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A Low-Profile Half-Mode Substrate Integrated Waveguide Filtering
Antenna with High Frequency Selectivity
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Abstract—A low-profile half-mode substrate integrated waveguide (HMSIW) filtering antenna with
high frequency selectivity is proposed in this letter. The proposed antenna with a height of 0.014λ0

(λ0 is the free-space wavelength) consists of a slot-loaded HMSIW cavity, two parasitic patches, and
five shorting pins. An upper-edge radiation null is generated by the interaction between the HMSIW
cavity and parasitic patches. A rectangular slot etched on the HMSIW cavity is adopted to generate
another null to improve the filtering performances at the upper stopband. Besides, the radiation in the
lower stopband is suppressed by two nulls which emerge due to placing shorting pins under two parasitic
patches. Thus, four radiation nulls can be obtained to enhance the frequency selectivity. The measured
results illustrate that the proposed antenna provides an impedance bandwidth of 4.3% ranging from
2.74 to 2.86 GHz and a peak gain of 6.76 dBi during the operating frequency band. Moreover, four
radiation nulls appear at 2.34, 2.56, 3, and 3.24 GHz in the lower and upper stopbands.

1. INTRODUCTION

With the rapid development of wireless communication technology, the combination of different
components to meet multi-function and miniaturization requirements has aroused great interest.
Therefore, the integration of filter and antenna has been widely researched owing to its superior
performance. Conventionally, filtering antennas are realized by cascading the individually designed
filter and antenna with each other or designing the antenna as the last-order resonator of the filter.
However, the multiple resonators occupy a lot of space and add the complexity of the system. In recent
years, the integration design of antennas with filters, which introduces radiation nulls on edges of the
operating band, becomes an effective method to obtain good frequency selectivity with much fewer
resonators.

Various antennas have been developed to obtain excellent filtering performances, including Yagi
Uda antennas [1], dielectric resonator antennas [2–6], microstrip patch antennas [7–11], and substrate
integrated waveguide (SIW) antennas. Due to the virtues of low loss and high radiation efficiency,
SIW has been widely applied to design excellent filtering antennas [12–25]. By vertically stacking the
resonators, multilayered 3-D configurations are designed in [14–19]. In [14], two radiation nulls were
produced by combining a slot-backed substrate integrated cavity and stacked patches. A second-order
filtering antenna has been realized by using a SIW bandpass filtering circuit together with a printed
antipodal linearly tapered slot antenna. The electric and magnetic mixed-coupling structures generate
adjustable transmission zeros [15]. In the work of [17], two non-radiating modes (i.e., TE010 mode and
TE110 mode) are utilized to generate radiation nulls. Although these multilayered configurations make
the frequency selectivity improved, they bring about high profile and fabrication complexities. Given
this, the filtering antenna using a single-layered SIW cavity was proposed in [20–25]. Conventional
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SIW cavities were employed to enhance the selectivity of channel responses in [22]. In [25], a SIW
filtering antenna with parasitic patches was designed to improve impedance bandwidth and filtering
performances. However, most of the previous works can only acquire good frequency selectivity at
single-side stopband, and the design for achieving good frequency selectivity on both edges of the
passband is of great research value.

To solve the above-mentioned problems, a low-profile half-mode substrate integrated waveguide
(HMSIW) filtering antenna with high selectivity is proposed. The antenna is composed of a slot-loaded
HMSIW cavity, two rectangular patches, and five shorting pins. To retain the merits of SIW but the size
is half reduced, the HMSIW is selected to design the filtering antenna [26]. Two patches are adopted
as the parasitic elements, which not only generates a good filtering response at the upper stopband but
also improves its impedance bandwidth. Moreover, an additional slot and shorting pins are used to
introduce another radiation null, hence realizing better filtering performances. To verify the validity of
the proposed design, a prototype is fabricated and measured. The measured results demonstrate that
both good radiation and filtering performances are achieved.

2. ANTENNA DESIGN

2.1. Antenna Configuration

The configuration of the proposed filtering antenna is shown in Fig. 1, and the Taconic TLY-5 with
εr = 2.2 and h = 1.5 mm is chosen as substrate. The proposed antenna is composed of an HMSIW
cavity, two parasitic patches, and five shorting pins. Shorting pins with diameter p are placed along
the middle line of the patches to obtain a quasi-symmetrical radiation pattern. As shown in Fig. 2,

Figure 1. Geometry of the proposed antenna and its optimized design parameters in millimeters.
p = 1, s = 1.5, L = 46, W = 28, Lp = 34, Wp = 17, fa = 9, fb = 12, fw = 3, pw = 0.5, ml = 7.5,
mw = 3, Ls = 25, Ws = 1, ds = 26.7, Ln = 12, Wn = 3, d1 = 16, d2 = 8.5, d3 = 3, d4 = 3, d5 = 13.5,
g = 1.1 and dp = 2.
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Figure 2. Electric field magnitude distributions of the cavity and the parasitic patch at the central
operating frequency.

the HMSIW cavity and patches are designed to work in the TE110 mode and TM01 mode respectively
at the center frequency. The HMSIW cavity is designed with a dielectric constant of εr = 2.2 and
dimensions of L × W × h, operating at 2.8 GHz with TE110 mode. The initial dimensions of HMSIW
can be predicted using the following equation [27]:
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where c is the free-space velocity of light; k0 is the free space wavenumber of TE110 mode; kx and ky

are the wave numbers in x and y directions, respectively. The wave numbers can be calculated by
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Meanwhile, rectangular patches that are symmetric concerning the central axis are well excited by
the HMSIW cavity. Initial dimensions of patches can be estimated by [28]:

f01 =
c

2Lp
√

εr
(4)

The grounded coplanar waveguide (GCPW) is employed as the feeding structure which directly
excites the HMSIW cavity. A notch with a size of Ls×Ws is cut along the edge of the HMSIW cavity
to improve its impedance match. The filtering antenna is simulated and optimized by Ansys HFSS
software.

2.2. Operating Principle

As depicted in Figs. 3(a) and (b), structure I and structure II with the same dimensions are introduced
to explicate the filtering characteristics of the proposed antenna. Structure I includes an HMSIW cavity
and parasitic patches. Based on this structure, structure II is formed by etching a rectangular slot with
the length of 1/4λ0 on the HMSIW cavity. The slot loaded on HMSIW blocks the current flowing to
the radiating side, and the energy is mainly concentrated near the slot. When the length of the slot is
selected reasonably, the surface current is equal in magnitude and opposite in direction along the long
edges of the slot [29]. The simulated broadside gains are presented in Fig. 3(d). It can be observed
that structure I generates a radiation null at the upper stopband while structure II generates another
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Figure 3. Three different types of structures. (a) Structure I. (b) Structure II. (c) Proposed structure.
(d) Simulated gains of three antenna structures.

one independently. However, no radiation nulls have been obtained at the lower edge of the operating
band. Therefore, five shorting pins are adopted to introduce two lower-edge radiation nulls in Fig. 3(c).
Consequently, four radiation nulls are generated on both edges of the passband, thus bring out good
filtering performance.

For explicating the operation mechanism of four radiation nulls clearly, the current distributions
on the parasitic patches and HMSIW cavity at center and radiation nulls frequencies are shown in
Fig. 4. In Fig. 4(a), there are opposite currents on the left and right sides of patch 2 resulting in
far-field radiation cancellation in the broadside direction, which generates a radiation null at 2.32 GHz.
Fig. 4(b) indicates that the current distribution on patch 1 resembles the one on patch 2 in Fig. 4(a),
which introduces another radiation null at 2.55 GHz. Loading more shorting pins on patches means that
the inductance increases; therefore, two different radiation nulls are generated at the lower stopband.
It can be observed in Fig. 4(c) that currents on surfaces of the HMSIW cavity and patches are out-of-
phase along the central axis at 3 GHz, which would offset each other’s contributions on the broadside
radiation. As indicated in Fig. 4(d), a slot etched on the HMSIW cavity generates a radiation null at
3.34 GHz due to the radiation suppression caused by opposite currents along the slot. Two patches and
the HMSIW cavity can radiate effectively, as exhibited in Fig. 4(e).

2.3. Parametric Study

Figure 5 indicates the effects of ds, g, dp, and N on the reflection coefficient and gain of the proposed
antenna. For the sake of convenience, null1, null2, null3, and null4 are used to represent the radiation
nulls at 2.32, 2.55, 3, and 3.34 GHz, respectively. It is observed clearly in Fig. 5(a) that with the
decrease of ds, the null4 moves down while the suppression level increases. The location of the null3
can be controlled by altering g, as shown in Fig. 5(b). Additionally, as g increases, the suppression
level decreases at the upper stopband but increases at the lower stopband. It is presented in Fig. 5(c)
that dp has a great influence on the lower-edge radiation nulls. Especially, when Patch 1 and Patch 2
are combined into a single patch (dp = 0 mm), there is only one lower-edge radiation null left. When
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Figure 4. Current distributions on the surfaces of the HMSIW cavity and parasitic patches at (a)
2.32 GHz, (b) 2.55 GHz, (c) 3 GHz, (d) 3.34 GHz, (e) 2.8 GHz.

the number of shorting pins N added on Patch 1 increases, the null2 moves up, and the suppression
level decreases in the meantime as indicated in Fig. 5(d). This is because loading more shorting pins
makes the resonance stronger and leads to the gain increased at the corresponding frequency. Taking
bandwidth and band-edge roll-off rates into consideration, the physical parameters ds = 26.7 mm,
g = 1mm, dp = 2mm, and N = 3 are selected. The height of the substrate, h, also has a great influence
on the proposed antenna performance. Thus, it should be optimized reasonably.
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Figure 5. Simulated performances variation with different parameters. (a) ds. (b) g. (c) dp. (d) N
(the number of pins loaded on patch 1).

3. RESULTS AND DISCUSSION

To validate the design method, a prototype is fabricated and measured, and the antenna photograph
is shown in Fig. 6(a). The reflection coefficient is measured with an Anritsu MS46322A vector network
analyzer, while the radiation patterns and gains are measured in a microwave anechoic chamber with
a far-field measurement method. The measured and simulated reflection coefficients and realized gains
are presented in Fig. 6(b). The simulated operating band is from 2.74 to 2.85 GHz while the measured
results demonstrate that the 10 dB impedance bandwidth is about 4.3% ranging from 2.74 to 2.86 GHz.
During the operating band, the peak gain reaches 6.76 dBi, and the total efficiency calculated based on
simulated results is at least 91%. Four radiation nulls at 2.34, 2.56, 3, and 3.24 GHz are achieved on both
edges of the operating band. The lower and upper band-edge roll-off rates are 175 and 183 dB/GHz,
respectively. Especially, the proposed antenna has better filtering performance at the upper stopband
since the upper band rejection is more than 22 dB while the lower one is more than 9dB. Figs. 6(c) and
(d) show the radiation patterns in E/H-plane at 2.8 GHz. It can be observed that radiation patterns
almost keep symmetrical in both planes. Due to the asymmetry of the whole structure, the E-plane
pattern is slightly inclined. Besides, the measured cross-polarization levels are better than 20 dB in
E/H-plane.

The performance comparison is provided in Table 1 to show the merit of our proposed filtering
antenna. Compared with the multilayer SIW structures designed in [12, 14, 17–19], the proposed single-
layer antenna in this work has the advantage of low profile and more radiation nulls. Besides, the
proposed antenna has a smaller transverse size and better frequency selectivity than the designs
in [12, 14, 17]. The proposed antenna achieves higher efficiency during operation band and wider
bandwidth than the design in [18, 19]. Compared with the filtering antenna designed with a single-
layer SIW structure in [25], the proposed antenna shows more radiation nulls and better frequency
selectivity in general.
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Figure 6. (a) Photograph of the proposed antenna. (b) Simulated and measured reflection coefficients
and gains of the proposed antenna. (c) Simulated and measured radiation patterns at 2.8 GHz in
E-plane. (d) Simulated and measured radiation patterns at 2.8 GHz in H-plane.

Table 1. Performance summary of the proposed and state-of-art designs.

Ref.
Transverse
Size (λg2)

Height
(λ0)

BW
(%)

η

(%)
NRNs

Lower/Upper Selectivity
(dB/GHz)

[12] 2.24 0.07 1.6 N.A. 2 26/57
[14] 3.10 0.13 9.1 87 2 48/165
[17] 3.8 0.13 8.7 N.A. 2 38/58
[18] 0.85 0.07 1.4 79.3 2 210/108
[19] 0.81 0.12 3.0 58.9 0 63/28
[25] 0.15 0.015 5.1 N.A. 2 68/233

This work 0.18 0.014 4.2 91 4 175/183

BW: 10 dB impedance bandwidth. NRNs: The number of radiation nulls. Lower/Upper Selectivity is
calculated as |αmax − αmin|/|fz − fc|, where αmax is the attenuation of the first out-of-band radiation

null or 20 dB attenuation if no radiation null and αmin is the 3 dB attenuation; fz and fc are their
corresponding frequency.
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4. CONCLUSIONS

In this letter, A low-profile HMSIW filtering antenna with high frequency selectivity is proposed. A
slot-loaded HMSIW cavity and two parasitic patches with shorting pins are adopted to generate four
radiation nulls. The interaction between the HMSIW cavity and parasitic patches generates a filtering
response at the upper stopband edge. Meanwhile, an additional slot and shorting pins are adopted to
introduce another three radiation nulls to realize better filtering performances. The measured results
indicate that the proposed antenna has excellent frequency selectivity on both edges of the passband
with roll-off rates of 175 and 183 dB/GHz.
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