreover,
the delay between specular components, ξ, was best-fitted by an exponential distribution in [4, 18, 19],
compared to a lognormal distribution in our cases.

4. CHANNEL MODEL IMPLEMENTATION

4.1. Model Assumptions and Considerations

The developed WDC models are use-case specific, i.e., model results, behaviors, and inferred conclusions
are specific to the deployment scenario’s measured distance. As such, the models are valid only for LoS
links within the investigated distances. Also, the channel models output is only valid for the measured
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Figure 5. The cumulative distribution functions (CDFs) of the delay between specular components
(ξ) and fitted CDF: (a) XToR, (b) NToR, and (c) S2S.

band (57–64 GHz), under quasi-static WSSUS (Wide-Sense Stationary Uncorrelated Scattering) channel
assumption, as higher frequency bands have different characteristics [19]. As we used vertically polarized
highly directive antennas in our measurements, the antennas directivity is implicitly embedded in the
channel models; therefore, the models are valid for similar highly directive antennas (with vertical
polarization), regardless of their gain, as the latter was omitted from the measurements in [12]. As
such, we assert that one can add his own directive antenna gains in the channel model realizations and
link budget calculations.

4.2. Implementation Steps

Depending on the WDC use-case, the channel model can be easily implemented to generate the PDP,
channel impulse response (CIR), and CTF using the following steps:

(i) Define (user inputs):
(a) The number of frequency points Nf .
(b) Bandwidth BW .
(c) Tx-Rx distance d (the channel model is valid only for the measured distances, illustrated in

Table 3.
(d) Set the theoretical maximum excess delay, τc, defined as: τc = 1/Δf , where Δf is the frequency

step, defined as: Δf = BW/(Nf − 1). Note that the channel models are only valid for
τc � 70 ns.

(ii) Calculate the path loss using Eq. (3), with the shadowing parameters in Table 3.
(iii) Calculate the time of arrival of the LoS component, τ0, using the Tx-Rx distance d as: τ0 = d/c,

where c is the speed of light.
(iv) Generate the delay values between specular components, ξ, using the log-normal distribution

parameters in Table 3. Add ξ values to τ0 until the maximum excess delay (τc), defined in step
(1.d), is reached.

(v) Calculate :
(a) The specular components power, Psc, using the corresponding fitting equation and add the

corresponding shadowing in Table 3. Note that the parameters of the shadowing distributions
are in linear scale, i.e., the generated shadowing values must be converted to dB scale. The
Gamma probability distribution function is given as:

f(x|a, b) =
1

baΓ(a)
xa−1e

−x
b

where Γ(·) is the Gamma function, and a and b are the shape and scale parameters, respectively.
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(b) The initial diffuse power value, Pdf , using the equation in Table 3, and add the corresponding
shadowing. Note that the parameters of the distributions are in linear scale.

(c) The decay constant, β, value using the equation in Table 3 and add the normally distributed
deviation.

(vi) Generate the PDP using Eq. (4), with a 1/BW delay resolution and normalize the PDP to the
path loss, calculated in step 2.

(vii) The CIR can be deduced as the square root of the generated PDP, whereas the frequency response
can be calculated using a Fourier transform on the complex time domain response, after allocating
random phase values between [0, 2π] to the PDP components.

The output can be used as a tapped or clustered delay line in a block-fading-channel after
normalization, that is

∫ τc

0 PDP (τ)dτ = 1. An example of the channel model output is shown in
Figure 6(b), for S2S use-case at a distance d = 0.62 m. Compared to the measured PDP in Figure 6(a),
the simulated PDP shows reasonable similarities. The validation of the channel models accuracy is
carried out in the next subsection.
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Figure 6. Power delay profiles for S2S use-case at d = 0.62 m: (a) measured PDP with the MPCs
detection method output (in red squares), and (b) random realization of the S2S channel model.

4.3. Channel Models Validation

To validate the channel model consistency, we compare herein the root-mean-square delay spread (τrms)
values of the measurements with those from the generated PDPs, for a given number of realizations.
The channel model realizations are generated with the same measurement parameters and the same
number of statistical samples, to avoid any statistical bias. As shown in Figure 7, the delay spread
values from the channel models realizations seem slightly smaller at small distances than the measured
values. The linear fitting shows an excellent match for the measured and simulated results in S2S and
XToR cases, as confirmed by the CDF curves (Figure 8(a) and Figure 8(c)) and the mean, median, and
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Figure 7. Measured and simulated RMS delay spread values: (a) XToR, (b) NToR, and (c) S2S.
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Figure 8. Cumulative distribution functions of the measured and simulated RMS delay spread: (a)
XToR, (b) NToR, and (c) S2S.

standard deviations in Table 4. On the other hand, although NToR’s delay spread values fall within the
measurements range in Figure 7(b), the delay spread CDF in Figure 8(b) shows more variation than
XToR and S2S cases. This slight variation can be attributed partly to the small number of measured
positions and the dynamic evolution of propagation paths in each position. We do not consider this as
a shortcoming of the NToR channel model, because the overall τrms statistics are within an acceptable
range, as illustrated in Table 4.

Table 4. Measured and simulated RMS delay spread comparison.

XToR NToR S2S
τrms μ Mdn σ μ Mdn σ μ Mdn σ

Measured [ns] 7.69 6.69 3.86 7.80 8.13 2.49 3.67 3.19 1.80
Simulated [ns] 6.39 5.84 3.71 5.53 5.98 2.03 4.36 3.78 1.55

5. CONCLUSION

In this paper, statistical channel models for WDC use-cases were developed to advance WDCs practical
implementation from the channel modeling front. The channel model accuracy was validated using the
delay spread as a validation metric. The simulated delay spread values fall within the measurements
range, demonstrating that the channel models reflect the measured channel characteristics. The WDC
channel modeling is motivated by the necessity of channel models to design and evaluate WDC 60 GHz
multi-gigabit links. By exploiting the WDC channel models, accurate scheduling and channel allocation
schemes can benefit from a comprehensive study of the channel capacity and achievable data rates in
a WDC realistic channel. As DCs have predefined use-cases and fixed nodes, with pre-known spatial
coordinates, WDC channel modeling is relatively universal and valid for a variety of DC structures and
fabrics, since DC equipment (racks, cages,. . . ) are size and structure-standardized.

REFERENCES

1. Hamza, A. S., J. S. Deogun, and D. R. Alexander, “Wireless communication in data centers: A
survey,” IEEE Communications Surveys & Tutorials, Vol. 18, No. 3, 1572–1595, 2016.
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