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A Simple Approach to Characterize a Buried Object
under the Ground
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Abstract—This study provides an alternative and straightforward approach to determining buried
dielectric objects underground by employing the method of auxiliary sources. In the direct scattering
problem, the Brewster angle is determined, and then the electromagnetic properties of the ground are
determined. Later, the scattered field above the ground due to the buried object is evaluated. The
localization of the buried object is obtained by the continuity of the field components while solving the
inverse problem. The numerical experiments are done, and outcomes of the numerical experiments are
compared with a commercial full-wave computational electromagnetic software. The outcomes reveal
less than 1% deviation between the proposed approach and the commercial tool.

1. INTRODUCTION

For many decades, determining the existence and predicting the physical properties of an object or
obstacle located unreachable or buried region has been one of the triggering desires for electrical
engineers [1–3]. Such problems are called “inverse problems”. Primarily, inverse problems cover imaging,
mining, structuring, detection, analysis, and characterization of materials. Numerous methodologies
are developed, and extensive research is conducted to achieve these two goals. The importance of the
subject is to obtain such information by noninvasive approaches. In general, electromagnetic waves
are employed since the waves can propagate through the media [4]. The reflection and scattering of
the electromagnetic waves from discontinuities and edges lead to obtaining information from the region
of interest. Previously, buried pipe monitoring based on the joint use of finite-difference time-domain
method (FDTD) numerical modeling and linear tomographic inversion methods was investigated [5].
Besides, both two and three-dimensional problems for a buried object under a rough surface were
analyzed by analytical and numerical approaches [6, 7]. In these studies, first, Green’s function of the
corresponding problem was obtained. Then, analytical and numerical analyses were provided. There
are many different analytical and numerical approaches regarding the inverse problem. However, in
the present study, the Method of Auxiliary Sources is employed to investigate the determination of an
object buried underground [4, 8–10]. A two-dimensional ring was investigated previously in [4], and the
comparison was made with analytical outcomes. In [8–10], the localization and physical characterization
of buried objects were analyzed. In [11], Brewster angle approach was included to detect the buried
object. Besides, the buried object under a rough surface was investigated in [2].

The present study addresses how to obtain the physical characteristics of the unknown buried object
underground. To achieve this goal, a practical and novel approach is proposed. The first outcomes of the
corresponding study were presented in [12]. However, [12] has only briefly covered the direct scattering
of the same problem. The main achievement of the present study is to determine the Brewster Angle
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numerically, deduce the dielectric properties of the ground and then localize and characterize the buried
object by a reflected field, including the inverse problem approach in the method of auxiliary sources
(MAS) [9]. In the solution of the problem, there exist two main assumptions. The space is assumed to be
two half-spaces, and the interface is flat. Then, the buried object is considered homogeneous, isotropic,
linear, and simple dielectrics. It is better to summarize the approach before presenting the details.
First, the Brewster angle of the interface is obtained by minimizing the reflected field where there is no
buried object. Later, the characterization of the earth is obtained. Then, for the different frequencies,
the region of interest is investigated. Note that the incident wave is sent from the Brewster angle. The
frequency characteristics of the reflected field differ regarding the shape and physical characteristics of
the object [12]. Finally, the localization of the object is obtained by the inverse scattering approach.
By analytical continuity of the field, the position of the buried object is determined.

The present study first investigates the theoretical background in Section 2, and the numerical
experimental outcomes are presented in Section 3. Then, the conclusion is provided in Section 4.

2. FORMULATION OF THE METHODOLOGY

2.1. Direct Problem

This section covers the mathematical background of the direct problem. In Fig. 1, the geometry of the
problem is given. Surfaces S and S1 stand for the physical interfaces of the layers and buried object,
respectively. The prima notation corresponds to the auxiliary sources. As it is known, the fields in a
different region can be expressed in terms of the corresponding auxiliary sources [12, 13]. Here, Region
I is the free-space; Region II stands for the ground; and finally, Region III corresponds to the buried
object. Auxiliary sources on S′′ represent the field in Region I, whereas auxiliary sources on S′ create the
field in Region II. By shifting the sources, the singularity problem on the actual surface while applying
the boundary condition is eliminated [14]. The same approach is employed in the buried object [15–17].
It should be noted that as the incident field, an H-polarized plane wave is used, and e−iωt is taken into
account for the time convention where ω stands for the angular frequency.

x

y

z

Figure 1. The geometry of the problem.

Shifting is defined by the following parameters: dp and ds for the corresponding interface to
minimize the error. Since the auxiliary surfaces for each region define surfaces shifted from the actual
surface, such parameters (dp and ds) correspond to the shifting of auxiliary surfaces from the physical
interfaces, and they are important for obtaining accurate results. To express field components in three-
dimensional space, a set of two orthogonal Hertzian dipoles are located to represent the scattered
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field on the auxiliary surface. The combined field due to these Hertzian dipoles is given in Eqs. (1)
and (2) [12, 18].
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Here [16, 19],

• E⃗el — Electric field vector of an electric dipole.

• E⃗mag — Electric field vector of the magnetic dipole.

• H⃗el — Magnetic field vector of the electric dipole.

• H⃗mag — Magnetic field vector of the magnetic dipole.

• ε — Permittivity.

• µ — Magnetic permeability.

• R⃗0 — The unit vector from the source point to the observation point.

• R — The distance between the source and the observation point.

• p⃗ — Polarization vector of the dipole.

• × — Cross product

For each region (see Fig. 1), the electric and magnetic fields should be expressed mathematically. In
Eqs. (3) and (4), the fields for Region I are provided.
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Here, N stands for the number of collocation points, and the points are lying on S′′ surface. Note that,
for each point, there are two perpendicularly located Hertzian dipoles.

The fields in Region II are presented as Eqs. (5) and (6), respectively.
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Here, the fields in Region III are given below:
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To obtain unknown coefficients (am, bm, cm, dm, em, fm), the boundary conditions on each surface
should be satisfied as:(
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where τ⃗ stands for the corresponding tangential vector on each physical surface.
Before ending, there are 4[N + N0] unknowns in the system. The boundary conditions given in

Eq. (9) are employed to obtain the unknowns. Then, a matrix system of linear algebraic equations is
achieved. By matrix inversion, the unknown coefficients are determined.

To find the Brewster angle (θB), Eq. (10) is utilized.

tan θB =

√
ϵ2
ϵ1

(10)

Here, ϵ1 and ϵ2 are two different relative permittivities of upper and lower half-spaces, respectively.
Fresnel formula for parallel (H) polarization [20]
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where θi is the incident angle, and θt is the transmitted angle. The incident and transmitted angles are
measured on the z-x plane from the z-axis. As a source of the incident wave, we have a Hertzian dipole
located at the far-zone (100 meters radius from the origin, more than 10 wavelengths is assumed for the
lowest frequency in the investigation as the far-field), and the magnetic field component is in the y-axis.

2.2. Inverse Problem

In this subsection, the theoretical background of the inverse problem is presented. The main advantage
of the proposed method is that it can be employed even when the wavelength is comparable to the size of
the scatterer [21]. To obtain the field expression underground, the property, including the continuation
of the field, is taken into account. The buried object image reconstruction utilizing the reflected field
above the ground is investigated in this part. It should be repeated that the object is a dielectric object
and has its resonance characteristics depending on its physical and electrical properties. In Fig. 2,
the geometry of the inverse problem is presented. Here, dsen and daux are the amounts of the shift
of sensors (receiving antenna system) and auxiliary sources from the corresponding physical surface,
respectively. Below, the yellow region is the reconstruction region of interest. The following formula
gives the reconstructed field distribution on the surface of the auxiliary sources:
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Figure 2. The sensors and the object locations.

It should be highlighted that (−k|r⃗− r⃗′|) in Eq. (12) corresponds to the incoming waves to the sensors
for the reconstruction of the field since the reconstructed field at the auxiliary surface (Saux = daux)
can be modeled as the incoming waves, not the outcoming waves. Due to analytical continuity:

E⃗rec (r⃗) · τ⃗x
∣∣∣
Saux

= E⃗meas (r⃗) · τ⃗x
∣∣∣
Saux

E⃗rec (r⃗) · τ⃗y
∣∣∣
Saux

= E⃗meas (r⃗) · τ⃗y
∣∣∣
Saux

where E⃗meas is obtained by the direct problem given in the previous section.
As noted, Green’s function in Eq. (12) contains the information on the dielectric permittivity of

the corresponding region. In layered media, the following definition of the permittivity expression is
employed to have an approximate (average value) permittivity for the entire space [22]:

ϵreff =
ϵgroundr + 1

2
+

ϵgroundr − 1

2

[
1 + 12

h

W

]− 1
2

(13)

where h is equal to daux, and W is the width of the auxiliary surface. It should be highlighted that this
formula is valid under the condition of W ≫ h.

3. RESULTS OF NUMERICAL EXPERIMENTS

First, to find the Brewster angle between the air and ground with unknown dielectric permittivity, and
the grid search is done between angles 0 and π/2. Obtaining the minimum reflected field gives the
Brewster angle for such problems. Then, automatically, the real part of the relative dielectric constant
is obtained. To determine the Brewster angle, 1GHz is employed as the incidence field. It should be
highlighted that throughout the study, only x-component of the electric field is considered due to having
a TE polarization case. Also, for such problems, generally, linearly polarized antennas are used, and to
be more realistic, one direction of the electric field is considered during direct and inverse problems.

3.1. Direct Problem

In this subsection, the numerical results regarding the direct problem are given. Before representing
the numerical outcomes, it is better to give the parameters and dimensions in Table 1.

In Fig. 3, the amplitude of the ratios of the reflected field and incident field for different values
of conductivity (σ) is presented. (R) is defined as the ratio of the absolute values of the reflected and
incident electric fields. Here, the real value of the relative permittivity of the ground is taken as 4.
Note that the theoretical Brewster angle can be found by Eq. (10), and its value is 63.435 in degree.
However, the proposed methodology obtains the Brewster angle as 62.91 in degree which is used in the
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Table 1. Location, dimensions (meter = m) and physical properties.

Center of Sphere (0, 0,−0.3)m dp ±0.10m

Center of Mine (0, 0,−0.3)m ds ±0.035(sphere), ±0.01(mine)m

Center of Cylinder (0, 0,−0.6)m Height (cylinder) 0.4m

ϵr(sphere) 6 Radii 15 cm (sphere), 8 cm (cylinder)

ϵr(mine) 6
Dimensions

of Mine

0.2m× 0.2m× 0.1m with

a curvature radius at the corners 0.02m

Angle of incidence in degree

Figure 3. The ratio (R) of the absolute values of the reflected and the incident electric field for lossless
(σ = 0) and lossy cases (σ = 0.01) versus incident angle in degree.
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Figure 4. Brewster angle in degree versus the real part of ϵgroundr .

numerical results. By obtaining the Brewster angle accurately, the unknown dielectric permittivity of
the ground can be calculated by Eq. (10). The proposed approach obtains more diminutive than a 5%
deviation from the exact values of the relative permittivity of the unknown ground. If the family of the
graphs including different conductivities of the corresponding ground is calculated, the real value of the
conductivity can be found by comparing previous outcomes.

In Fig. 4, the Brewster angle (θB) investigation for the ground with different relative permittivities
is done. In Fig. 5, the convergence of the field is studied. To speed up the computation, the dimensions
of both half-spaces should be minimized. Therefore, the amplitude of the x-component of the electric
field distributions for different dimensions of the S area is investigated. As it is seen, the total physical
surface S is assumed 7λ× 7λ for the corresponding frequency since the deviation between two solutions
is less than 1%. Therefore, the dimensions in Fig. 5(a) for the S surface are employed throughout the
study. The conductivity (σ) of the buried object and the ground is taken as 0 for the following figures.
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Figure 5. The comparison of the fields for different dimensions of S: (a) 7λ × 7λ, (b) 20λ × 20λ at
1GHz.
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Figure 6. The comparison of the fields with (a) the proposed method and (b) FEKO computational
electromagnetics software at 1GHz.

Frequency in Hz

Figure 7. Frequency characteristics for ϵgroundr = 4, ϵobjectr = 6, θinc = 63◦ (sphere).

In Fig. 6, the comparison of the amplitude of the x-component of the electric field distributions is
provided. The deviation is less than 1%. The deviation comes from the upper-right part of the obstacle.
It should be noted that the proposed approach takes 1 minute to calculate the result, whereas with the
same accuracy, Feldberechnung für körper mit beliebiger oberfläche (FEKO) computes in 30 minutes
(Properties of computer: Intel(R) Core(TM) i7-8700K CPU @ 3.70GHz and installed RAM 32.0GB).

Figures 7–9 present the frequency characteristics of different objects. While obtaining these figures,
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the amplitude of the scattered field at the point (robs = (− sin θB, 0, cos θB)) is drawn for a given
frequency range as it is seen that the characteristics of these three figures are entirely different. When
the buried object is a sphere, the resonances become narrow in a frequency band, and the peaks are
close to each other. On the other hand, for the rectangular mine, the resonances are broad. In Fig. 7,
the resonances characteristics of a cylinder shape are presented where the behavior is entirely different
from the previous ones. This fact leads us to have the ability to distinguish buried objects with different
shapes and dimensions.

In Figs. 10, 11, and 12, the amplitude of Ex is provided. For the lower half-space, the total Ex

is presented, whereas only the reflected field is provided for the upper half-space to distinguish field
characteristics easily when the buried object is in resonance. As can be seen in figures, there exists a

Frequency in Hz

Figure 8. Frequency characteristics for ϵgroundr = 4, ϵobjectr = 6, θinc = 63◦ (rectangular mine).

Frequency in Hz

Figure 9. Frequency characteristics for ϵgroundr = 4, ϵobjectr = 6, θinc = 63◦ (cylinder).
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Figure 10. The amplitude of Ex in when the sphere is in resonance (ϵobjectr = 6, ϵgroundr = 4), (a)
1.019GHz, (b) 1.022GHz.
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noticeable change in the reflected field above the ground when the object is in resonance. Otherwise,
the reflected field is negligible.
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3.2. Inverse Problem

In this subsection, the numerical results regarding the inverse problem are provided. Before representing
the numerical outcomes, it is better to give the parameters and dimensions in Table 2.

Table 2. Location, dimensions (in meter), and physical properties.

dsen 0.1meter daux 0.2meter

Number of Sensors
24× 24

(2× 2meter2 area)
frequencies 1.0, 1.3, 1.7GHz

In Fig. 13, the reconstructed images of the buried object for the different cases are provided. The
results reveal that employing Eq. (13) results in better localization of the reconstructed image. By
Eq. (13), the effective relative permittivity of the regions is found 3.686. In reconstruction, the near
field is obtained by employing Eq. (12) for three frequencies listed in Table 2. Here, only the absolute
value of the x component of the electric field is utilized.
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Figure 13. The reconstructed image of the buried sphere (a) located at (−0.6, 0,−0.5) with ϵeff , (b)

located at (−0.6, 0,−0.5) with ϵgroundr , (c) located at (0, 0,−1) with ϵeff , (d) located at (0, 0,−1) with

ϵgroundr .
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4. CONCLUSION

The main aim is to propose a novel and simple solution to the direct and inverse electromagnetic
scattering by three-dimensional dielectric geometries buried inside the ground. Here, MAS is used
to determine the direct and inverse problems. The plane wave at the Brewster angle between two
media is employed to achieve this goal. Three different geometries are considered, and the resonance
characteristics of these corresponding geometries differ noticeably, leading to the discrimination of the
geometries buried underground. After determining the object’s shape by frequency characteristics, the
inverse problem is solved to find the buried object’s location. Here, effective permittivity is employed
to localize better. The comparison between MAS and commercial program FEKO is utilized. Less than
1% deviation is observed.
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