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Design and Analysis of a Mid-Infrared Ultra-High Sensitive Sensor
Based on Metal-Insulator-Metal Structure and Its Application

for Temperature and Detection of Glucose
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Abstract—In this paper, a compact and highly sensitive refractive index plasmonic sensor, based on
a metal-insulator-metal (MIM) waveguide coupled to double hexagonal ring-shaped resonators in the
mid-infrared range, is proposed and analyzed using the finite-difference time-domain (FDTD) method
embedded in the commercial simulator R-soft, where it has been found that the transmission peaks and
dips positions can be easily manipulated, by simply adjusting the structural parameters of the proposed
design, such as the inner side length and the distance between the centers of the two hexagonal ring
resonators. So, these parameters have a key role in the sensor’s performances, and it is clearly noticed
from the results, where a linear link between the refractive index of the material under testing and its
wavelength resonances was established. Furthermore, the maximum achievable linear sensitivity was
S = 4074 nm/RIU, with a matching sensing resolution of 2.45× 10−6RIU; the temperature sensitivity
is around 1.55 nm/◦C; and the highest linear sensitivity is S = 3910 nm/RIU in 0–200 g/L glucose
concentration, making this proposed sensor an attractive one, to be implemented in high-performance
nano and bio-sensing devices.

1. INTRODUCTION

Classical optical sensing systems, when it comes to the implementation in a compact, miniaturized, and
highly integrable environment, and they are not a feasible solution, because photonic devices are larger
in size than their electrical counterpart, because of the diffraction limit of the light. This led to a quest
for a more practical alternative method, therefore plasmonic sensor structures [1].

Plasmonic based structures have been extensively employed to circumvent this discomfort, due to
their unique capabilities in light directing and management below the diffraction limit, and attributing
to the employment of surface plasmon polariton (SPP).

The influence of an input electromagnetic field in a continuous dielectric media frees electrons in
metal, generating an exciting SPP based wave, with a focused energy in nanoscale scale, consequently,
circumventing the optical diffraction limit problem [2].

Sensors, filters, lasers, and many other devices have been proposed using the SPP phenomena,
such as the proposed sensor in [3], where the authors proposed a Si nano-ring located inside a circular
cavity, acting both as an optical sensor and a notch filter, and as for the authors of [4], they have
used a graphene nanoribbon material on a Fabry-Perot resonator (FPR) sensor to enable mid-infrared
applications. In [5], the authors proposed a fast-tunable filter on a curved graphene surface by means of
a plasmonic guided wave resonance, and many more other optical devices were also designed and based
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on the SPP phenomena, such as the couplers in [6], the photo detector in [7], and the optical switches
in [8], in addition to the logical gates in [9, 10], and the perfect plasmonic absorbers in [11] and [12].

Mid-infrared region (MIR) is recently attracting great attention due to the wide range applications.
These applications include; thermal imaging, industrial applications, infrared spectroscopy, health-
related fields, chemical and biological sensing [13, 14]. The importance of this spectral region arises
from the fact that many chemical and biological molecules have their characteristic absorption within
this region [15]. Optical detection of molecules is based on intensity or wavelength change due to
change in the real or imaginary part of the analyte refractive index [16]. Both imaginary and real
parts of the refractive index, of the molecules under detection, exhibit a peak around its characteristic
absorption wavelength, hence amplifying the effect that is detected by the optical device. This fact
makes mid-infrared region a suitable range for biomolecular and gas detection with high sensitivity.

However, most of the presented plasmonic structures are based on silver which has significant
constraints in the MIR band due to the lack of SPP confinement to the silver surface in the MIR [17].

Metal-insulator-metal (MIM) waveguides are one of the most basic plasmonic waveguide structures,
where light is confined within a considerable propagating space. This attracted the attention of
many researchers, and they have been employed in numerous applications. MIM based plasmonic
sensors and filters are one of the most innovating devices in optical circuits and have been investigated
numerically and experimentally, such as the nanodisk resonators [18], tooth-shaped waveguide [1], the
ring resonators [19], and the racetrack resonators [20].

Although there have been a lot of studies on different plasmonic MIM waveguides, the interactions
of incident MIR waves with tunable MIM waveguides have been less researched. The MIR spectrum
contains wavelengths spanning from 2 to 20µm, reflecting the molecular fingerprint zone, and
prospective MIR applications have been extensively described in various studies. In particular,
plasmonic MIM waveguide sensors are essential for an air transparent window of the MIR spectrum from
2 to 12µm [21]. Therefore, there are still many efforts in this subject that need to be undertaken [22, 23].

Sensitivity is one of the most significant components in analyzing the performance of a sensor,
where it is vital to have a better sensitivity by simply using various geometrical topologies. In addition
to that, the resonance wavelengths can be adjusted according to the geometrical modifications of the
ring resonator-based design, such as the one proposed here.

In this work, a double intersected hexagonal shaped ring resonator coupled to a metal-insulator-
metal based waveguide is proposed as a refractive index nano-sensor. It is simulated and analyzed
using the finite-difference time-domain (FDTD) method, where the perfectly matched layer (PML)
boundary condition is imposed. Structural parameters were varied to study their effects on the sensor’s
performance, such as the distance between the center of the two intersected hexagonal ring resonators
and their inner side length, and the results are shown in the last section with their corresponding
discussions, followed by a conclusion on the matter at hand.

2. THE STRUCTURE AND THEORETICAL ANALYSIS

The proposed MIM based plasmonic sensing structure is composed of two identical and intersected
hexagonal rings with a slit, as shown in Fig. 1, where all structural parameters are illustrated accordingly,
i.e., the spacing between the hexagonal shaped ring resonator and the waveguide, the width of this latter,
the height between the two ring centers, and the distance separating the two ring centers, which are g,
w, H, and D, respectively, alongside the inner and outer side lengths L2 and L1.

Fixing the waveguide’s width to 50 nm leads to the (TM) being the only excited mode in the MIM
based waveguide [3]. The dielectric material and silver layer are represented in our structure by the
white and gray areas, respectively.

The silver’s frequency dependent dielectric constant is expressed by Lorentz-Drude model as
follows [24]:

εm(ω) = ε∞ −
ω2
p

ω(ω + iγ)
(1)

where ε∞ = 3.7 is the dielectric constant at the infinite angular frequency; (ωp = 1.38 × 1016 rad/s) is
the bulk plasma frequency; γ is the electron collision frequency (γ = 2.73 × 1013 rad/s); and ω is the
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Figure 1. The schematic diagram of the proposed MIM based plasmonic structure.

incident wave’s angular frequency in vacuum [25].
Since the incident light of the SPP mode excitation is of a TM-polarized nature, the magnetic field

in our simulation process is set to be parallel to the y axis [12].
A single hexagonal shaped plasmonic based cavity’s resonance wavelength can be approximately

obtained using the following [26]:

λm =
Re(neff )× (6Leff )

m− φ2π
, (2)

where Leff and Re(neff ) are the hexagonal cavity’s effective side lengths and the real part of the effective
refraction index, respectively, andm is a positive integer which represents the standing SPP wave’s order
in the cavity; φ denotes the total phase shift in the corners of the hexagonal cavity.

By using the FDTD method embedded in the commercial simulator R-soft [27], where the Perfectly
Matched Layers (PML) condition is applied as the absorbing boundary of the outgoing waves, our
proposed structure is then simulated, and its transmission characteristics are analyzed, by taking into
account the grid size of ∆x = ∆z = 3nm, in both the x and z directions. The transmitted input type
was a TM polarized continuous Gaussian modulated wave and was collected at the other end of the
waveguide. It is defined as T = Pout/Pin, where Pin and Pout are the incident and transmitted powers,
observed at the two positions A and B, respectively.

One of the most important aspects and parameters that describes how well a surface plasmon
resonance (SPR) based sensor performs is sensitivity (S). It is defined as ∆λ/∆n (nanometer per
refractive index (nm/RIU)), where ∆λ is the shifting rate of the transmittance peak’s resonant
wavelength, while ∆n denotes the refraction index’s changing rate in the plasmonic based sensing
structure [19].

The structural parameters of the proposed design under simulation, are set to L1 = 200 nm,
L2 = 120 nm, g = 10nm, and D = 100 nm, respectively. For initial calculations, the height between the
hexagonal centers is taken as zero.

3. NUMERICAL RESULTS AND DISCUSSION

First, the transmission spectra and their corresponding resonance dips are simulated with the refractive
index n set to be 1, and the results are depicted in Fig. 2(a), where it is noticed that the transmission
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(a) (b)

Figure 2. (a) The transmission spectra and the magnetic filed Hy patterns of the MIM plasmonic
structure with single hexagonal and with double hexagonal ring with n = 1, L1 = 200 nm, L2 = 120 nm,
g = 10nm and D = 100 nm.

dip of the structure with the double hexagonal rings occurred at the resonance wavelength of 1.5989µm,
whereas in the case of the single hexagonal ring resonator, it occurred at 1.3317µm, and their
corresponding transmission levels were 98.5% and 86%, respectively. So, a red shift occurs in the
structure with the double hexagonal shaped rings, alongside an improvement of 15% in the device’s
transmission.

Figure 2(b) depicts the magnetic field distribution patterns for both structures with single and
double hexagonal ring resonator, where it is clearly noticed that the EM waves are transmitted
and collected from both ends of the waveguide, when the operating wavelength is different from the
resonator’s one, as illustrated in mode off-resonance, where the operating wavelength was set to 1µm.
On the other hand, in the case when the operating wavelength and the resonator’s one are the same
(1.5989µm), most of the energy is not transmitted as illustrated in mode on-resonance, due to the
coupling between the double intersected hexagonal ring resonator and the waveguide, which prohibited
the waves from transmitting to the other end, hence the sensors operation principle.

Same observations were noted from the obtained results for the proposed single hexagonal ring
resonator structure, at 1µm and 1.3317µm of the resonance wavelength as illustrated in mode off-
resonance and on-resonance, respectively.

Next, the refractive index n is varied from 1 to 1.2 in a step of 0.05, and the corresponding
transmission spectra of both MIM based plasmonic waveguides coupled to double hexagonal ring
resonator are illustrated in Fig. 3. It is clearly noticed that by increasing the refractive index n, a
red-shift of resonance wavelength occurs (See Fig. 3(a)). This red-shift phenomenon is induced by the
proportional relation between the Re(neff ) and the wavelength λm, according to Eq. (2). The change
in the resonant wavelength is produced by the refractive index shift ∆n. From Fig. 3(b) we can see the
linearity maintained relation between the resonance wavelengths of MIM based plasmonic waveguides
(single and double hexagonal ring resonator) and the refractive indices. Also, to observe the influence
of the refraction index on the design’s sensitivity, all other structural parameters were maintained, and
the refraction index n was adjusted from 1 to 1.2. As a consequence, the sensitivity was roughly 1700
and 1280 nm/RIU for the double hexagonal ring resonator structure and single hexagonal ring one,
respectively. So, it is readily observed that the double hexagonal ring shape exhibited an improvement
in the device’s sensitivity by 33 percent.

By controlling the lateral coupling in the waveguide and resonator interface, one can improve the



Progress In Electromagnetics Research M, Vol. 112, 2022 85

(a) (b)

Figure 3. (a) The transmission spectrum of the MIM waveguides coupled with double hexagonal ring
for different refractive index n, (b) the resonance wavelength versus the refractive index n of the material
under sensing.

coupling strength. Double intersected hexagonal ring-shaped resonators with a long length of interaction
along the entire flat sidewalls of the resonator compared by single hexagonal are of high important effect.
Therefore, they can facilitate the tight constraint on the gap separation between the resonator and the
side-coupled waveguide effectively which makes sensing operation applicable.

To mimic the real characteristics of the proposed sensor, the refractive index of the glucose solution
is described as [28]:

n = 0.00011889C + 1.33230545 (3)

where C is the glucose content (g/L), and n is the refractive index of the glucose solution.
In order to investigate the relationship between the transmission spectrum and glucose

concentration, using a sample with a concentration range of 0–200 g/L is considered in the resonator
hexagonal ring. The resonance wavelength of the spectrum varies as the refractive index of the glucose
solution in the sensor structure changes. Fig. 4(a) depicts the shift in the biosensor transmission
spectrum for glucose concentrations ranging from 0 to 200 g/L. Fig. 4(a) shows that for every 50 g/L
increase in glucose concentration, a 9.34 nm shift in the output resonance wavelength is estimated. The
simulation results also reveal that the biosensor sensitivity for the sample with a glucose concentration
in the range 0–200 g/L is equivalent to S = 1670 nm/RIU, which is consistent with the refractive index
range of the sample: 1.3323–1.3561.

According to Fig. 4(b), this biosensor also exhibits a linear proportion with an increase in the
glucose concentration range 0–200 g/L, suggesting that it might be utilized as a self-calibration sensor
to determine various glucose concentrations.

The designed device is also appropriate to be used as a nanoscale temperature sensor, with a
temperature adjustment method. A liquid, ethanol, with a high RI temperature coefficient (i.e.,
dn/dT = 3.9410−4) can be injected into double hexagon-shaped rings cavities to act as a temperature
sensor. Ethanol’s RI can be defined as [29]:

n = 1.36048− 3.94× 10−4(T − T0) (4)

Here T0 (room temperature) is tuned to 20◦C [29], and T is the ambient temperature ranging from
−100 to 60 degrees Celsius with a 40◦C degree step. The linear relation between n and T is shown
in Eq. (4). The temperature sensor’s sensitivity is specified as ST = ∆n/∆T . Fig. 5(a) illustrates the
transmittance spectrum of the proposed MIM plasmonic waveguide at various ambient temperatures
(T ), with the other parameters remaining unchanged from Fig. 2.
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(a) (b)

Figure 4. (a) The transmission spectrum of the plasmonic sensor versus wavelength for different value
of the glucose concentration at L1 = 200 nm, L2 = 120 nm, g = 10nm and D = 100 nm. (b) The
resonance wavelength versus the glucose concentration.

(a) (b)

Figure 5. (a) The transmission spectrum of the plasmonic sensor versus wavelength for different
value of temperature at L1 = 200 nm, L2 = 120 nm, g = 10nm and D = 100 nm. (b) The resonance
wavelength versus the temperature.

The peak shifts to shorter wavelengths (i.e., blueshift) when the temperature is raised from −100◦C
to 60◦C (in 40◦C increments), as seen in Fig. 5(a). However, Fig. 5(b) shows a linear relationship
between the positions of transmittance dips and temperature fluctuations. Furthermore, the sensor’s
temperature sensitivity can be calculated to be 0.685 nm/◦C.

Furthermore, we will calculate and optimize the design’s transmission and sensitivity by modifying
the geometrical properties. First, the height H between the two hexagonal ring centers is investigated.
The value of H fluctuates from 0 to 75 nm at 25 nm intervals, while the other parameters stay constant
at D = 100 nm, g = 10nm, L2 = 120 nm, L1 = 200 nm, and n = 1.

The greatest transmittance at the peak is influenced by the coupling intensity, which is regulated
by the gap size g, as the peak resonance is formed by the coupling between the MIM waveguide and the
plasmonic hexagonal cavity resonator. According to Fig. 6, the maximum transmittance at the peak
improves as the height H lowers. As the height H decreases, the peak wavelength displays a minor red
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(a) (b)

Figure 6. Transmission spectra of the MIM waveguides coupled with double hexagonal ring cavities
with changing H (n = 1, L1 = 200 nm, L2 = 120 nm, g = 10nm and D = 100 nm). The Hy field
distribution is shown at the resonant peak for H = 75nm and H = 0nm.

(a) (b)

Figure 7. (a) Transmission spectra of index 1 for L2 varying from 110 to 170 nm. (b) The resonance
wavelengths versus the refractive index for different L2.

shift, which may be induced by a change in the effective index of the local SPP mode in the coupling
zone. Fig. 6 displays the magnetic field distribution at the resonant peak for H = 0nm and H = 75nm.

Secondly, in order to explore the influence of the inner side length on the sensor’s performances, L2

is altered from 110 to 170 nm in a step of 10 nm and displayed in Fig. 7. It can be shown that increasing
L2 causes an increase in resonance wavelength, i.e., a shift in resonance wavelength (see Fig. 7(a)),
which can be described by Eq. (2): as L2 grows, the propagation length of SPPs in the resonance cavity
increases, causing the value of the resonant peak to increase. Also, it is seen that the linearity between
the resonance wavelengths and the refractive indices is maintained, despite the variations in the value
of L2 as depicted in Fig. 7(b). More crucially, the bigger the value of L2 (110 nm to 170 nm) is, the
higher the sensor’s sensitivity is, where the highest achievable one was at L2 = 170 nm with a value of
2636 nm/RIU, i.e., a sensing resolution of 3.79 × 10−6RIU, compared to a sensitivity of 1592 nm/RIU
when L2 was 110 nm. L2 is set to the best obtained value of 170 nm for the next performance analysis.

Third, the effect of distance D on the MIM-based sensor is investigated by altering D from 100
to 250 nm in 50 nm increments with a refractive index n = 1. The corresponding transmission spectra
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(a) (b)

Figure 8. (a) Transmission spectra of index 1 for D varying from 100 to 250 nm. (b) The resonance
wavelengths versus the refractive index for different D.

(a) (b)

Figure 9. (a) The resonance wavelength versus the glucose concentration. (b) The resonance
wavelength versus the temperature (L1 = 200 nm, L2 = 170 nm, g = 10nm, H = 0nm andD = 250 nm).
The Hy field distribution is shown at the resonant peak for C = 200 g/L and T = 60◦.

are displayed in Fig. 8(a), where it is evident that increasing the value of D induces a red shift in the
resonance wavelength (we obtain three peaks in the MIR). The linearity between the wavelength and
the refractive indices is maintained even when the value D is raised, as illustrated in Fig. 8(b).

Furthermore, the greater the value of D (from 100 to 250 nm) is, the better the sensor’s sensitivity
is, with the largest attainable sensitivity being 4074 nm/RIU, i.e., sensing resolution of 2.45×10−6RIU,
for D = 250 nm, compared to a sensitivity of 2636 nm/RIU for D = 100 nm.

Figure 9(a) illustrates a linear connection between the resonant wavelength peak and temperature
fluctuations in the MIR. Additionally, the sensor’s temperature sensitivity may be calculated to be
1.55 nm/◦C. Fig. 9(b) indicates that this sensor has a linear relation with an increase in the glucose
concentration range 0–200 g/L in the MIR band. Furthermore, the biosensor’s sensitivity may be
calculated as 3910 nm/RIU.

To emphasize the overall performance of our proposed structure, Table 1 compares the sensitivity
(S) of several proven MIM plasmonic sensors in the published articles to ours.

Furthermore, we can use the previous articles to confirm that our proposed structure can be easily
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Table 1. Sensitivity comparison of different sensor structures.

Reference/Application
Sensitivity

S (nm/RIU) and ST (nm/◦C)
year

[30]/Temperature S = 1326 and ST = 0.53 2017

[31]/Temperature S = 2320 and ST = 0.84 2017

[32]/Temperature S = 1556 and ST = 0.61 2020

[33]/Glucose S = 1070 2020

[34]/Glucose S = 1948.67 2020

[31]/Glucose S = 2162 2021

[35]/Glucose S = 1500 2021

[32]/Temperature S = 2625.8 and ST = 1.04 2021

In this work: Main design

For the Glucose

For the temperature

S = 4074

S = 3910

ST = 1.55

2022

manufactured in practice, and this design combines a simple design and rapid fabrication process. The
parameters of the proposed sensor have been chosen considering 10 nm precision offered by the NIL
(nanoimprint lithography) fabrication technique, which is less costly and capable of providing higher
throughput than any other lithographic fabrication techniques such as EBL (electron beam lithography)
and FIB (focused ion beam) [36]. The NIL method prints silver patterns on silicon wafer [37], then
removes residual resin using O2 plasma etching [38]. Using the electron beam, evaporation coats the
silver layer upon the silicon wafer; next, the resin imprints will be removed, and cavities are formed in
the lift-of process [39].

4. CONCLUSIONS

In this study, a highly sensitive refractive index sensor based on a MIM plasmonic device with
intersecting double hexagonal shaped ring resonator, simulated and analyzed using the finite-difference
time-domain (FDTD) approach included in the commercial simulator R-soft, is provided. The locations
of the transmission peaks and dips may be adjusted by simply modifying both the inner side length
and the distance between the centers of the double crossed hexagonal ring resonators. Moreover, these
transmission peaks have a linear connection with the refractive index. Furthermore, our suggested MIM-
based sensor has a superior sensitivity performance of S = 4074 nm/RIU, temperature sensitivity around
1.55 nm/◦C, and optimum linear sensitivity of S = 3910 nm/RIU in 0–200 g/L glucose concentration,
making it an appealing and potentially extremely sensitive refractive index-based nano-sensor.
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