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Abstract—In this article, two compact Substrate Integrated Waveguide (SIW) bandpass filters based
on Defected Ground Structure (DGS) technology are proposed. Hilbert Cell of second order is the
resonator shape proposed for the DGS of both filters, where the first filter DGS consists of five pairs,
and the second one uses only three pairs. The pair used in the first filter consists of two cells located side
to side whereas they are placed face to face in the second filter. In order to enhance the performance of
the second filter and based on the evanescent-mode technique, three other pairs of first order Hilbert cells
are engraved on the top layer. Both bandpass filters are designed to operate in C band with a measured
bandwidth of 1.8GHz for the first filter and 0.86GHz for the second one. The proposed structures
have the same physical dimensions, which is 38.1mm× 16mm with different measured insertion losses
of −2.5 dB and −2.7 dB. Both structures exhibit an upper stopband rejection with attenuation around
−20 dB and −29 dB, respectively. The filters operate in a transmission bandwidth of [5.5GHz—7.3GHz]
and [5.27GHz–6.13GHz] with a fractional bandwidth (FBW) of 28.1% and 15.09% for the first filter
and the second filter, respectively. A good agreement is reported between the measured and simulated
results.

1. INTRODUCTION

The rapid development of telecommunication systems in recent years has created a competition among
the different companies specialized in this field, and this concurrence is mainly based on the latest
academic researches. Microwave devices design is one of the main areas of interest of researchers, whose
researches are based on reducing components size, minimizing losses, and low cost. In contrast to the
limited performance of traditional stepped impedance microstrip filters, SIW technology offers improved
filter specifications that meet the requirements of modern communication systems [1]. SIW technology
has come to meet these needs, which offers as advantages of the reduction of size, low-cost and high Q-
factor [2]. Based on these advantages, SIW technology has become a candidate in numerous components
design as filter, coupler, diplexer, and antennas [3].

Recently, the appearance of Defected Ground Structure (DGS) Technology has attracted
considerable attention. By etching a lot of forms on the Ground of structure, the frequency response of
devices can be changed. Hilbert form is one of the fractal forms used in DGS [4]. Based on space filling
Peono curve, the German mathematician David Hilbert proposed the Hilbert fractal curve in 1891 [5].
It became one of the most space-filling curves used in many research areas [6]. The fractal Hilbert
curves, for the first time, were explored in antenna geometry by [7]. After that, their applications were
extended for the other components. The advantage of using a Hilbert curve as a resonator is that we
can get diverse responses simply by varying line-to-spacing ratio and the orientation of the curve [8, 9].
To improve the performance of components, Many papers have treated the combination between SIW

Received 25 March 2022, Accepted 2 May 2022, Scheduled 11 May 2022
* Corresponding author: Nabil Cherif (nabil.cherif@univ-mascara.dz).
1 STIC Laboratory, Department of Telecommunications, Abou Bekr Belkaid University, Tlemcen 13000, Algeria. 2 LSTE, Mascara
University, Algeria.



28 El Amine Chaib et al.

and DGS [10, 11]. To ensure a good adaptation between SIW and planar circuits, several types of
transitions have been proposed for this purpose. In our case, we have exploited as transitions: stepped
transition [12] and taper transition, which has been recently proposed in [13].

In this paper, two bandpass filters are proposed. In both designs, the same SIW cavity is used,
but the main difference was focused on the number, type, orientation, and location of Hilbert cells
etched in DGS and also the transitions used to link the SIW with the microstrip circuit. The design
and simulation of the both filters have been done based on CST (Computer Simulation Technology)
software. In order to give a credibility to the proposed designs, both filters have been fabricated and
measured.

The next parts of this article are organized as follows. Section 2 presents SIW theory as well as
an overview of the Hilbert fractal forms employed in DGS for both filters. Section 3 is dedicated to
the detailed description of the filters design followed by a comparison between simulated and measured
results, and the discussions will be addressed in Section 4.

2. SIW THEORY AND HILBERT CURVE OVERVIEW

2.1. The Substrate Integrated Waveguide

SIW structure consists of dielectric material with top and bottom metallic surfaces embedded in it. The
inclusion of two linear arrays of conductor vias connecting the top and bottom of the SIW distinguishes
it from conventional planar waveguides as shown in Figure 1.

In terms of propagation, SIW structures behave like a dielectric-filled waveguide (DFW) [14].

Figure 1. Dielectric filled waveguide (DFW) with SIW configurations.

Each waveguide propagation mode has a cutoff frequency, provided by [15]:
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Taking the dominant mode TE10, we have:
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where c is the velocity of light in free space, and a is the width of DFW. The SIW design is mainly
based on the cylinder diameter (d) and the distance between the vias (p) [16], and both parameters are
conditioned by the following equations [16]:

d = λg/5 (3)

d < p ≤ 2d (4)

where λg is the guided wavelength, defined by:
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SIW design is conditioned by the following relations [17, 18]:

L = Lsiw − d2

0.95p
(6)

a = asiw − d2

0.95p
(7)

Substituting Equation (7) in Equation (2), finally, we get:
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As we have already mentioned in the introduction, both proposed filters used the same SIW Cavity
based on an FR-4 substrate with relative permittivity εr = 4.3. The dimensions selected to design the
SIW cavity are as follows: h = 1.6mm, d = 1mm, p = 1.5mm, Wsiw = 13.38mm, Lsiw = 21.5mm.

2.2. Hilbert Unit Cell Curve

Like every fractal curve, Hilbert curves change from one stage to the next stage based on the iterations of
original geometry (Figure 2). Hence, the geometry of a desired stage can be obtained just by assembling
four copies of the preceding order iteration [19].

(a) (b) (c)

Figure 2. Hilbert Forms generation: (a) first order, (b) second order and (c) third order.

In this paper, we use the first and second orders Hilbert cells. The adequate cells dimensions
depicted in Figure 3 were obtained after optimization on CST.

(a) (b)

Figure 3. The unit cells used in filter design, (a) first order cell and (b) second order cell,
a = b = 0.5mm and l = 3.5mm.
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3. FILTERS DESIGN

3.1. Operating Principle of Proposed Filters

Both proposed filters have been designed to meet the following specifications: C band operating
frequency, passband return loss < −20 dB, passband insertion loss > −3 dB, and stopband rejection
> 20 dB.

Figure 4 illustrates the operating principle of our proposed structures. As known from the
literature [20], SIW structure provides a high pass response filter. On the other hand, a structure
can work as a bandstop filter by etching Hilbert cells on the bottom metal side (GND) [21]. As a final
response, a bandpass response can be achieved just by combining the previous two structures.

Figure 4. Operating principle of proposed pass-band filters.

3.2. First Proposed Filter

Figure 5 shows the schematic of the first filter. It consists of a SIW cavity with five pairs of second
order Hilbert fractal unit cells etched on the bottom metal layer with identical period eh = 1.5mm and
spaced vertically by ev = 2.4mm. In order to get a good adaptation, a stepped impedance transitions
line [12] with optimized dimensions is used to link the SIW with the 50 ohms microstrip line.

(a)

(b)

Figure 5. Schematic of the first proposed filter, (a) top view, (b) bottom view. Wt = 4.2mm,
Lt = 2.21mm, Wm = 3.06mm, and Lm = 6.1mm.



Progress In Electromagnetics Research Letters, Vol. 104, 2022 31

3.3. Second Proposed Filter

In this filter, the same topology of the first filter (Five pairs of 2nd order Hilbert cells) was used but
the cells location were selected to be placed face to face. However, the unsatisfactory result led us to
use only three pairs, but eventually the obtained result of this proposal did not also get much better.
Finally, the result was ameliorated based on the evanescent mode propagation technique [22], which
was applied by engraving three other pairs of first order Hilbert cells on the top layer.

All cells’ placements have been chosen to be face to face and separated horizontally and vertically
by eh = 4.5 and ev = 0.6mm, respectively (Figure 6).

(a)

(b)

Figure 6. Schematic of the second proposed filter, (a) top view, (b) bottom view.

To get an adequate adaptation, a taper of dimension (Lt × Wt) is used to link the SIW circuits
with the 50 microstrip line of dimensions Lm×Wm. The size of this taper has been calculated (Table 1)
based on following Equations (9) and (10) defined in [13]:

Wt = Wm + 0.1547asiw (9)

Lt = 0.2368λg−siw (10)

λg−siw =
λg0√
εreff

(11)

where λg0 is the guided wavelength in free space and εreff the effective permittivity. In each side of the
taper to SIW transition and in order to compensate the reactance effects of this junction [13], we added

Table 1. Dimensions of transition used in second filter.

Parameters Value (mm) Parameters Value (mm)

p1 0.98 Wt 5.13

W1 11.45 Lm 5

Lt 3.55 Wm 3.06
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two symmetric vias which are positioned based on the following equations:

p1 = 0.6567p (12)

W1 = 0.8556asiw (13)

4. RESULTS DISCUSSION

To demonstrate the proposed bandpass filters, both structures were designed and optimized based on
CST software. As a validation of the obtained layouts described above, each prototypes has been
fabricated and tested. Figure 11 illustrates the measurement operation where an Agilent 8719ES vector
network analyzer is used. Photographs of the fabricated filters are presented in Figure 7 and Figure 9,
where their total sizes are 1.32λg × 0.56λg and 1.18λg × 0.49λg, respectively.

The comparisons between the simulated (dashed line) and measured (solid line) results are depicted
in Figure 8 and Figure 10. It is clear that there is a good agreement where both filters exhibit passband.
The small shift in obtained results is due to the inaccuracy of the PCB dielectric constant and the
additional loss of the SMA connector. Both filters present a bandpass behavior of a bandwidth of
1.8GHz and 0.86GHz, with a center frequency of 6.4GHz and 5.7GHz, respectively for the first filter
and second filter. Both structures have measured in-band insertion losses less than 3 dB, and they have
maximum measured in-band return losses around −32 dB and around −33.7 dB for the first and second

(a) (b)

Figure 7. Photograph of first prototype, (a) top view and (b) bottom view.

Figure 8. Simulated and measured results of first filter.
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(a) (b)

Figure 9. Photograph of second prototype, (a) top view and (b) bottom view.

Figure 10. Simulated and measured results of second filter.

Figure 11. Photograph of measurement operation.

cases, respectively. The upper stopband is associated with three TZs located at 7.48GHz, 7.7GHz, and
8.15GHz, respectively for the first filter and only one TZ located at 6.98GHz for the second filter. The
attenuation is greater than 29 dB and 20 dB over a frequency range of [7.4GHz–8.33GHz] and [6.84GHz–
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8GHz] respectively for the first prototype and the second prototype. Based on the measured return
losses mentioned above, the calculated fractional bandwidths (FBWs) are respectively 28.1% and 15.09
%, which means that the first filter works in wide-band range.

Table 2 represents the proposed filters performance compared with some previous SIW works.

Table 2. Results comparison with other references.

Ref Center frequency (GHz) FBW (%) RL (dB) IL (dB) Size λ2
g

[11] 6.7 22.7 34 2.6 0.62

[23] 3.4 25 11.4 1.7 0.45

[24] 3.7 16 18 1.1 1.34

[25] 9.97 14.75 16.7 1.65 1.1

[26] 8.98 47.4 18 11.5 1.18

[27] 6.88 40 16.5 2 1.69

This work (1) 6.4 28.1 32 2.5 0.74

This work (2) 5.7 15.09 33.7 2.7 0.58

5. CONCLUSION

In this paper, we present two novel BPF filters based on hybrid structure of Substrate Integrated
Waveguide (SIW) and Hilbert Defected Ground Structure (HDGS). To connect SIW to microstrip
circuit, a stepped transition and taper transition were used. The two filters have the same size
38.1mm×16mm and operate over bandwidths of 1.8GHz and 860MHz, respectively, which makes them
appealing to the new technology industry that focuses on miniaturization, integration and performance.
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