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Abstract—Transparent conducting materials with the ability of broadband electromagnetic
shielding have a widespread range of applications in aerospace, medical equipment, and electronic
communications. Achieving enhanced electromagnetic shielding effect without sacrificing much optical
transparency is the technical trend in both academia and industries. Here, we experimentally propose
a flexible hybrid film constructed by nano-printing based metal meshes and a graphene coating for
the transparent electromagnetic shielding application. Numerical analysis is carried out to investigate
optimal balance between electromagnetic shielding and optical transparency. In the experiment,
enhanced shielding ability of hybrid film is observed without excessively sacrificing optical transmittance,
compared to the reference group (the case only with metal mesh). Our work provides a hybrid platform
for the high-performance optically transparent shielding materials for electromagnetic environment
safety protection.

1. INTRODUCTION

Transparent electromagnetic shielding materials, which prevent electromagnetic radiation from causing
harm to personnel or devices at the optically transparent window [1, 2], can find wide industrial
applications in the fields of solar energy [3, 4], medical electromagnetic isolation rooms, transparent
antennas [5], electronic touch screens, and military utilities [6, 7]. Although the high-performance
electromagnetic shielding ability can be achieved through the way of enhancing either reflection or
absorption, conventional microwave absorbers and reflective coatings are opaque at visible frequencies
due to the material properties of metals and lossy mixtures. As a result, such optically opaque
electromagnetic shielding materials cannot be used for the visual observation windows and equipment
screens.

To achieve transparent electromagnetic shielding functionalities, optically transparent conductive
films, such as carbon nanotubes and Indium Tin oxide (ITO), have been widely studied in both academia
and industries [8, 9]. By properly designing and etching the periodic meta-atoms of optically transparent
thin film, significant electromagnetic absorption can be achieved at the cost of little optical transmissive
insertion loss over a relatively broad frequency spectrum [10]. Different from the absorption-type [11]
transparent electromagnetic shielding materials, homogeneous transparent conductive thin films without
periodic patterns can achieve reflection-type electromagnetic shielding functionality [12]. Enhanced
microwave absorption is also observed in a random disperse system containing conductive (charged)
particles [13, 14]. Generally, the reflection-type transparent electromagnetic shielding materials can
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work over a broader bandwidth than the absorption-type ones. This is because homogeneous transparent
conductive films are not sensitive to the wavelengths of microwaves as long as the dimension of their
basic particle is far smaller than the wavelength of interest [15, 16]. To balance the requirement on
optical transparency (i.e., relatively low optical conductivity) and microwave shielding, the thickness of
semiconducting transparent films is usually limited within the nanometer scale. Under this limitation,
the sheet resistance of homogeneous transparent conductive films is usually higher than 1 Ω/� [17],
which may not meet the electromagnetic shielding requirement for extreme environment (e.g., the high-
power electromagnetic pulse over ultrawide frequency spectra).

As the shielding effectiveness of the reflection-type transparent electromagnetic shielding materials
is highly related to their own sheet resistance, plasmonics transparent conductive films, such as
metal meshes [18–20] and metal nanowire network [21–24], have attracted wide attention for shielding
applications. Transparent metal meshes are composed of patterned metallic grid on the surface of
transparent dielectric substrate. Generally, the period of the metal mesh is usually much less than
the microwave wavelength to achieve strong electromagnetic shielding at microwaves, and at the same
time, the period should be much larger than visible-infrared wavelengths to ensure high transmittance
at visible region. These characteristics make the metal mesh a good candidate for transparent
electromagnetic shielding applications [25, 26]. In 2017, Wang et el. successfully reported a double-
layer metal mesh based on a multi-periodic annular nesting structure, which can achieve 90% of the
optical transmittance and the 37 dB of maximum electromagnetic SE [27]. With a fixed periodicity and
linewidth, the metal mesh can perform a lower sheet resistance and exhibit better shielding performance
if the height of metal mesh is increased. However, the metal mesh with increased height, on one hand,
is not easy to fabricate on the large area of substrate, and on the other hand, it may make the optical
observation window hazed. For this reason, two-dimensional conducting materials, e.g., graphene, have
shown great potential in high-performance transparent electromagnetic shielding due to nanometer-
scale thickness [28–35]. Recently, it is reported that hybrid films of graphene and micro-structured
metals can effectively improve the conductivity of the structure while maintaining excellent optical
transmittance [36, 37]. Since the performance of microwave shielding is highly related to the conductivity
of the material, the graphene coated metal mesh may exhibit great electromagnetic shielding [38].

In this paper, we study the microwave shielding effectiveness (SE) and optical transmittance of the
hybrid structure constructed by metal meshes and graphene (Fig. 1). The relationship among microwave
SE, optical transmittance at visible regime, and the structural property of metal meshes is analyzed. On
the basis of aforementioned analysis, the metal mesh-graphene hybrid structure is fabricated through
nanoimprinting and chemical vapor deposition (CVD). The experimental results show that the hybrid
structure can achieve 31.8 dB average SE over the frequency range from 9.5 to 11.5 GHz with the average
optical transmittance of 77.3% from 400 nm to 780 nm. Our work indicates that the graphene-metal
mesh hybrid structure can be applied to transparent electromagnetic shielding scenarios with strict
performance demand.

Figure 1. Schematic view of the hybrid structure of metal mesh and graphene for transparent
electromagnetic shielding applications.
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2. DESIGN AND SIMULATION

We start the SE analysis from various structural properties of metal meshes. CST Studio Suite is
selected for simulation and design. In the simulation, we only consider a single unit-cell of the metal
mesh whose dimensions are given in Fig. 2(a), and the number of total meshes in the simulation is

(a) (b)

(c) (d)

(e) (f)

Figure 2. Numerical shielding effectiveness and optical transmittance of various metal meshes. (a) The
geometrical properties of metal-mesh unit cells. (b) The SE comparison among four kinds of the metal
mesh with the optical transmittance of 85%. (c) The SE of square-lattice metal mesh with the various
thicknesses and linewidths. (d) The SE of square-lattice metal mesh with the various periods. (e) The
transparency of square-lattice metal mesh with different periods and widths. (f) The SE trend with
various thicknesses and widths when the optical transmittance is fixed at Topt = 85% for the case of
square-lattice metal mesh. The numerical analysis of metal mesh in Figs. 2(c)–(f) is focused at 40 GHz.
Here, we focus on the metal mesh and neglect the influence of substrate.
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about 103 ∼ 104 for different cases. In the simulation, the background is air; the boundaries are unit-
cell boundaries; and the metal used is copper with the electric conductivity of 5.96 × 107 S/m. Totally
four kinds of periodic structure, i.e., square, circular, hexagonal, and triangle lattices, are used for
studying the geometrical influence on the SE, as shown in Fig. 2(a). Since the periodicities of metal
meshes are usually far smaller than the wavelength of interest at microwave regime, effective medium
theory (EMT) can be used for theoretically deriving the low-frequency electric conductivity or sheet
resistance of the metal meshes [39, 40]. The sheet resistance of a homogeneous film can be derived as
Rs = ρ/t, where ρ and t are the resistivity and thickness of the conductive film, respectively. Moreover,
ρ=R∗S/L, where R is the value of resistance; L and S are the length and area of the material. The
sheet resistance for a nanopatterned conductive film is calculated by Rs = (ρ

t ) · ( p
w ), which depends on

the two-dimensional period p and metal width w as well [41]. Therefore, the filling factor of the metal
is the key factor affecting Rs. Different from the EMT model for low-frequency electric conductivity,
the optical transmittance or optical conductivity at normal incidence can be easily calculated from the
filling factor of metals, which was discussed [42]. Since the linewidth of the metal mesh is much larger
than the wavelength of visible light, the metal can be regarded as causing total reflection, and the
rest of the metal mesh can be treated as total transmission under the normal incidence. With such
assumption, the transmittance (Topt) is expressed as Topt=Smetal/Swhole × 100%. For the case of the
square-lattice metal mesh, the transmittance can be written by Topt = (p − w)2/p2 × 100%. Based
on these two different calculation models, the electromagnetic SEs for the cases of the aforementioned
four kinds of metal mesh are simulated numerically over the frequency band from 0 to 40 GHz under
different conditions. In the numerical analysis, we focus on the metal mesh and neglect the influence of
substrate.

Firstly, the transmittance Topt of four kinds of metal meshes are set at the same value, e.g.,
Topt = 85% to evaluate the impact of distinct shapes on the metal mesh film. Under this condition, the
geometrical properties of metal meshes are: p = 99.46µm, w = 3.88µm for the case of circular lattice;
p = 64µm, w = 5µm for the case of square lattice; p = 96µm, w = 7.49µm for the case of hexagonal
lattice; p = 154.7µm, w = 6.07µm for the case of triangular lattice. The thicknesses of metal mesh for
all the cases are set at t = 5µm. Through the numerical simulation, the corresponding SEs are shown
in Fig. 2(b). One can see that the metal mesh with a square unit cell can achieve a higher SE than the
other three cases. Additionally, through Fig. 2(b), one can also see that the electromagnetic SE of the
structural metal mesh decreases when the frequency increases, which can be explained by the effective
medium theory.

Secondly, the SE of square-lattice metal mesh with various thicknesses and linewidths is studied in
Fig. 2(c). Here, the period is fixed at 100 µm, while the thickness and linewidth of metallic wire vary
from 5µm to 7 µm and from 3 µm to 5 µm, respectively. One can see that the electromagnetic SE of the
square-lattice metal mesh is improved when both the thickness and linewidth are increased. Similarly,
the relationship between the period and electromagnetic SE of the square-lattice metal mesh is shown in
Fig. 2(d). The linewidth and thickness are fixed at 3.5 µm and 7µm. The simulation result illustrates
that the electromagnetic SE of the metal mesh decreases when the period increases. Therefore, the
increased linewidth (thickness), or the decreased period, will make the overall sheet resistance of the
metal mesh decline, which leads to the enhancement of the electromagnetic SE.

Thirdly, the optical transmittance of the metal mesh depends on its period and linewidth, whose
results are shown in Fig. 2(e). The period and linewidth of the square-lattice metal mesh vary from
100 µm to 120 µm and from 3.5 µm to 5 µm, respectively. The result shows that the optical transmittance
of the square-lattice metal mesh increases when the metallic line decreases in width, or the period of
the metal mesh increases.

In accordance with the analysis above, the optical transmittance and electromagnetic SE are
mutually restricted when the linewidth and period of the metal mesh are changed. With a fixed optical
transmittance (Topt = 85%), the relationship between electromagnetic SE and the linewidth and period
of squared lattice is shown in Fig. 2(f), which is helpful to select appropriate parameters for achieving
the required electromagnetic SE and optical transmittance of the metal mesh. The practical realization
of industrial shielding material constructed by metal mesh and graphene can benefit from the previous
discussion on the geometries of metal meshes.
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3. MATERIALS AND METHODS

After optimizing and selecting the proper geometrical property of metal mesh, the remaining issue is to
achieve the metal mesh and further transfer the graphene onto the metal mesh in practice. The whole
fabrication and material preparation procedure is schematically shown in Fig. 3.

Figure 3. Synthesis process for the metal mesh-graphene hybrid film.

3.1. Fabrication of the Metal Mesh Film

The metal mesh is fabricated through nanoimprinting technique [43]. Firstly, the photoresist is
spin-coated on the cleaned and dried glass substrate and gets the groove mesh pattern by exposure
and development. Then silver mirror reaction is performed on the mask, and it is placed in the
electroplating device for nickel plating and finally forms an imprinted nickel plate. After the nickel
plate is prepared, the groove structure is imprinted on a PET substrate whose relative permittivity is
about εr= 3∗(1−j0.006) [44] with the thickness of 0.175 mm and dimension of 25mm ∗ 15mm. This
process will be divided into three steps: (1) the photoresist is covered on the PET substrate; (2) the
nickel plate is imprinted on the PET substrate and cured by an ultraviolet lamp; (3) grooves are filled
with copper nanoparticles and solidified using flash sintering.

3.2. Graphene Synthesis

The graphene is fabricated through CVD [45]. First of all, the processed copper foil is placed at the
center of the test tube furnace, and the foil is heated to 1000◦ for 30 minutes with protective gas passing.
Secondly, the carbon source gas, CH4, is passed through the tube furnace for 1 hour to react after the
temperature is stable. Then, the graphene-coated copper foils can be obtained when the tube is cooled
to room temperature.

3.3. Graphene Transferring and Hybrid Film Assembling

The graphene is transferred to the metal mesh film by wet chemical etching substrate. Firstly, the
transfer medium, PMMA is spin-coated on the surface of the graphene for 1min at 3500 rmp as a
support layer. Then, PMMA-graphene covered copper foil is immersed in the FeCl3 solution to corrode
the copper substrate. Next, the PMMA-graphene film is cleaned and transferred to the metal mesh
film. At last, the PMMA-graphene-metal mesh film is placed into an acetone bath to remove PMMA.
The hybrid films constructed by metal meshes which are encapsulated between the substrate and the
graphene are completed.
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After all the fabrication procedure, three groups of hybrid samples (i.e., Samples 1 to 3) with
different values of graphene’s sheet resistance are obtained in addition to a group of pure metal mesh
(i.e., the reference group).

4. CHARACTERIZATION AND DISCUSSION

4.1. Spectroscopic Characterization

The surface topography of the square-lattice metal mesh is characterized with the use of scanning
electron microscopy (SEM), whose results are shown in Fig. 4(a). One can see that good electrical
connection is built after imprinting and sintering. A good electrical connection indicates that the meal
mesh can be used for electromagnetic shielding application. To confirm graphene being transferred to
the metal mesh, Raman measurement is conducted using the laser with wavelength of 532 nm. As shown
in Fig. 4(b), two characteristic peaks of graphene, i.e., the G peak at 1582 cm−1 and the 2D peak 2681
at cm−1, can be observed in the test. The Raman spectra indicate the graphene has been transferred to
the metal mesh already. Additionally, the D peak around 1350 cm−1, which is related to the disorder,
cannot be observed from the measurement, which typifies that the transferred graphene is defect-free
on the metal mesh.

(a) (b)

(c) (d)

Figure 4. (a) The SEM image of metal mesh. (c) The hybrid film above a picture. (d) The
optical transmittance of reference group (metal mesh) and hybrid films with different sheet resistance.
Considering the convenience on practical fabrication, the period and linewidth of the square-lattice
metal mesh are 170 µm and 4 µm here, respectively.

4.2. Optical Characterization

Figure 4(c) shows the real picture of the hybrid film over the picture with the content of “Jilin
University”. Penetrating through the sample, the image and information on the picture can be clearly
found. As shown in Fig. 4(d), the optical transmittance for the cases of three hybrid films and one metal



Progress In Electromagnetics Research, Vol. 170, 2021 193

mesh layer is measured as comparison. In the wavelength range from 400 nm to 780 nm, the average
optical transmittance of the metal mesh layer and hybrid films (Sample 1, Sample 2, and Sample 3) is
above 83.29%, 77.31%, 77.66%, and 77.72%, respectively. Compared with the metal mesh, the samples
coated with the graphene reduce their optical transmittance by about 6%.

4.3. Microwave SE Test

In order to verify the electromagnetic SE of the metal mesh-graphene hybrid film, the sheet resistance
of three samples and metal mesh is firstly measured by the Four-Point Probes. The sheet resistance of
the reference group before integrating with the graphene is 0.43 Ω/�. In contrast, the sheet resistances
of Sample 1, Sample 2, and Sample 3 decrease to 0.26 Ω/�, 0.30 Ω/�, and 0.40 Ω/�, respectively. Note
that the measured sheet resistance may be slightly different from the practical values because the Four-
Point Probes may not touch the hybrid films and metal mesh exactly. The hybrid samples are tested
through a Vector Network Analyzer as shown in Fig. 5. Since the dimension of sample is limited by
the transferred graphene, the microwave experiment is carried out in a rectangular waveguide (WR-90),
whose frequency range of fundamental mode is over 8.2 to 12.4 GHz. To avoid the potential influence
of cut-off region and multiple waveguide modes, we only select the frequency range from 9.5 GHz to
11.5 GHz to obtain the results. Although we only measure the SE over a relatively narrow frequency
range, we believe that the microwave SE can be achieved over a relatively wide range, as long as the
periodicity of metal mesh is far smaller than the wavelength of interest, according to the numerical
simulation. Through the test, one can see that the average SEs of Samples 1 to 3 and the reference
group are 31.8 dB, 30.9 dB, 30.1 dB, and 26.2 dB, respectively. It is clear that the electromagnetic SE
for the case of hybrid structures is enhanced compared to the reference group. Additionally, one can see
that the electromagnetic SE is improved by about 5.11 dB for the case of Sample 1, 4.5 dB for the case of
Sample 2, and 2.2 dB for the case of Sample 3, compared to the reference group at the center frequency of
the testing band, i.e., 10.5 GHz, while the average optical transmittance only decreases by 6%. Although
the simulated curve is relative flat and standing waves occur in the experiment, the SE curves of metal
mesh and hybrid film still show a similar trend to the simulated one. The difference on the magnitude
of SE and spectral SE changing rate may be related to the imperfection during the fabrication (e.g.,
blading nanoink amount and sintering homogeneity) and measurement (e.g., mechanical cutting edge
of periodic structure, to match the dimension of straight waveguide).

The transfer process of the electromagnetic wave can be used to describe and explain shielding

(a) (b)

Figure 5. (a) The schematic diagram of the waveguide testing system. (b) The electromagnetic SE
of reference group (pure metal mesh), Samples 1, 2, and 3. Limited by the test environment, the SE
performance is measured over the frequencies from 9.5 to 11.5 GHz.
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mechanism [46]. When the incident waves are exposed to the hybrid film, part of electromagnetic waves
are reflected because of the impedance mismatch caused by the difference between the conductivities of
air and the material. The huger difference will result in more reflection. In addition, the penetrating
electromagnetic waves have multiple reflection and absorption between the metal mesh layer and
graphene layer, which contributes to the energy loss of electromagnetic waves. The experimental results
that we obtained show the same trend.

The performances of previous state of art [47–51] are compared to our work in Fig. 6. One can
see that our hybrid film can not only achieve outstanding microwave SE but also have relatively high
optical transparency. For practical applications, our work can improve the SE compared to the pure
metal mesh with the help of graphene, which may meet the higher requirements of transparent and
flexible electromagnetic shielding in industrial or military fields. On the other hand, graphene will bring
additional continuous conducting effects for higher frequency, as the geometrical property of fundamental
“meta-atom” of graphene is far smaller than the wavelength of microwaves and even millimeter waves.
This continuous surface effects will extend the SE bandwidth of single metal mesh that is limited by
the effective medium theory, from microwave to higher frequencies.

Figure 6. SE and visible transmittance for different transparent electromagnetic shielding materials.

5. CONCLUSION

In this paper, we design and study the SE of the flexible hybrid films constructed by nano-printing
based metal meshes and a graphene coating in both numerical simulation and experiments. Numerical
analysis is carried out to investigate optimal balance between electromagnetic shielding and optical
transparency. Intuitively, higher SE is provided with lower transmittance. The optimization between
the transmittance and SE can be gained by properly controlling the width and period of the metal
mesh. In the experiment, an enhanced SE of hybrid film is observed without excessively sacrificing
optical transmittance compared to the case only with metal mesh. Compared with the metal mesh, the
electromagnetic SE of hybrid samples can be increased by 5.11 dB (Sample 1) at the center frequency
of the testing band, i.e., 10.5 GHz, as shown in Fig. 5(b), only by sacrificing 5.89% (Sample 1) average
optical transparency. As the graphene can amend the material homogeneity of the structural shielding
film, e.g., metal mesh at higher frequencies, the hybrid shielding film constructed by graphene and
metal mesh may work at not only microwaves but also higher frequencies, such as millimeter waves.
Our work provides a hybrid platform for the high-performance optically transparent shielding materials
for electromagnetic environment safety protection over ultra-wide frequency spectra.
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