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Study on the Propagation Characteristics of Gold-Silver Hybrid
Chain Nanostructures
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Abstract—In this paper, the transport characteristics of gold/silver mixed chain nanostructures with
different proportions of infinite length in the range of 270–810 nm are studied, and the corresponding
band gap characteristics and other transport characteristics are analyzed. We introduced an analytical
model to determine the complex dielectric constant of an arbitrary composition Au-Ag alloy, and
combined this with the experimental data to study the propagation characteristics of the infinite-
length gold-silver mixed-chain nanostructures with various compositions. As the gold content exceeds
Au : Ag (1 : 2), the coupling coefficient between the forward and reverse waves becomes smaller, and
the reverse wave cannot provide enough energy to transfer to the forward wave. The scattering ability
of the scattering unit weakens; the frequency range of the propagation state widens; and it exhibits
good propagation characteristics. By gradually increasing the proportion of metal in the alloy, we
can explore the variation of the propagation characteristics of the alloy. At present, the change of
metal propagation characteristics has not been studied from this point, so we found for the first time
that frequency modulation can be realized through this method (regulating the attenuation or cutoff
frequency range, namely the band gap range). We also studied a cylindrical finite array chain composed
of 40 nanorods under five types of experimental data and discussed the wave guiding ability of the finite
array chain under the excitation of a plane wave of a specific wavelength.

1. INTRODUCTION

Photonic crystals are man-made periodic dielectric structures with photonic band-gap (PBG)
characteristics. In Twersky’s pioneering work published in 1960 [1], he proposed the scattering problem
related to infinite gratings of equidistant cylinders through a Fourier series expansion method; in 2002,
Krenn et al. proposed the maintenance of collective electronic oscillations. It was thus established that
metal nanowires can be used as optical waveguides [2]. In recent years, researchers have made significant
efforts toward developing new structures comprising multilayer arrays based on the periodic distribution
of photonic crystals. In 2018, Zhang and Zhu increased the phase constant and attenuation constant
related to the forward propagation leaky mode, back-propagation leaky mode, and guided mode, and
conducted in-depth investigations [3]. The shape of the air hole etched in the photonic crystal waveguide
plays a vital role in energy transmission and efficiency. Stronger guided mode interactions can extract
low-order modes and improve the efficacy for extracting high-order modes [4]. If electrons propagate
in the periodic potential field, the generated electron waves will be scattered according to Bragg’s law
concerning the periodic potential field; this process generates a unique band structure [5–11]. Gold and
silver are common research objects in studies regarding metal photonic crystals. In particular, silver
has strong surface plasmon resonance characteristics. It has been determined that the propagation
characteristics of silver nanorod arrays exhibit single-frequency and multi-mode phenomena, which can
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be used for multi-mode communication [12]. Analyzing the propagation distribution reveals that the
state distribution corresponding to distinct frequency bands has guiding significance for the production
of various functional devices. Additionally, gold has high chemical stability and can significantly enhance
the surface Raman scattering of photonic crystals; however, gold is expensive and exhibits relatively
weak surface plasmon resonance [13]. The gold-silver alloy nanostructure embodies strong scattering
characteristics, which strengthens the Fano resonance signal of the alloy waveguide coupled photonic
crystal relative to that of the pure gold structure. The extinction spectrum of gold and silver alloy
structure varies more with the refractive index of environment than that of pure gold, and change is
more sensitive [14, 15]. From a structural perspective, a single-stranded waveguide contains a finite or
infinite number of coupled nanoparticles arranged at equal distances within an array. Light propagates
along the chain of particles due to near-field interactions between nanoparticles. If different frequencies
are selected in the distinct Bragg periods of a single structure, the light propagation direction and energy
direction are directly proportional and opposite [11]. Because the photonic crystal forbidden band can
allow qualified light waves to pass, its forbidden properties can be exploited to design and manufacture
photonic crystal filters [16, 17], low-threshold lasers [18–21], and other devices. In particular, the
reflectance and transmittance of the filter are related to the number, dielectric constant, and size of the
defective rods, and the phenomenon of transmission resonance has emerged in some cases [22].

The present work investigates the complex propagation characteristics of infinitely-long pure silver,
gold-silver alloy (with various Au : Ag ratios), and pure gold chain nanostructures in the wavelength
range of 270–810 nm. We compare the permittivity of Johnson experimental data with that of Rioux
experimental data to evaluate four groups of single-mode transmission generalized multipole technology,
Fourier Series Expansion Method (FSEM), and finite time domain difference technology results. The
comparative results indicated that the results were generally consistent. The complex propagation
characteristics of Au : Ag (1 : 2), Au : Ag (2 : 1), and pure Au chain nanostructures were also evaluated,
and an analytical model was introduced to determine the complex permittivity of any Au-Ag alloy
composition [23]. Because the gold content does not increase to Au : Ag (1 : 2), the propagation
frequency range of the alloy structure is lower than that of the plasma structure composed of silver
nanorods array, and the attenuation and cutoff frequency range are wider. As the gold content exceeds
Au : Ag (1 : 2), the coupling coefficient between the forward and reverse waves is reduced, and the
reverse direction cannot provide enough energy to transfer to the forward wave. Thus, the scattering
ability of the scattering unit weakens; the frequency range of the propagation state widens; and it
exhibits good propagation characteristics. By gradually increasing the proportion of metal in the alloy,
we can explore the variation of the propagation characteristics of the alloy. At present, the change
of metal propagation characteristics has not been studied from this point, so we found for the first
time that frequency modulation can be realized through this method (regulating the attenuation or
cutoff frequency range, namely the band gap range). Our study shows that the band gap range can
be adjusted by increasing and decreasing the proportion of gold in the au-ag alloy by adjusting the
attenuation frequency range and cutoff frequency.

We also studied a finite array chain composed of 40 nanorods under five types of experimental data
and discuss the wave guiding ability of the finite array chain under the excitation of a plane wave of a
specific wavelength. By evaluating the properties of waveguides at specific wavelengths, various stages
can be applied to different devices.

2. STATEMENT OF THE PROBLEM

In this section, we will introduce the specific application of Fourier Series Expansion Method (FSEM)
in this study. The two-dimensional infinite periodic chain consists of cylinders arranged periodically
along the x-axis, with a lattice constant h (Fig. 1). Each column is evenly spaced and made of gold and
silver alloy, and the rest of the blank space is air. In the z direction, the scattering element cylinders
are infinitely long and distributed parallel to each other.

We assume that a cylinder with a bottom radius of r is a pure dielectric, with a dielectric constant of
ε. An array with this structure repeats the same configuration along the y-direction, assuming that the
period is Λ, and then the cells in the array with 0 ≤ y ≤ Λ are used to approximate the initial structure.
Suppose that we guide the propagation of waves. For clarity and simplicity, herein we omit the details
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Figure 1. An infinite periodic chain of annular rods along the x-axis, with a lattice constant h. The
radius and dielectric constant of the rod are r and ε, respectively.

of the formulation and direct interested readers to our group’s previous work [24, 25] for further details.
Surface plasmons occur at the metal-medium interface, and they are collectively vibrated by a large
number of free electrons excited only by H (the magnetic field component perpendicular to the cross-
section of the nanowire) [26]. First, we describe the core content of the formulation. For H waves,
Maxwell’s equation is given as follows,

G (y)
∂H ′

∂y
= ik0ε (y)Ex, (1)

−∂H ′
z

∂x
= ik0ε (y)Ey = ik0

Dy

ε0
(2)

∂Ey

∂x
−G (y)

∂Ex

∂y
= −ik0H

′, (3)

Dy = ε0ε (y)Ey. (4)

where H ′=(µ0/ε0)
1/2Hz; G(y)=[1+iσ(y)]−1 is the stretch coordinate variable [27], which represents the

hypothetical perfect matching layer (PML); σ(y)=σmax(1 − y/ω)d is the conductivity function. In the
virtual period of the propagation field, the electric and magnetic fields are approximated as truncated
Fourier series, as shown in Eqs. (5)–(8),

H ′(x, y) =

M∑
m=−M

hz,m (x)eiφmy, (5)

Ex(x, y) =

M∑
m=−M

ex,m (x)eiφmy, (6)

Ey(x, y) =
M∑

m=−M

ey,m (x)eiφmy, (7)

Dy(x, y) =

M∑
m=−M

dy,m (x)eiφmy. (8)

where Dy is the electric displacement vector, and φm= 2πm/Λ. Next, Eq. (2) is substituted into Eq. (1),
to perform calculations according to the orthogonal property of a Fourier basis. Some H modes have
characteristics of the field component (Hz, Ex, Ey), and we set Hz as the dominant field. There is a
problem of discontinuity in the electric field perpendicular to the boundary of the core and cladding. To
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solve this problem, we refer to Li’s decomposition rule [28] and expand the field of Ey via Fourier series.
This enables the derivation of a set of linear equations to determine the Fourier coefficients {hz,m(x)}
and {ey,m(x)},

∂2

∂x2
hz (x) = −k0G·hz (x) , (9)

ey (x) = −i
1

k0
N̂ · ∂

∂x
hz (x) , (10)

hz (x) = [hz,−M . . . hz,0 . . . hz,M ]T (11)

ey (x) = [ey,−M . . . ey,0 . . . ey,M ]T (12)

G = N̂−1
(
1− V AN−1V A

)
, (13)

[N ]mm′ =
1

Λ

∫ Λ

0
ε (y)e−i(φm−φm′ )ydy, (14)[

N̂
]
mm′

=
1

Λ

∫ Λ

0

1

ε (y)
e−i(φm−φm′ )ydy, (15)

[V ]mm′ =
1

Λ

∫ Λ

0
ν (y)e−i(φm−φm′ )ydy, (16)

[A]mm′ =
ϕm

k0
δmm′ . (17)

where δmm′ is the Kronecker delta; the superscript T indicates the transpose of the vector; k0 is the
wave number in free space; ε(y) is the dielectric constant along the y-axis in a period of 0 ≤ y ≤ Λ.
ν(y) = 1/[1+ iσ(y)] represents the tensile coordinate variable PML parameter related to the coordinate
system. The eigenvalue kn=ξn (n = 1, 2, 3, . . . , 2M + 1) of the matrix G determines the propagation
constant ξn and the guided mode in the hypothetical waveguide. The characteristic vector Pn determines
the field distribution of the radiation pattern. The solutions of Eqs. (8) and (9) are given as follows,[

hz (x)
ey (x)

]
= FHu

(
x− x′

)
· a
(
x′
)
, (18)

FH =

[
P P

N̂PB −N̂PB

]
, (19)

u (x) =

[
u(+) (x) 0

0 u(−) (x)

]
, (20)

P = [p1 p2 . . . p(2M + 1)], (21)

u(±) (x) = [exp (±ik0ξnx) δnn′ ], (22)

B = [ξnδmm′ ], (23)

a (x) =
[
a(+)(x) a(−)(x)

]
, (24)

a± (x) = [a±1 (x) a±2 (x) . . . a±2M (x) a±2M+1]. (25)

where an(x) represents the amplitude of the n-th order mode of the forward and backward waves. The

u(x), P , and a(±)(x) terms are rearranged in the order of guidance and radiation patterns, with Re[ξn]
decreasing.

Then, as shown in Fig. 2, each cylinder is subdivided into 20 parallel rectangular columns, and the
scattering elements of the x-direction periodic chain are replaced by cascades of layered parallel planar
waveguides [25].

To compute each section of the waveguide, the solutions of Eqs. (1)–(8) are obtained by using
Eqs. (18)–(25). We equalize the Fourier coefficients on both sides of the section, so that Hz and Ey

meet the boundary conditions at each step discontinuity. This causes the scattering matrix Sj to adopt
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Figure 2. Discrete round rods with a sufficient number of thin, parallel, rectangular rods.

the following relationship at the interface x=xj :[
a
(−)
j−1(xj − 0)

a
(+)
j (xj + 0)

]
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]
(27)

The method used to define the scattering matrix Sj+1 at x=xj+1 is the same as that shown in Eq. (25).
In addition, we must consider the modal propagation at a distance xj+1−xj , as follows,
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u
(+)
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where I is the identity matrix; u(+)(x) is defined by Eq. (22). The recursive relation of scattering
matrix of waveguide at each discontinuous point can be expressed by Eqs. (29)–(31). When the light is
constantly changing in the propagation process of the waveguide, the transition section is approximately
a large number of step discontinuities. If it exists along the waveguide at x=xj (j = 1, 2, . . . , N), the
(N −1) times recursive process will make the generalized scattering matrix SN [25] of the entire system
as: [

a
(−)
1 (x1 − 0)

a
(+)
N (xN + 0)

]
= SN

[
a
(+)
1 (x1 − 0)

a
(−)
N (xN + 0)

]
. (35)
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In each period h, we calculate the generalized scattering matrix in the x-direction according to the
relationship in Eq. (35), where N represents the number of small rectangles in the cell. According to
the calculated results, a transition matrix K conforming to the following relationship [25] is obtained:[

a+ (h)
a− (h)

]
= KN

[
a+ (0)
a− (0)

]
. (36)

Therefore, the propagation constant γk=βk+iαk of the k-th mode is determined by Eq. (37),

γk = −i logχk/h. (37)

where the k-th eigenvalue of the transfer matrix KN is χK . According to Floquet’s theorem, the
propagation constant βK of the k-th guided mode can be determined by the following relationship:

χk = exp(iβkh). (38)

3. RESULTS AND DISCUSSION

This section first compares the complex propagation constant curve trends of the four methods and
discusses the characteristics of the four results. The four methods are: FSEM method from Johnson
experimental data FSEM(J), FSEM method from Rioux experimental data FSEM(R), finite difference
time domain method FDTD(R) from Rioux experimental data, and generalized multipole technology
GMT(J) from Johnson experimental data [23]. The end results are similar.

This paper mainly uses FDTD method (blue line) to verify. However, FDTD method is not accurate
enough in calculating the complex propagation constant of the structure, so the results are consistent
with FSEM method only in the first half. (FDTD method is used to study the complex propagation
constant of gold and silver alloy chain structure, and the research results are only consistent with FSEM
method in the first half.) The results can still prove the effectiveness of Rioux experimental data and
the FSEM. The radius of the metal circle of the scattering unit is 25 nm, and the period length h is
55 nm. We assume that the period Λ is 60 h, the cut-off number M = 150; the number of parallel thin
rectangles in each cell is 20; the thickness of the PML = h, and d = 2.1. The wavelength range of the
experimental data was 270–810 nm, and the results are presented in Fig. 3.

According to Fig. 3, the results obtained using the two sets of experimental data are very
similar. Ag(FSEM)(J) represents the experimental results concerning the permittivity of the Johnson
experimental data, and Ag(FSEM)(R) represents the results from investigating the permittivity of

(a) (b)

Figure 3. Analysis of the phase constant and attenuation constant of the infinitely-long silver nanorod
array with r = 25nm, h = 55nm. The figure shows the dielectric functions: (a) phase constant; (b)
attenuation constant.
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the Rioux experimental data. It is evident that the phase constant and attenuation constant change
suddenly at the frequencies of 0.11 and 0.166. The first abrupt change was caused by a multimode
band. The multimode band does not emerge in the Rioux experimental data calculation because the
data corresponding to a wavelength of 496 nm cannot be obtained. The second abrupt change of curve
was caused by the abrupt change and structure of the dielectric constant [12].

The propagation properties of Au : Ag (1 : 4) chain nanostructures were studied using the
parametric model in the appendix, and the propagation properties of pure Au, Au : Ag (1 : 2) and
Au : Ag (2 : 1) were also studied using Rioux experimental data. We used the same parameter settings
to study the characteristics of pure Au, Au : Ag (1 : 2), Au : Ag (2 : 1), and the multi-parameter
model of the complex propagation constant of Au : Ag (1 : 4) chain nanostructures under the Rioux
experimental data. Fig. 4 shows the numerical changes in the phase constant and attenuation constant
with frequency, combined with previous research results involving pure Ag under Rioux experimental
data.

(a) (b)

Figure 4. Analysis of the phase constants and attenuation constants of the five compositions of metal
nanorod arrays. The figure shows the dielectric function: (a) phase constant; (b) attenuation constant.

It can be seen from Figure 4 that the phase constant and attenuation constant have the largest
overall fluctuation with frequency. The frequencies of point A-D are 0.1532, 0.1437, 0.1037, and 0.1909.
With the increase of gold content in the alloy, the phase constant and attenuation constant change curves
with frequency tend to be gentle. This means that in the propagation frequency range, the smaller the
energy loss is, the higher the transmission power is. As the gold content in the alloy increases, the
reverse wave gradually decreases, and the forward wave cannot transfer enough energy for exchange,
so the scattering ability of the scattering unit is weakened. This observation lays the foundation for
subsequent research regarding the characteristics and practical value of the mixed-chain nanostructures
with limited and varying proportions of gold and silver.

To study the wave guiding ability of a finite alloy array chain comprising various Au/Ag proportions
under the excitation of a plane wave of a specific wavelength, a cylindrical finite array chain composed
of 40 nanorods was selected as the object of study. Through a large number of simulation experiments
and literature comparison, it is found that in the transmission process of light, the attenuation state
or cutoff state begins at the place where the attenuation coefficient rises with the initial frequency
curve. The special frequency points we choose are all taken from the initial rising frequency point or
the frequency points after the initial rising frequency point. Through the test of each frequency point,
the result in Table 1 is obtained.

We find that when the content of gold in the alloy chain nanostructure is low, the frequency range
of the propagation state is lower than that of the pure silver chain nanostructure. As the gold content
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Table 1. Chain structure propagation characteristics of different proportions of metals.

Material propagation stage Attenuated or Cut-off state

Ag h/λ < 0.144 h/λ > 0.144

Au : Ag 1 : 4 h/λ < 0.13 h/λ > 0.13

Au : Ag 1 : 2 h/λ < 0.178 h/λ > 0.178

Au : Ag 2 : 1 h/λ < 0.182 h/λ > 0.182

in the alloy increases, the frequency range of the propagation state gradually increases and exceeds that
of the pure silver chain nanostructure; meanwhile, the frequency range of the attenuation or cut-off
state gradually decreases. By gradually increasing the proportion of a metal in the alloy, we can explore
the changing law of the propagation characteristics of the alloy. At present, there is no research on the
variation of metal propagation characteristics from this point, so we are the first to find that we can
achieve frequency modulation (regulating the attenuation or cutoff frequency range, i.e., the band gap
range) method through this method.

In order to provide a more comprehensive analysis, the field distribution and propagation
distribution of several different and representative frequency points were evaluated at different stages.
Fig. 5–Fig. 8 are respectively taken from A-D frequency points. In the finite array of pure silver chain
nanostructures, when h/λ = 0.149 (λ = 359 nm), it is the point where the attenuation constant value of
the second abrupt change is the largest. At this frequency, the light changes from the attenuation state
to the completely cut-off state, and the light cannot propagate in this structure, as shown in Figs. 5(a)
and (b). In the Au : Ag (1 : 4) chained nanostructure finite array, when h/λ = 0.144 (λ = 383 nm), it is
a frequency point before the second abrupt change. At this frequency, the propagation distribution is
weakened, and the light is in a state of attenuation, as shown in Figs. 6(a) and (b). In the Au : Ag (1 : 2)
chained nanostructure finite array, h/λ = 0.104 (λ = 530 nm) is taken as the representative point of the
low frequency point. At this frequency, the light spreads forward uniformly and has low loss, which can
be used in waveguides or sensors, as shown in Figs. 7(a) and (b). In the finite array of pure Au chain
nanostructures, h/λ = 0.191 (λ = 288 nm) is taken as the representative point of the high frequency

(a) (b)

Figure 5. (a) Near-field propagation distribution of the silver chain structure at a wavelength of
359 nm; (b) distribution of the Hz field along the y-axis of the silver chain structure at a wavelength of
359 nm.
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point. At this frequency, the propagation of light is completely cut off, as shown in Figs. 8(a) and
(b). We have found that with the rational use of the characteristics the high-frequency cut-off state
is beneficial to our production of various filters and photonic crystal mirrors, etc., which has laid the
theoretical foundation for our subsequent research and application.

(a) (b)

Figure 6. (a) Near-field propagation distribution of the Au : Ag (1 : 4) chain structure with a
wavelength of 383 nm; (b) distribution of the Hz field along the y-axis of the Au : Ag (1 : 4) chain
structure with a wavelength of 383 nm.

(a) (b)

Figure 7. (a) Near-field propagation distribution of the Au : Ag (1 : 2) chain structure with a
wavelength of 530 nm; (b) distribution of the Hz field along the y-axis of the Au : Ag (1 : 2) chain
structure with a wavelength of 530 nm.
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(a) (b)

Figure 8. (a) Near-field propagation distribution of pure gold chain nanostructures at a wavelength of
288 nm; (b) Hz field distribution along the y-axis of pure gold chain nanostructures at a wavelength of
288 nm.

4. CONCLUSION

This study employs two types of data and three research methods to investigate the complex propagation
constants of infinite pure silver chain nanostructures in the range of 270–810 nm and analyze the
characteristics of the complex propagation constant. The characteristics of the complex propagation
constants of pure Au, Au : Ag (1 : 4), Au : Ag (1 : 2), and Au : Ag (2 : 1) chain nanostructures were also
studied based on the Rioux experimental data. As the gold content exceeds Au : Ag (1 : 2), the coupling
coefficient between the forward and reverse waves decreased, and the reverse wave could not provide
enough energy to transfer to the forward wave. The scattering ability of the scattering unit became
weaker; the frequency range of the propagation state became wider; and it exhibited good propagation
characteristics. We used a cylindrical finite array chain composed of 40 nanorods as the object of study
to study the propagation distribution of this structure. By gradually increasing the proportion of a metal
in the alloy, we can explore the changing law of the propagation characteristics of the alloy. At present,
there is no research on the variation of metal propagation characteristics from this point, so we are the
first to find that we can achieve frequency modulation (regulating the attenuation or cutoff frequency
range, i.e., the band gap range) method through this method. It can be seen from our research results
that the range of attenuation and cut-off frequency can be controlled by adjusting the proportion of gold
in the au-ag alloy, and thus the range of forbidden band can be controlled. In the range of propagation
frequency, the higher the content of gold is in the alloy, the smoother the curve of attenuation constant
with frequency is, that is, the smaller the loss in the process of adjusting the change of wavelength is.
This will give the engineering community a new direction in making filters, photonic crystal reflectors,
and antennas. By studying the properties of waveguides at specific wavelengths, distinct stages can be
applied to different devices. The propagation frequency range can be used for waveguides and sensors,
and the cut-off frequency band can be used for filters and mirrors.
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APPENDIX A.

We evaluated the characteristics of the complex propagation constant of the Au : Ag (1 : 4) chain
structure under the Rioux experimental data for pure Au, Au : Ag (1 : 2), Au : Ag (2 : 1), and
multi-parameter model calculations. We used an arbitrary composition of the Au-Ag alloy for complex
permittivity analysis to characterize the optical dielectric function ε(ω) of the gold-silver alloy nanowires
and obtained the optimized fitting of the gold-silver alloy dispersion [23]. The shape of JDOS (Joint
Density Of States) is the core element that affects the shape of the dielectric function, and the critical
point is the main factor that affects JDOS itself. Here, we used a parabola to approximate the gap
energy near the critical point. The band-to-band contribution of the critical point to the dielectric
function is given by Eq. (A1):

εcp1 (ω) = A

[
−
√
ωg1 − ω01

2(ω + iΓ1)2
ln

(
1−

(
ω + iΓ1

ω01

)2
)

+
2
√
ωg1

(ω + iΓ1)
tanh−1

(√
ωg1 − ω01

ωg1

)

−
√

ω+iΓ1−ωg1

(ω + iΓ2)2
tan−1

(√
ωg1 − ω01

ω+iΓ1−ωg1

)
−
√

ω+iΓ1+ωg1

(ω + iΓ1)2
tanh−1

(√
ωg1 − ω01

ω + iΓ1 + ωg1

)]
(A1)

The band-to-band contribution of the critical point A to the dielectric function is expressed as shown
in Eq. (A2):

εcp2 (ω) = − A2

2(ω + iΓ2)2
ln

(
1−

(
ω + iΓ2

ω02

)2
)
, (A2)

An analytical model of the complex permittivity of an Au-Ag alloy with an arbitrary composition is
given by Eq. (A3),

ε(ω,GMF ) = ε∞(GMF )−
(
ωp(GMF )2

)
ω2+iωΓp(GMF )

+ εcp1 (ω, ω01(GMF ), ωg1(GMF ),Γ1(GMF ), A1(GMF ))

+εcp2(ω, ω02(GMF ), 2(GMF ), A2(GMF )). (A3)

where Γ1 and Γ2 are the stretching factors caused by scattering; ω01 and ω02 are thresholds; ωg1 is the
gap; A, A1, and A2 are the amplitude parameters, including various constants and matrix elements; ε∞
is the contribution of the high-energy transition; ωp is the plasma frequency; Γp is the Drude broadening
factor, which is related to the lifetime of free electrons in the model; GMF is the gold mole fraction. Any
given parameter in this equation is closely related to the combination. Research has shown that there
are many adequate methods to evaluate parabolic combinatorial correlations, and each method requires
three reference points. We chose to refer to the pure composition of Au and Ag, and the midpoint

Table A1. Fitting parameters for the dielectric function of Au-Ag alloys.

Au AuAg 1 : 1 Ag

ωp [eV] 8.9234 9.0218 8.5546

Γp [eV] 0.042389 0.16713 0.022427

ε∞ 2.2715 2.2838 1.7381

ωg1 [eV] 2.6652 3.0209 4.0575

ω01 [eV] 2.3957 2.7976 3.9260

Γ1 [eV] 0.1788 0.18833 0.017723

A1 73.251 22.996 51.217

ω02 [eV] 3.5362 3.3400 4.1655

Γ2 [eV] 0.35467 0.68309 0.18819

A2 40.007 57.540 30.770
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composition of the same amount of Au and Ag. For example, we can use Eq. (A4) to calculate the
stretching factor related to the free electron lifetime in the Drude model under any GMF value,

Γp(GMF ) = GMF 2(2ΓpAu − 4ΓpAuAg11 + 2ΓpAg) +GMF (−ΓPAu + 4ΓpAuAg11 − 3ΓpAg) + ΓpAg. (A4)

where ΓpAu, ΓpAuAg11, and ΓAg are the stretching factors related to the free electron lifetime in the Drude
model of pure Au, Au : Ag (1 : 1) alloy, and pure Ag, respectively. Other fitting parameters can also be
calculated according to this relationship. We note that the selection of Au, Ag, and Au : Ag (1 : 1) alloy
compositions to define the parabola was simply for convenience. The parameters listed in Table A1
were used for these calculations.
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