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Abstract—As the explicit finite-difference time-domain (FDTD) method is restricted by the well-
known Courant-Friedruchs-Lewy (CFL) stability condition and is inefficient for solving numerical tasks
with fine structures, various implicit methods have been proposed to tackle the problem, while many of
them adopt time-splitting schemes that generally need at least two sub-steps to finish update at a full
time step, and the strategies used seem to be an unnatural habit of computation compared with the
most widely-used one-step methods. The procedure of splitting time step also reduces computational
efficiency and makes implementation of these algorithms complex. In the present paper, two novel
one-step absolutely stable FDTD methods including one-step alternating-direction-implicit (ADI) and
one-step locally-one-dimensional (LOD) methods are proposed. The two proposed methods are derived
from the original ADI-FDTD method and LOD-FDTD method through some linear operations applied
to the original methods and are algebraically equivalent to the original methods respectively, but they
both avoid the appearance of intermediate fields and are one-step method just like the conventional
FDTD method. Numerical experiments are carried out for validation of the two proposed methods, and
from the numerical results it can be concluded that the proposed methods can solve equation correctly
and are simpler than the original methods, and their computation efficiency is close to that of the
existing one-step leapfrog ADI-FDTD method.

1. INTRODUCTION

The finite-difference time-domain (FDTD) method has been considered as one of the most popular
temporal methodologies for solutions of electromagnetic problems and has also been comprehensively
applied to a wide range of problems [1, 2]. Being an explicit finite difference algorithm, however,
the FDTD method is strictly limited by the well-known Courant-Friedruchs-Lewy (CFL) stability
condition [2] which states that the time step size is positively related to spatial mesh sizes. As a
result, when there are fine structures in the calculation domain, the FDTD method has to employ time
steps with sizes in a strictly constrained value domain, and the iteration of a large number of time steps
appears unavoidably, which is a heavy burden of computer time. In order to overcome the CFL stability
condition and improve computational efficiency, various implicit difference schemes have been adopted.
Many implicit FDTD methods have been proposed, and all those methods show valuable performance
improvement, such as hybrid implicit-explicit (HIE) FDTD method [3, 4], Crank-Nicolson (CN) FDTD
method [5, 6], alternating-direction-implicit (ADI) FDTD method [7, 8], locally-one-dimensional (LOD)
FDTD method [9, 10], and Weighted Laguerre Polynomial (WLP) FDTD method [11, 12]. Among the
implicit methods mentioned above, the HIE-FDTD method only applies implicit scheme to the spatial
derivative in the direction along which there are fine elements, while taking general explicit scheme for
the other spatial derivatives in the directions along which there are no fine structures. The HIE-FDTD
method shows obvious performance improvement for problems with fine structures only in one direction.
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Nevertheless, since the HIE-FDTD method just finishes the limit from spatial cells only in one direction
on the time step sizes, when there are fine structures at least in two directions, the HIE-FDTD method
will also confront the same problem that the conventional FDTD method shoulders. The CN-FDTD
method and WLP-FDTD method are both absolutely stable algorithms where time step sizes are not
limited by spatial cell sizes in all the directions but dependent on the tolerance of numerical accuracy,
yet the two methods both result in a large irreducible sparse matrix that is very expensive to solve.
To improve calculation efficiency, different factor-splitting schemes are introduced into the CN-FDTD
method and later are also transplanted into the WLP-FDTD method from the improved CN-FDTD
methods just mentioned and realize great progress in computation efficiency, but the implementations
of the new methods also become more complex and need more memory [13–16]. The ADI-FDTD
method and LOD-FDTD method are also two absolutely stable FDTD methods, only need to handle
low-dimensional matrices, and have been attracting the attention of researchers for a long time even
till now [17–20]. However, the ADI-FDTD method that splits a time step into two sub-steps does
not seem to be a natural habit of calculation as the conventional FDTD method and also makes the
process of computation complex. The LOD-FDTD method also adopts time step-splitting schemes and
in some cases may have more sub-steps than two for the purpose of more low numerical dispersion
error, while at the same time the algorithm becomes even more complicated with the expansion of
number of sub-steps. As the complexity of the splitting-step methods increases, the implementations
of the two algorithms in the main computation domain, the treatment of boundary conditions, and the
implementation of source and some other key elements in a algorithm all become even more difficult. On
the other hand, more intermediate steps of calculation also mean more memory cost and reduction of
computation efficiency. In order to improve the performance of splitting-step methods, some researchers
resorted to alternative forms of the original methods without intermediate variables [21, 22], and there
are also researchers developing a new form of ADI-FDTD method by eliminating redundancy in the
method and simplifying it [23]. It must be pointed out that all the techniques applied in [21–23] are
linear operations of the original methods.

In this paper, efforts are made to design novel absolutely stable FDTD algorithms that do not
require intermediate sub-steps and do not need intermediate field variables, namely, the one-step ADI-
FDTD method and the one-step LOD-FDTD method in two-dimensional situation. The two proposed
one-step absolutely stable FDTD methods are derived from the original ADI-FDTD method and LOD-
FDTD method through not too many steps of linear operations applied to the original methods,
respectively. The two proposed methods are also algebraically equivalent to the original ADI-FDTD
method and LOD-FDTD method. The proposed one-step algorithms are simpler than the original
methods and should also have the same numerical property as those of the original methods in that
the proposed algorithms and the original methods where the proposed methods are derived from are
algebraically equivalent.

The rest of the paper is organized as follows. In Section 2, the frameworks of the two novel one-
step absolutely stable FDTD methods are described in detail. In Section 3, numerical experiments
are carried out to verify the two proposed methods, and discussions are also listed. Then in the final
Section 4, the conclusions about the two proposed methods are presented.

2. FORMULATIONS OF THE PROPOSED METHODS

For simplicity, both the proposed ADI-FDTD method and proposed LOD-FDTD method are discussed
in a 2D TE case with simple, isotropic, and lossless media.

2.1. Formulation of the Proposed One-Step ADI-FDTD Algorithm

In the assumed situation, the original ADI-FDTD method [7] is expressed as
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To reach the proposed one-step ADI-FDTD method, Eq. (1) plus Eq. (4) is
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Then Eq. (3) plus Eq. (6) is
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Equation (5) going one time step back plus Eq. (2) is written as
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Then with Eq. (6) going one time step back and expressing the earlier magnetic field with the later one,
we can acquire
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Equation (10) plus Eq. (3) is
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Then combining Eqs. (11) and (9), finally we get
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Eqs. (7), (8), and (12) formulate the proposed one-step ADI-FDTD method in this paper.
The implementation of the proposed one-step ADI-FDTD method is very simple and direct. One

firstly solves Ey through Eq. (12) implicitly, then implicitly solves Ex, and finally explicitly solves Hz.
Of course, when Ey have been solved, one can also firstly solves Hz implicitly and then Ex explicitly.

2.2. Formulation of the Proposed One-Step LOD-FDTD Algorithm

In the situation mentioned above, the original LOD-FDTD method [10] is expressed as
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Adding Eq. (13) with Eq. (16), we get
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Replacing E
n+1/2
y in Eq. (15) with En+1

y , naming it as modified Eq. (15) and then applying the modified
Eq. (15) to Eq. (19), we acquire
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Now adding Eq. (14) with Eq. (17), a new expression is
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Again substituting E
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y and then applying the modified Eq. (15) to Eq. (21),
we get
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Adding Eq. (15) with Eq. (18), we get
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Substituting E
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Eqs. (20), (22), and (24) formulate the proposed one-step LOD-FDTD method.
In the proposed one-step LOD-FDTD method, Ey is solved implicitly through Eq. (22). Ex can be

implicitly solved by combining Eqs. (20) and (24), and finally Hz is solved explicitly. Of course, after
Ey is solved, one can also solve Hz firstly and then handle Ex at her or his will.

From the formulations of the proposed one-step ADI-FDTD method and proposed one-step LOD-
FDTD method, it is evident that they both eliminate the intermediate field variables and are also simpler
than the original methods. The implementations of the two proposed methods are also rather direct
and noticeable. The two proposed one-step algorithms should also have the same numerical property
as the original methods, such as the stability condition and numerical correctness, since the proposed
algorithms are algebraically equivalent to the original methods where the proposed methods are derived
from.

3. NUMERICAL VALIDATION AND DISCUSSIONS

To verify the proposed one-step ADI-FDTD method and proposed one-step LOD-FDTD method, two
numerical experiments that use two different parallel plate waveguides [11] with extended scales are
carried out.
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Figure 1. The schematic illustration of the two 2-D parallel plate waveguides.

In the first example, there are 120×100 cells in Fig. 1 with the sizes both set as 0.01m along x and
y directions, respectively. The electric current source is placed on x = 10, and the point r(50, 5) is set
as observation point recording Ey at each time step. The two open sides of the waveguide are truncated
by the first order Mur’ absorbing boundary condition. According to the CFL stability condition, the
largest time step size that the conventional FDTD method can select is 23.57 ps, and in theory absolutely
stable FDTD methods can adopt time step with arbitrary values. For simplicity and convenience, in
this numerical example, the time step size for the conventional FDTD, the existing one-step leapfrog
ADI-FDTD method [8], and the two proposed methods are all simply chosen as 20 ps.

Figure 2 plots the transient Ey at r point calculated by the conventional FDTD method, the existing
one-step leapfrog ADI-FDTD method, the proposed one-step ADI-FDTD method, and the proposed
one-step LOD-FDTD method with the uniform time step size. Fig. 2 shows that the numerical results
calculated by the four algorithms are in good agreement and thus validates the correctness of the two
proposed one-step absolutely stable FDTD methods.

Figure 2. Transient Ey at r point solved by different algorithms.

Firstly, there are some names to be explained. Table 1 lists the running time consumed by these
four methods with the uniform time step size. In Table 1 and the next Table 2, the 1step ADI-FDTD
stands for the proposed one-step ADI-FDTDmethod, and the 1step LOD-FDTD stands for the proposed
one-step LOD-FDTD method. In the next Table 2, these terms have the same meaning.

From Table 1, it can be seen that the existing one-step leapfrog ADI-FDTD method, the proposed
one-step ADI-FDTD method, and the proposed one-step LOD-FDTD method take almost the same
time for the numerical task, which indicates that the two proposed methods have the same computation
efficiency as that of the existing one-step leapfrog ADI-FDTD method. At the same time, from Table 1,
it can also be seen that the existing one-step leapfrog ADI-FDTD method and the two proposed methods
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Table 1. Comparison of the computational time of different algorithms with uniform time step size.

Methods Time step Iterations Time

FDTD 20ps 1000 1.77 s

One-step leapfrog ADI-FDTD 20 ps 1000 29.17 s

Proposed 1step ADI-FDTD 20 ps 1000 31.37 s

Proposed 1step LOD-FDTD 20ps 1000 31.54 s

Table 2. Comparison of the computational time of different algorithms with nonuniform time step
sizes.

Methods Time step Iterations Time

FDTD 0.2 ps 80000 37.15 s

One-step leapfrog ADI-FDTD 20 ps 800 20.27 s

Proposed 1step ADI-FDTD 20 ps 800 23.16 s

Proposed 1step LOD-FDTD 20ps 800 22.52 s

cost much more time than the conventional FDTD method. As those absolutely stable methods require
matrix operations at every time step, at each time step the absolutely stable methods need more time
to finish the update of computation. So it is unavoidable that a numerical task using those methods
with the same number of iterations results in more time cost.

As a matter of fact, a run with a large time step beyond the CFL stability condition should be
adopted, and then the performance of the proposed one-step methods and the original methods over
the conventional FDTD method will appear, so a second numerical experiment is supplied.

In this second numerical example, the parallel plate waveguide in Fig. 1 mentioned above is still
used as the test model, while the mesh size along y direction becomes 0.0001m, and all the other
conditions stay the same. The Ey at point r and CPU time costed by different methods are shown in
Fig. 3 and Table 2, respectively.

Figure 3. Transient Ey at r point calculated by different algorithms.
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As can been seen in Fig. 3, the results calculated by the conventional FDTD method, the existing
one-step leapfrog ADI-FDTD method, the proposed one-step ADI-FDTD method, and the proposed
one-step LOD-FDTD method all are in good agreement. In this situation, Table 2 shows that the
proposed one-step ADI-FDTD method and proposed one-step LOD-FDTD method also take almost
the same time as the existing one-step leapfrog ADI-FDTD method, and all these three methods cost
much less time than the conventional FDTD method. As a result, it can be concluded that the proposed
one-step ADI-FDTD method and proposed one-step LOD-FDTD method both actually and successfully
overcome the CFL stability condition and also have approximately the same computation efficiency as
the existing one-step leapfrog ADI-FDTD method.

4. CONCLUSION

In this paper, two novel one-step absolutely stable FDTD methods including the one-step ADI-FDTD
method and the one-step LOD-FDTD method are proposed. Through several steps of linear operations
separately applied to the original ADI-FDTD method and LOD-FDTD method, an one-step ADI-
FDTD algorithm and an one-step LOD-FDTD method are proposed, and they are both algebraically
equivalent to the original ADI-FDTD method and the original LOD-FDTD method, respectively. The
two proposed methods both eliminate intermediate field components which are necessary in the original
methods and become more concise and simpler one-step algorithms. At the same time, numerical
experiments are carried out and validate that the solutions calculated by the two proposed methods
are in good agreement with those of the conventional FDTD method and the existing one-step leapfrog
ADI-FDTD method, and the computation efficiency of the two proposed methods is very close to that
of the existing one-step leapfrog ADI-FDTD method. The two proposed methods also cost much less
time than the conventional FDTD method for calculation with very thin cells in that the time step sizes
can be selected in a larger domain.
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